New Inhibitors of Bcr-Abl Based on 2,6,9-Trisubstituted Purine Scaffold Elicit Cytotoxicity in Chronic Myeloid Leukemia-Derived Cell Lines Sensitive and Resistant to TKIs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. General Procedure for the Synthesis of Intermediates 2a–c
- -
- 2,6-Dichloro-9-(cyclopropylmethyl)-9H-purine, (2a), 51%.
- -
- 2,6-Dichloro-9-isopentyl-9H-purine, (2b), 48%.
- -
- 2,6-Dichloro-9-hexyl-9H-purine, (2c), 45%.
2.1.2. General Procedure for the Synthesis of Intermediates 3a–i
- -
- 2-Chloro-9-(cyclopropylmethyl)-N-phenyl-9H-purin-6-amine (3a), 85%.
- -
- 2-Chloro-9-(cyclopropylmethyl)-N-(3-fluorophenyl)-9H-purin-6-amine (3b), 76%.
- -
- 2-Chloro-9-(cyclopropylmethyl)-N-(3,4-difluorophenyl)-9H-purin-6-amine (3c), 77%.
- -
- 2-Chloro-9-isopentyl-N-phenyl-9H-purin-6-amine, (3d), 88%.
- -
- 2-Chloro-N-(3-fluorophenyl)-9-isopentyl-9H-purin-6-amine (3e), 50%.
- -
- 2-Chloro-N-(3,4-difluorophenyl)-9-isopentyl-9H-purin-6-amine (3f), 67%.
- -
- 2-Chloro-9-hexyl-N-phenyl-9H-purin-6-amine (3g), 71%.
- -
- 2-Chloro-N-(3-fluorophenyl)-9-hexyl-9H-purin-6-amine (3h), 78%.
- -
- 2-Chloro-N-(3,4-difluorophenyl)-9-hexyl-9H-purin-6-amine (3i), 82%.
2.1.3. General Procedures for the Synthesis of Intermediates 5 and 9a–b
2.1.4. General Procedures for the Synthesis Intermediates 6 and 10a–b
2.1.5. General Procedure for the Synthesis of Intermediates 12a–c
2.1.6. General Procedures for the Synthesis of Final Compounds for Biological Assays 7a–b, 11a–i, and 13a–c
2.2. Kinase Assays
2.3. Docking
2.4. Cell Cultures
2.5. Cytotoxicity Assay
2.6. Flow Cytometry
2.7. Immunoblotting and Antibodies
3. Results and Discussion
3.1. Design and Synthesis
3.2. Kinase Inhibition and Structure–Activity Relationship
- The incorporation of a methylene linker between the piperazine and phenylamino ring at C-6 diminished the inhibitory potency on Bcr-Abl in 7a and 7b compared to their analogues II and III (0.180 and 0.225 μM vs. 0.040 μM, respectively). This indicates that the flexibility of this moiety is disadvantageous for the Bcr-Abl activity.
- The substitution of methyl by a hydroxymethyl group in the N-piperazine ring increased the inhibition of Bcr-Abl activity, this behavior being observed in 11a–c compared to I–III. The IC50 values diminished from 0.090 to 0.037 μM (for I to 11a), from 0.045 to 0.015 μM (for II to 11b), and from 0.040 to 0.020 μM (for III to 11c). Interestingly, this fragment is present in dasatinib, and according to our previous docking results, this fragment is in the solvent-exposed region. This effect is so significant that even compounds with more voluminous hydrophobic moieties increased their inhibitory activity (11f vs. IV and 11i vs. VI).
- The fact that the optimal substitution for alkyl chains at N-9 is by the cyclopropylmethyl group is confirmed, as can be seen by the comparison of compounds 11a–c with their respective analogues 11d–i. This result support the hypothesis about the size of the hydrophobic region in Bcr-Abl compared to other kinases, such as BTK or FLT3 [13].
- These results also prove that the substitution of hydrogens by fluorine atoms in meta and para positions of the 6-aminophenyl fragment is beneficial for the inhibition of this kinase.
- Finally, it is also demonstrated that it must be a 6-aminophenyl fragment and not just a substituent on the purine that possesses the amino group, because according to the IC50 values, any option other than the benzene ring drastically decreases the kinase activity (13a–c, with IC50 values between 0.845 μM and 11.06 μM). This would indicate that not only the hydrogen bond donor group is a key to the binding site, but there are also important steric and electronic effects to consider.
3.3. Molecular Docking Studies for Bcr-AblWT
3.4. Cytotoxic Studies
3.5. In Silico Studies for Bcr-Abl T315I
3.6. Cell Cycle Cytometry Analysis and Immunodetection
3.7. Calculated Physicochemical Properties and ADME Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Westerweel, P.E.; te Boekhorst, P.A.W.; Levin, M.-D.; Cornelissen, J.J. New Approaches and Treatment Combinations for the Management of Chronic Myeloid Leukemia. Front. Oncol. 2019, 9, 00665. [Google Scholar] [CrossRef]
- An, X.; Tiwari, A.K.; Sun, Y.; Ding, P.-R.; Ashby, C.R.; Chen, Z.-S. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: A review. Leuk. Res. 2010, 34, 1255–1268. [Google Scholar] [CrossRef]
- Sánchez, R.; Dorado, S.; Ruíz-Heredia, Y.; Martín-Muñoz, A.; Rosa-Rosa, J.M.; Ribera, J.; García, O.; Jimenez-Ubieto, A.; Carreño-Tarragona, G.; Linares, M.; et al. Detection of kinase domain mutations in BCR::ABL1 leukemia by ultra-deep sequencing of genomic DNA. Sci. Rep. 2022, 12, 13057. [Google Scholar] [CrossRef]
- O’Hare, T.; Deininger, M.W.N.; Eide, C.A.; Clackson, T.; Druker, B.J. Targeting the BCR-ABL Signaling Pathway in Therapy-Resistant Philadelphia Chromosome-Positive Leukemia. Clin. Cancer Res. 2011, 17, 212–221. [Google Scholar] [CrossRef]
- Rossari, F.; Minutolo, F.; Orciuolo, E. Past, present, and future of Bcr-Abl inhibitors: From chemical development to clinical efficacy. J. Hematol. Oncol. 2018, 11, 84. [Google Scholar] [CrossRef]
- Roskoski, R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol. Res. 2023, 187, 106552. [Google Scholar] [CrossRef]
- Ren, R. Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer 2005, 5, 172–183. [Google Scholar] [CrossRef]
- Alves, R.; Gonçalves, A.C.; Rutella, S.; Almeida, A.M.; De Las Rivas, J.; Trougakos, I.P.; Sarmento Ribeiro, A.B. Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia—From Molecular Mechanisms to Clinical Relevance. Cancers 2021, 13, 4820. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Huang, H.; Lei, X.; Tang, G.; Cao, X.; Peng, J. Recent advances in Bcr-Abl tyrosine kinase inhibitors for overriding T315I mutation. Chem. Biol. Drug Des. 2021, 97, 649–664. [Google Scholar] [CrossRef] [PubMed]
- Desogus, A.; Schenone, S.; Brullo, C.; Tintori, C.; Musumeci, F. Bcr-Abl tyrosine kinase inhibitors: A patent review. Expert Opin. Ther. Pat. 2015, 25, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.; Nardi, V.; Shakespeare, W.C.; Metcalf, C.A., 3rd; Bohacek, R.S.; Wang, Y.; Sundaramoorthi, R.; Sliz, P.; Veach, D.R.; Bornmann, W.G.; et al. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Proc. Natl. Acad. Sci. USA 2006, 103, 9244–9249. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, J.; Dostálová, H.; Krystof, V.; Jorda, R.; Castro, A.; Mella, J.; Espinosa-Bustos, C.; María Zarate, A.; Salas, C.O. New 2,6,9-trisubstituted purine derivatives as Bcr-Abl and Btk inhibitors and as promising agents against leukemia. Bioorganic Chem. 2020, 94, 103361. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, J.; Dostálová, H.; Kryštof, V.; Jorda, R.; Delgado, T.; Castro-Alvarez, A.; Mella, J.; Cabezas, D.; Faúndez, M.; Espinosa-Bustos, C.; et al. Design, Synthesis, In Silico Studies and Inhibitory Activity towards Bcr-Abl, BTK and FLT3-ITD of New 2,6,9-Trisubstituted Purine Derivatives as Potential Agents for the Treatment of Leukaemia. Pharmaceutics 2022, 14, 1294. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein–Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [PubMed]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Curik, N.; Polivkova, V.; Burda, P.; Koblihova, J.; Laznicka, A.; Kalina, T.; Kanderova, V.; Brezinova, J.; Ransdorfova, S.; Karasova, D.; et al. Somatic Mutations in Oncogenes Are in Chronic Myeloid Leukemia Acquired De Novo via Deregulated Base-Excision Repair and Alternative Non-Homologous End Joining. Front Oncol 2021, 11, 744373. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Arancibia, J.; Espinosa-Bustos, C.; Canete-Molina, A.; Tapia, R.A.; Faundez, M.; Torres, M.J.; Aguirre, A.; Paulino, M.; Salas, C.O. Synthesis and pharmacophore modelling of 2,6,9-trisubstituted purine derivatives and their potential role as apoptosis-inducing agents in cancer cell lines. Molecules 2015, 20, 6808–6826. [Google Scholar] [CrossRef]
- Meng, Y.; Gao, C.; Clawson, D.K.; Atwell, S.; Russell, M.; Vieth, M.; Roux, B. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models. J. Chem. Theory Comput. 2018, 14, 2721–2732. [Google Scholar] [CrossRef]
- Weisberg, E.; Manley, P.; Mestan, J.; Cowan-Jacob, S.; Ray, A.; Griffin, J.D. AMN107 (nilotinib): A novel and selective inhibitor of BCR-ABL. Br. J. Cancer 2006, 94, 1765–1769. [Google Scholar] [CrossRef] [PubMed]
- Willis, S.G.; Lange, T.; Demehri, S.; Otto, S.; Crossman, L.; Niederwieser, D.; Stoffregen, E.P.; McWeeney, S.; Kovacs, I.; Park, B.; et al. High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: Correlation with clonal cytogenetic evolution but not response to therapy. Blood 2005, 106, 2128–2137. [Google Scholar] [CrossRef] [PubMed]
- Pemovska, T.; Johnson, E.; Kontro, M.; Repasky, G.A.; Chen, J.; Wells, P.; Cronin, C.N.; McTigue, M.; Kallioniemi, O.; Porkka, K.; et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature 2015, 519, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Meanwell, N.A. Improving Drug Candidates by Design: A Focus on Physicochemical Properties As a Means of Improving Compound Disposition and Safety. Chem. Res. Toxicol. 2011, 24, 1420–1456. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. Adv. Drug Deliv. Rev. 2001, 46, 3–26, The article was originally published in Adv. Drug Deliv. Rev. 1997, 23, 3–25.1. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
Compound | IC50 (µM) a | ||||
X | Y | R1 | R2 | Abl | |
7a | CH2 | CH3 | 0.180 ± 0.068 | ||
7b | CH2 | CH3 | 0.225 ± 0.042 | ||
11a | -- | CH2CH2OH | 0.037 ± 0.012 | ||
11b | -- | CH2CH2OH | 0.015 ± 0.010 | ||
11c | -- | CH2CH2OH | 0.020 ± 0.001 | ||
11d | -- | isopentyl | CH2CH2OH | 1.24 ± 0.22 | |
11e | -- | isopentyl | CH2CH2OH | 0.131 ± 0.071 | |
11f | -- | isopentyl | CH2CH2OH | 1.76 ± 0.74 | |
11g | -- | n-hexyl | CH2CH2OH | 0.834 ± 0.447 | |
11h | -- | n-hexyl | CH2CH2OH | 0.674 ± 0.069 | |
11i | -- | n-hexyl | CH2CH2OH | 1.68 ± 0.01 | |
13a | H | -- | CH3 | 3.96 ± 0.51 | |
13b | -- | CH3 | 11.06 ± 3.31 | ||
13c | -- | CH3 | 0.845 ± 0.066 | ||
I | -- | CH3 | 0.090 ± 0.007 b | ||
II | -- | CH3 | 0.040 ± 0.013 b | ||
III | -- | CH3 | 0.040 ± 0.013 b | ||
Imatinib | 0.327 ± 0.121 | ||||
Nilotinib | 0.047 ± 0.039 |
GI50 (μM) a | ||||
---|---|---|---|---|
Compound | KBM5 | BV173 | K562 | HEK-293T |
7a | 4.4 ± 0.8 | 3.3 ± 1.6 | 1.5 ± 0.1 | 6.3 ± 0.7 |
7b | 4.2 ± 0.2 | 1.9 ± 0.1 | 1.4 ± 0.2 | 6.3 ± 1.2 |
11a | 3.0 ± 0.1 | 3.0 ± 0.6 | 1.2 ± 0.3 | 9.5 ± 0.7 |
11b | 1.3 ± 0.1 | 1.5 ± 0.2 | 0.7 ± 0.2 | 5.5 ± 0.6 |
11c | 2.1 ± 0.3 | 1.7 ± 0.1 | 0.9 ± 0.2 | 5.0 ± 0.9 |
11d | 5.6 ± 0.4 | 3.6 ± 0.7 | 6.3 ± 0.7 | 5.7 ± 1.2 |
11e | 5.0 ± 0.1 | 3.8 ± 0.1 | 4.3 ± 0.2 | 4.7 ± 0.7 |
11f | 5.2 ± 0.1 | 4.5 ± 0.1 | 5.9 ± 0.6 | 5.2 ± 0.7 |
11g | 5.4 ± 0.2 | 5.2 ± 0.2 | 4.5 ± 1.4 | 8.6 ± 3.2 |
11h | 5.8 ± 0.2 | 5.2 ± 0.5 | 4.8 ± 0.4 | 6.0 ± 1.0 |
11i | 5.6 ± 0.2 | 4.8 ± 0.3 | 3.1 ± 0.6 | >20 |
13a | >100 | >20 | >100 | >100 |
13b | >20 | >20 | 4.8 ± 0.3 | >20 |
13c | >20 | 11.9 ± 1.4 | 5.7 ± 0.6 | 16.7 ± 1.1 |
I | 2.7 ± 0.1 | 2.2 ± 0.2 | 1.5 ± 0.1 | 7.5 ± 1.4 |
II | 5.1 ± 0.5 | 5.3 ± 0.2 | 0.8 ± 0.1 | 5.6 ± 0.6 |
III | 1.1 ± 0.8 | 1.4 ± 0.1 | 1.2 ± 0.4 | 5.3 ± 0.3 |
Imatinib | 0.482 ± 0.311 | 0.199 ± 0.061 | 0.231 ± 0.001 | >10 |
Nilotinib | 0.019 ± 0.009 | 0.003 ± 0.000 | 0.025 ± 0.010 | >10 |
GI50 KCL22 (μM) a | ||||
---|---|---|---|---|
Compound | WT - | B8 T315I (100%) | F4 E255K (100%) | B10 Y253H (50%) |
7a | 8.1 ± 0.5 | 13.8 ± 2.0 | 11.1 ± 0.5 | 7.4 ± 0.6 |
7b | 8.5 ± 1.4 | 11.4 ± 3.2 | 10.1 ± 1.2 | 6.6 ± 0.2 |
11a | 5.7 ± 0.8 | >20 | 12.7 ± 0.1 | 6.3 ± 0.4 |
11b | 2.0 ± 0.4 | 11.5 ± 1.1 | 4.1 ± 0.1 | 2.6 ± 0.2 |
11c | 2.9 ± 0.0 | 6.4 ± 0.4 | 4.1 ± 0.2 | 4.1 ± 0.2 |
11d | 8.4 ± 0.3 | 7.8 ± 1.3 | 6.6 ± 0.6 | 7.8 ± 0.5 |
11e | 6.1 ± 0.1 | 6.9 ± 0.8 | 5.6 ± 0.5 | 6.9 ± 0.1 |
11f | 6.5 ± 0.2 | 7.2 ± 1.0 | 5.7 ± 0.1 | 7.0 ± 0.5 |
11g | 15.1 ± 2.2 | 10.4 ± 1.8 | 8.5 ± 0.9 | 7.7 ± 0.2 |
11h | 9.6 ± 1.0 | 9.5 ± 1.5 | 8.1 ± 1.2 | 5.9 ± 0.7 |
11i | >20 | >20 | >20 | >20 |
13a | >100 | >100 | >100 | >100 |
13b | >20 | >20 | >20 | >20 |
13c | >20 | >20 | >20 | >20 |
I | 3.4 ± 0.1 | 17.3 ± 2.0 | 5.7 ± 0.3 | 5.2 ± 0.2 |
II | 10.6 ± 0.9 | >20 | >20 | 8.8 ± 0.4 |
III | 18.3 ± 1.7 | >20 | >20 | 3.4 ± 0.4 |
Imatinib | 0.582 ± 0.027 | >20 | 9.6 ± 0.5 | >20 |
Nilotinib | 0.047 ± 0.008 | >20 | 0.789 ± 0.081 | 1.4 ± 0.3 |
Compound | ∆G Bind | ∆G Coul. | ∆G H Bond | ∆G Lipo | ∆G Packing | ∆G SelfCont | ∆G Solv_GB | ∆G vdW |
---|---|---|---|---|---|---|---|---|
11b | −64.41 | −50.09 | −1.52 | −29.10 | −4.24 | 0.42 | 61.64 | −50.55 |
11c | −65.17 | −55.93 | −2.31 | −28.50 | −3.71 | 0.37 | 65.65 | −48.54 |
11d | −69.82 | −50.24 | −1.90 | −30.20 | −3.69 | 0.67 | 64.65 | −57.76 |
11e | −71.67 | −54.62 | −3.05 | −30.02 | −3.11 | 0.15 | 65.42 | −56.74 |
11f | −70.14 | −54.22 | −2.69 | −29.63 | −4.01 | 0.36 | 62.97 | −52.97 |
Compound | MW (Da) | HBA | HBD | cLogP | TPSA (Å2) | NRB |
---|---|---|---|---|---|---|
Desirable value | ≤500 | ≤10 | ≤5 | ≤5 | ≤140 | ≤10 |
11b | 502.59 | 6 | 3 | 3.30 | 94.37 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, T.; Veselá, D.; Dostálová, H.; Kryštof, V.; Vojáčková, V.; Jorda, R.; Castro, A.; Bertrand, J.; Rivera, G.; Faúndez, M.; et al. New Inhibitors of Bcr-Abl Based on 2,6,9-Trisubstituted Purine Scaffold Elicit Cytotoxicity in Chronic Myeloid Leukemia-Derived Cell Lines Sensitive and Resistant to TKIs. Pharmaceutics 2024, 16, 649. https://doi.org/10.3390/pharmaceutics16050649
Delgado T, Veselá D, Dostálová H, Kryštof V, Vojáčková V, Jorda R, Castro A, Bertrand J, Rivera G, Faúndez M, et al. New Inhibitors of Bcr-Abl Based on 2,6,9-Trisubstituted Purine Scaffold Elicit Cytotoxicity in Chronic Myeloid Leukemia-Derived Cell Lines Sensitive and Resistant to TKIs. Pharmaceutics. 2024; 16(5):649. https://doi.org/10.3390/pharmaceutics16050649
Chicago/Turabian StyleDelgado, Thalia, Denisa Veselá, Hana Dostálová, Vladimír Kryštof, Veronika Vojáčková, Radek Jorda, Alejandro Castro, Jeanluc Bertrand, Gildardo Rivera, Mario Faúndez, and et al. 2024. "New Inhibitors of Bcr-Abl Based on 2,6,9-Trisubstituted Purine Scaffold Elicit Cytotoxicity in Chronic Myeloid Leukemia-Derived Cell Lines Sensitive and Resistant to TKIs" Pharmaceutics 16, no. 5: 649. https://doi.org/10.3390/pharmaceutics16050649