Valorisation of Raspberry Seeds in Cosmetic Industry-Green Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Seed Oil Cold-Pressing and Defatted Seed Cake Preparation
2.3. Determination of the Fatty Acids Composition
2.4. Determination of the Tocopherol Content
2.5. Oxidative Stability Test
2.6. DES Extraction of Phenolic Compounds from Defatted Seed Cake
2.7. Determination of Total Phenolic Content (TPC) and Radical Scavenging Activity (RSA)
2.8. Determination of Free and Total Ellagic Acid Content
2.9. Preparation of Cosmetic Formulation
2.10. Investigation of Cosmetic Formulation
2.10.1. Zein Test of Irritability
2.10.2. TEWL (Transepidermal Water Loss)/Hydration
2.10.3. RBC (Red Blood Cell)/Luminance (L/D) Assay
2.10.4. Antioxidant Activity (DPPH Assay)
3. Results and Discussion
3.1. Characterization of the Raspberry Seed Oil
3.1.1. Fatty Acid Composition
3.1.2. Tocopherols Content
3.1.3. Oxidative Stability
3.2. DES Extraction of Phenolic Compounds from Defatted Seed Cake
3.2.1. Total Phenolic Content (TPC) and Radical Scavenging Activity (RSA)
3.2.2. Determination of Free and Total Ellagic Acid Content
3.3. Characterization of Cosmetic Formulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J. Agric. Food Chem. 2022, 70, 6787–6804. [Google Scholar] [CrossRef]
- Krstić, Ð.; Vukojević, V.; Mutić, J.; Fotirić Akšić, M.; Ličina, V.; Milojković-Opsenica, D.; Trifković, J. Distribution of elements in seeds of some wild and cultivated fruits. Nutrition and authenticity aspects. J. Sci. Food Agric. 2019, 99, 546–554. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Gašić, U.; Dojčinović, B.; Lončar, B.; Meland, M. Chemical Fruit Profiles of Different Raspberry Cultivars Grown in Specific Norwegian Agroclimatic Conditions. Horticulturae 2022, 8, 765. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Dabić Zagorac, D.; Sredojević, M.; Milivojević, J.; Gašić, U.; Meland, M.; Natić, M. Chemometric Characterization of Strawberries and Blueberries according to Their Phenolic Profile: Combined Effect of Cultivar and Cultivation System. Molecules 2019, 24, 4310. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 6 March 2024).
- Szymanowska, U.; Baraniak, B.; Bogucka-Kocka, A. Antioxidant, anti-inflammatory, and postulated cytotoxic activity of phenolic and anthocyanin-rich fractions from polana raspberry (Rubus idaeus L.) fruit and juice—In Vitro study. Molecules 2018, 23, 1812. [Google Scholar] [CrossRef]
- Jablonský, M.; Škulcová, A.; Malvis, A.; Šima, J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotechnol. 2018, 282, 46–66. [Google Scholar] [CrossRef]
- Mišan, A.; Nađpal, J.; Stupar, A.; Pojić, M.; Mandić, A.; Verpoorte, R.; Choi, Y.H. The perspectives of natural deep eutectic solvents in agri-food sector. Crit. Rev. Food Sci. Nutr. 2020, 60, 2564–2592. [Google Scholar] [CrossRef]
- Boudesocque-Delaye, L.; Ardeza, I.M.; Verger, A.; Grard, R.; Théry-Koné, I.; Perse, X.; Munnier, E. Natural Deep Eutectic Solvents as a Novel Bio-Based Matrix for Ready-to-Use Natural Antioxidants-Enriched Ingredients: Extraction and Formulation Optimization. Cosmetics 2024, 11, 17. [Google Scholar] [CrossRef]
- Van Hoed, V.; De Clercq, N.; Echim, C.; Andjelkovic, M.; Leber, E.; Dewettinck, K.; Verhé, R. Berry seeds: A source of specialty oils with high content of bioactives and nutritional value. J. Food Lipids 2009, 16, 33–49. [Google Scholar] [CrossRef]
- de Araújo, M.M.; Schneid, A.C.; Oliveira, M.S.; Mussi, S.V.; de Freitas, M.N.; Carvalho, F.C.; Bernes Junior, E.A.; Faro, R.; Azevedo, H. NLC-Based Sunscreen Formulations with Optimized Proportion of Encapsulated and Free Filters Exhibit Ehanced UVA and UVB Photoprotection. Pharmaceutics 2024, 16, 427. [Google Scholar] [CrossRef]
- Parry, J.; Su, L.; Luther, M.; Zhou, K.; Yurawecz, M.P.; Whittaker, P.; Yu, L. Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. J. Agric. Food Chem. 2005, 53, 566–573. [Google Scholar] [CrossRef]
- Ryan, A.S.; Goldsmith, L.A. Nutrition and the skin. Clin. Dermatol. 1996, 14, 389–406. [Google Scholar] [CrossRef]
- Ispiryan, A.; Viškelis, J.; Viškelis, P. Red Raspberry (Rubus idaeus L.) Seed Oil: A Review. Plants 2021, 10, 944. [Google Scholar] [CrossRef]
- Parry, J.; Hao, Z.; Luther, M.; Su, L.; Zhou, K.; Yu, L. Characterization of cold pressed onion, parsley, cardamom, mullein, roasted pumpkin and milk thistle seed oils. J. Am. Oil Chem. Soc. 2006, 83, 847–854. [Google Scholar] [CrossRef]
- Wójciak, W.; Żuk, M.; Sowa, I.; Mazurek, B.; Tyśkiewicz, K.; Wójciak, M. Recovery of Bioactive Components from Strawberry Seeds Residues Post Oil Extraction and Their Cosmetic Potential. Appl. Sci. 2024, 14, 783. [Google Scholar] [CrossRef]
- Rodríguez-Blázquez, S.; Fernández-Ávila, L.; Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; Miranda, R. Valorization of Defatted Cherry Seed Residues from LiquorProcessing by Matrix Solid-Phase Dispersion Extraction: A Sustainable Strategy for Production of Phenolic-Rich Extracts with Antioxidant Potential. Antioxidants 2023, 12, 2041. [Google Scholar] [CrossRef]
- Ćirić, I.; Sredojević, M.; Dabić Zagorac, D.; Fotirić Akšić, M.; Meland, M.; Natić, M. Bioactive Phytochemicals from Berries Seed Oil Processing By-Products (Chapter 19). In Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products, 1st ed.; Ramadan, M.F., Ed.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2023; pp. 431–453. [Google Scholar] [CrossRef]
- Marić, B.; Abramović, B.; Ilić, N.; Bodroža-Solarov, M.; Pavlić, B.; Oczkowski, M.; Wilczak, J.; Četojević-Simin, D.; Šarić, L.; Teslić, N. UHPLC-Triple-TOF-MS Characterization, Antioxidant, Antimicrobial and Antiproliferative Activity of Raspberry (Rubus idaeus L.) Seed Extracts. Foods 2023, 12, 161. [Google Scholar] [CrossRef]
- Teslić, N.; Santos, F.; Oliveira, F.; Stupar, A.; Pojić, M.; Mandić, A.; Pavlić, B.; Kljakić, A.C.; Duarte, A.R.C.; Paiva, A.; et al. Simultaneous Hydrolysis of Ellagitannins and Extraction of Ellagic Acid from Defatted Raspberry Seeds Using Natural Deep Eutectic Solvents (NADES). Antioxidants 2022, 11, 254. [Google Scholar] [CrossRef]
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl esters—Part 2: Preparation of Methyl Esters of Fatty Acids. Institute for Standardization of Serbia: Belgrade, Serbia, 2017.
- ISO 12966-1:2014; Animal and VEGETABLE fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. Institute for Standardization of Serbia: Belgrade, Serbia, 2014.
- Gimeno, E.; Castellote, A.I.; Lamuela-Raventós, R.M.; Torre, M.C.; Lopez-Sabater, M.C. Rapid determination of vitamin E in vegetable oils by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2000, 881, 251–254. [Google Scholar] [CrossRef]
- Jonnala, R.S.; Dunford, N.T.; Dashiell, K.E. Tocopherol, phytosterol and phospholipid compositions of new high oleic peanut cultivars. J. Food Compos. Anal. 2006, 19, 601–605. [Google Scholar] [CrossRef]
- Natić, M.; Dabić Zagorac, D.; Gašić, U.; Dojčinović, B.; Ćirić, I.; Relić, D.; Todić, S.; Sredojević, M. Autochthonous and international grape varieties grown in Serbia—Phenolic and elemental composition. Food Biosci. 2021, 40, 100889. [Google Scholar] [CrossRef]
- Pavlović, A.V.; Dabić, D.Č.; Momirović, N.M.; Dojčinović, B.P.; Milojković-Opsenica, D.M.; Tešić, Ž.L.j.; Natić, M.M. Chemical Composition of Two Different Extracts of Berries Harvested in Serbia. J. Agric. Food Chem. 2013, 61, 4188–4194. [Google Scholar] [CrossRef] [PubMed]
- Petrov Ivanković, A.; Milivojević, A.; Ćorović, M.; Simović, M.; Banjanac, K.; Jansen, P.; Vukoičić, A.; van den Bogaard, E.; Bezbradica, D. In vitro evaluation of enzymatically derived blackcurrant extract as prebiotic cosmetic ingredient: Extraction conditions optimization and effect on cutaneous microbiota representatives. Chem. Biol. Technol. Agric. 2023, 10, 125. [Google Scholar] [CrossRef]
- Blagojević, S.N.; Blagojević, S.M.; Pejić, N.D. Performance and efficiency of anionic dishwashing liquids with amphoteric and nonionic surfactants. J. Surfact. Deterg. 2016, 19, 363–372. [Google Scholar] [CrossRef]
- Bujak, T.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Complexes of Ectoine with the Anionic Surfactants as Active Ingredients of Cleansing Cosmetics with Reduced Irritating Potential. Molecules 2020, 25, 1433. [Google Scholar] [CrossRef]
- Imhof, R.E.; De Jesus, M.E.P.; Xiao, P.; Ciortea, L.I.; Berg, E.P. Closed-chamber transepidermal water loss measurement: Microclimate, calibration and performance. Int. J. Cosmet. Sci. 2009, 31, 97–118. [Google Scholar] [CrossRef] [PubMed]
- Ratz-Lyko, A.; Arct, J.; Pytkowska, K. Methods for evaluation of cosmetic antioxidant capacity. Skin. Res. Technol. 2012, 18, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Jurgoński, A.; Koza, J.; Chu, D.T.; Opyd, P.M. Berry seed oils as potential cardioprotective food supplements. Nutrire 2018, 43, 26. [Google Scholar] [CrossRef]
- O’lenick, A.J., Jr.; Lavay, C. Raspberry Amido Amines and Betaines as a Delivery System for Natural Antioxidants. U.S. Patent 7,078,545, 18 July 2006. [Google Scholar]
- Simard, M.; Tremblay, A.; Morin, S.; Martin, C.; Julien, P.; Fradette, J.; Flamand, N.; Pouliot, R. α-Linolenic acid and linoleic acid modulate the lipidome and the skin barrier of a tissue-engineered skin model. Acta Biomater. 2022, 140, 261–274. [Google Scholar] [CrossRef]
- Mizutani, Y.; Mitsutake, S.; Tsuji, K.; Kihara, A.; Igarashi, Y. Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie. 2009, 91, 784–790. [Google Scholar] [CrossRef]
- Breiden, B.; Sandhoff, K. The role of sphingolipid metabolism in cutaneous permeability barrier formation. Biochim. Biophys. Acta 2014, 1841, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, A. Eicosanoids in skin inflammation. Prostaglandins Leukot. Essent. Fatty Acids 2013, 88, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M.; Kiełtyka-Dadasiewicz, A. Oils from fruit seeds and their dietetic and cosmetic significance. Herba Pol. 2018, 64, 63–70. [Google Scholar] [CrossRef]
- Cosgrove, M.C.; Franco, O.H.; Granger, S.P.; Murray, P.G.; Mayes, A.E. Dietary nutrient intakes and skin-aging appearance among middle-aged American women. Am. J. Clin. Nutr. 2007, 86, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Oomah, B.D.; Ladet, S.; Godfrey, D.V.; Liang, J.; Girard, B. Characteristics of raspberry (Rubus idaeus L.) seed oil. Food Chem. 2000, 69, 187–193. [Google Scholar] [CrossRef]
- Pieszka, M.; Migdał, W.; Gąsior, R.; Rudzińska, M.; Bederska-Łojewska, D.; Pieszka, M.; Szczurek, P. Native oils from apple, blackcurrant, raspberry, and strawberry seeds as a source of polyenoic fatty acids, tocochromanols, and phytosterols: A health implication. J. Chem. 2015, 2015, 659541. [Google Scholar] [CrossRef]
- Jiang, Q.; Im, S.; Wagner, J.G.; Hernandez, M.L.; Peden, D.B. Gamma-tocopherol, a major form of vitamin E in diets: Insights into antioxidant and anti-inflammatory effects, mechanisms, and roles in disease management. Free Radic. Bio. Med. 2022, 178, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Eberlein-König, B.; Placzek, M.; Przybilla, B. Protective effect against sunburn of combined systemic ascorbic acid (vitamin C) and d-alphatocopherol (vitamin E). J. Am. Acad. Dermatol. 1998, 38, 45–48. [Google Scholar] [CrossRef]
- Fuchs, J.; Kern, H. Modulation of UV-light-induced skin inflammation by D-alpha-tocopherol and L-ascorbic acid: A clinical study using solar simulated radiation. Free Radic. Biol. Med. 1998, 25, 1006–1012. [Google Scholar] [CrossRef]
- de Oliveira Pinto, C.A.S.; Martins, T.E.A.; Martinez, R.M.; Freire, T.B.; Robles Velasco, M.V.; Baby, A.R. Vitamin E in human skin: Functionality and topical products. In Vitamin E in Health and Disease; Pınar, E., Júlia, S.S., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Tsao, C.H.; Chang, C.W.; Ho, Y.C.; Chuang, Y.K.; Lee, W.J. Application of OXITEST for prediction of shelf-lives of selected cold-pressed oils. Front. Nutr. 2021, 8, 763524. [Google Scholar] [CrossRef] [PubMed]
- Tinello, F.; Lante, A.; Bernardi, M.; Cappiello, F.; Galgano, F.; Caruso, M.C.; Favati, F. Comparison of OXITEST and RANCIMAT methods to evaluate the oxidative stability in frying oils. Eur. Food Res. Technol. 2018, 244, 747–755. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, L.; Liu, Y.; Zhang, Q.; Li, Y.; Wu, Z. Release of phenolics compounds from Rubus idaeus L. dried fruits and seeds during simulated in vitro digestion and their bio-activities. J. Funct. Foods 2018, 46, 57–65. [Google Scholar] [CrossRef]
- Vázquez-González, M.; Fernández-Prior, Á.; Bermúdez Oria, A.; Rodríguez-Juan, E.M.; Pérez-Rubio, G.A.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Utilization of strawberry and raspberry waste for the extraction of bioactive compounds by deep eutectic solvents. LWT 2020, 130, 109645. [Google Scholar] [CrossRef]
- Alfei, S.; Turrini, F.; Catena, S.; Zunin, P.; Grilli, M.; Pittaluga, A.M.; Boggia, R. Ellagic acid a multi-target bioactive compound for drug discovery in CNS? A narrative review. Eur. J. Med. Chem. 2019, 183, 111724. [Google Scholar] [CrossRef]
- Majewski, M.; Kucharczyk, E.; Kaliszan, R.; Markuszewski, M.; Fotschki, B.; Juśkiewicz, J.; Borkowska-Sztachańska, M.; Ognik, K. The characterization of ground raspberry seeds and the physiological response to supplementation in hypertensive and normotensive rats. Nutrients 2020, 12, 1630. [Google Scholar] [CrossRef]
Fatty acids (%) | |
Palmitic C16:0 | 2.49 ± 0.20 |
Heptadecanoic acid C17:0 | 0.06 ± 0.02 |
Stearic C18:0 | 0.91 ± 0.15 |
Oleic C18:1 | 11.64 ± 0.90 |
Linoleic C20:2 | 54.80 ± 1.23 |
α-Linolenic C20:3 | 29.98 ± 0.77 |
Arachidic C20:0 | 0.04 ± 0.01 |
Gondoic C20:1 | 0.06 ± 0.01 |
ΣSFA * | 7.00 ± 0.38 |
ΣMUFA | 11.70 ± 0.96 |
ΣPUFA | 84.78 ± 2.00 |
Induction period (IP) (h) | 8.30 ± 1.16 |
Tocopherols (mg/100 g) | |
α-tocopherol | 69.26 |
β-tocopherol | n.d. |
γ-tocopherol | 200.39 |
δ-tocopherol | 28.82 |
DES | TPC (mg GAE/L) | RSA (mmol TE/L) | Free Ellagic Acid (mg/L) | Total Ellagic Acid (mg/L) |
---|---|---|---|---|
proline/sucrose | 477.6 ± 0.71 | 5467.5 ± 19.86 | 25.2 ± 0.1 | 66.3 ± 0.1 |
proline/malic acid | 438.1 ± 3.53 | 3959.9 ± 46.35 | 35.4 ± 0.4 | 75.7 ± 0.2 |
proline/citric acid | 550.1 ± 3.76 | 4727.7 ± 39.73 | 52.4 ± 0.1 | 86.4 ± 0.2 |
Sample | Zein Number (mg/100 mL) | TEWL (g/m2 h) | RBC (L/D) | Antioxidant Activity DPPH Assay (mmol AAE/L) |
---|---|---|---|---|
Control sample (CS) | 18 ± 1 | 13.2 ± 0.6 | 22 ± 2 | 60 ± 3 |
CS + 0.1% extract | 15 ± 1 | 11.1 ± 0.5 | 50 ± 4 | 85 ± 4 |
CS + 0.25% extract | 12.0 ± 0.5 | 10.2 ± 0.5 | 103 ± 5 | 96 ± 4 |
CS + 0.50% extract | 10.0 ± 0.5 | 9.9 ± 0.5 | 110 ± 5 | 115 ± 4 |
CS + 0.1% starch-encapsulated extract | 8.0 ± 0.4 | 10.2 ± 0.4 | 115 ± 5 | 108 ± 4 |
CS + 0.25% starch-encapsulated extract | 6.0 ± 0.3 | 9.8 ± 0.4 | 125 ± 5 | 115 ± 4 |
CS + 0.50% starch-encapsulated extract | 5.0 ± 0.3 | 9.0 ± 0.4 | 137 ± 6 | 126 ± 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćirić, I.; Dabić Zagorac, D.; Sredojević, M.; Fotirić Akšić, M.; Rabrenović, B.; Blagojević, S.; Natić, M. Valorisation of Raspberry Seeds in Cosmetic Industry-Green Solutions. Pharmaceutics 2024, 16, 606. https://doi.org/10.3390/pharmaceutics16050606
Ćirić I, Dabić Zagorac D, Sredojević M, Fotirić Akšić M, Rabrenović B, Blagojević S, Natić M. Valorisation of Raspberry Seeds in Cosmetic Industry-Green Solutions. Pharmaceutics. 2024; 16(5):606. https://doi.org/10.3390/pharmaceutics16050606
Chicago/Turabian StyleĆirić, Ivanka, Dragana Dabić Zagorac, Milica Sredojević, Milica Fotirić Akšić, Biljana Rabrenović, Stevan Blagojević, and Maja Natić. 2024. "Valorisation of Raspberry Seeds in Cosmetic Industry-Green Solutions" Pharmaceutics 16, no. 5: 606. https://doi.org/10.3390/pharmaceutics16050606
APA StyleĆirić, I., Dabić Zagorac, D., Sredojević, M., Fotirić Akšić, M., Rabrenović, B., Blagojević, S., & Natić, M. (2024). Valorisation of Raspberry Seeds in Cosmetic Industry-Green Solutions. Pharmaceutics, 16(5), 606. https://doi.org/10.3390/pharmaceutics16050606