Comparative In Vitro Study: Assessing Phytochemical, Antioxidant, Antimicrobial, and Anticancer Properties of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Fruit Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cranberry Fruit Dry Extracts
2.2. Chromatographic Analysis
2.3. Spectrophotometric Studies
2.4. Determination of the Antioxidant Activity In Vitro
2.5. Determination of Antimicrobial Activity In Vitro
2.6. Determination of the Anticancer Activity In Vitro
2.7. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Study of the Phytochemical Composition and Antioxidant Activity of Cranberry Fruit Extracts
3.2. In Vitro Antibacterial Activity of Cranberry Fruit Extracts
3.3. In Vitro Anticancer Activity of Cranberry Fruit Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suda, J.; Lysák, M.A. A Taxonomic Study of the Vaccinium Sect. oxycoccus (Hill) W. D. J. Koch (Ericaceae) in the Czech Republic and Adjacent Territories. Folia Geobot. 2001, 36, 303–320. [Google Scholar]
- Vorsa, N.; Zalapa, J. Domestication, Genetics, and Genomics of the American cranberry. Plant Breed. Rev. 2019, 43, 279–315. [Google Scholar]
- Ağalar, H.G. Vaccinium macrocarpon Ait. and Urinary Tract Infections. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2022; Volume 75, pp. 267–288. [Google Scholar]
- Valente, J.; Pendry, B.A.; Galante, E. Cranberry (Vaccinium macrocarpon) as a Prophylaxis for Urinary Tract Infections in Women: A Systematic Review with Meta-Analysis. J. Herb. Med. 2022, 36, 100602. [Google Scholar] [CrossRef]
- Salerno-Paestum, I. WHO Monographs on Selected Medicinal Plants; WHO: Geneva, Switzerland, 2006; Volume 4, pp. 149–166. [Google Scholar]
- Olszewska, M.A. New Validated High-performance Liquid Chromatographic Method for Simultaneous Analysis of Ten Flavonoid Aglycones in Plant Extracts Using a C 18 Fused-core Column and Acetonitrile–Tetrahydrofuran Gradient. J. Sep. Sci. 2012, 35, 2174–2183. [Google Scholar] [CrossRef] [PubMed]
- Česonienė, L.; Daubaras, R. Phytochemical Composition of the Large Cranberry (Vaccinium macrocarpon) and the Small Cranberry (Vaccinium oxycoccos). In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2016; pp. 173–194. [Google Scholar]
- Jurikova, T.; Skrovankova, S.; Mlcek, J.; Balla, S.; Snopek, L. Bioactive Compounds, Antioxidant Activity, and Biological Effects of European Cranberry (Vaccinium oxycoccos). Molecules 2018, 24, 24. [Google Scholar] [CrossRef] [PubMed]
- Narwojsz, A.; Tańska, M.; Mazur, B.; Borowska, E.J. Fruit Physical Features, Phenolic Compounds Profile and Inhibition Activities of Cranberry Cultivars (Vaccinium macrocarpon) Compared to Wild-Grown Cranberry (Vaccinium oxycoccus). Plant Foods Hum. Nutr. 2019, 74, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Adamczak, A.; Gąbka, M.; Buchwald, W. Fruit Yield of European Cranberry (Oxycoccus palustris Pers.) in Different Plant Communities of Peatlands (Northern Wielkopolska, Poland). Acta Agrobot. 2012, 62, 97–105. [Google Scholar] [CrossRef]
- Khalil, R.R.; Mohammed, E.T.; Mustafa, Y.F. Various Promising Biological Effects of Cranberry Extract: A Review. Clin. Schizophr. Relat. Psychoses 2021, 15, 1–9. [Google Scholar]
- Nemzer, B.V.; Al-Taher, F.; Yashin, A.; Revelsky, I.; Yashin, Y. Cranberry: Chemical Composition, Antioxidant Activity and Impact on Human Health: Overview. Molecules 2022, 27, 1503. [Google Scholar] [CrossRef]
- Masnadi Shirazi, K.; Shirinpour, E.; Masnadi Shirazi, A.; Nikniaz, Z. Effect of Cranberry Supplementation on Liver Enzymes and Cardiometabolic Risk Factors in Patients with NAFLD: A Randomized Clinical Trial. BMC Complement. Med. Ther. 2021, 21, 283. [Google Scholar] [CrossRef] [PubMed]
- Neto, C.C.; Amoroso, J.W.; Liberty, A.M. Anticancer Activities of Cranberry Phytochemicals: An Update. Mol. Nutr. Food Res. 2008, 52, S18–S27. [Google Scholar] [CrossRef]
- Thimóteo, N.S.B.; Scavuzzi, B.M.; Simão, A.N.C.; Dichi, I. The Impact of Cranberry (Vaccinium macrocarpon) and Cranberry Products on Each Component of the Metabolic Syndrome: A Review. Nutrire 2017, 42, 25. [Google Scholar] [CrossRef]
- Kondo, M.; MacKinnon, S.L.; Craft, C.C.; Matchett, M.D.; Hurta, R.A.R.; Neto, C.C. Ursolic Acid and Its Esters: Occurrence in Cranberries and Other Vaccinium Fruit and Effects on Matrix Metalloproteinase Activity in DU145 Prostate Tumor Cells: Anti-Tumor Activity and Content of Ursolic Acid from Vaccinium Fruit. J. Sci. Food Agric. 2011, 91, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.T.; MacKinnon, S.L.; Yan, X.; Hammond, G.B.; Vaisberg, A.J.; Neto, C.C. Identification of Triterpene Hydroxycinnamates with In Vitro Antitumor Activity from Whole Cranberry Fruit (Vaccinium macrocarpon). J. Agric. Food Chem. 2003, 51, 3541–3545. [Google Scholar] [CrossRef] [PubMed]
- Weh, K.M.; Zhang, Y.; Howard, C.L.; Howell, A.B.; Clarke, J.L.; Kresty, L.A. Cranberry Polyphenols in Esophageal Cancer Inhibition: New Insights. Nutrients 2022, 14, 969. [Google Scholar] [CrossRef] [PubMed]
- Karppinen, K.; Zoratti, L.; Nguyenquynh, N.; Häggman, H.; Jaakola, L. On the Developmental and Environmental Regulation of Secondary Metabolism in Vaccinium Spp. Berries. Front. Plant Sci. 2016, 7, 655. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, H.; Gu, L. American Cranberries and Health Benefits—An Evolving Story of 25 Years. J. Sci. Food Agric. 2020, 100, 5111–5116. [Google Scholar] [CrossRef] [PubMed]
- Česonienė, L.; Daubaras, R.; Jasutienė, I.; Venclovienė, J.; Miliauskienė, I. Evaluation of the Biochemical Components and Chromatic Properties of the Juice of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Plant Foods Hum. Nutr. 2011, 66, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Sedbare, R.; Raudone, L.; Zvikas, V.; Viskelis, J.; Liaudanskas, M.; Janulis, V. Development and Validation of the UPLC-DAD Methodology for the Detection of Triterpenoids and Phytosterols in Fruit Samples of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Molecules 2022, 14, 4403. [Google Scholar] [CrossRef] [PubMed]
- Šedbarė, R.; Sprainaitytė, S.; Baublys, G.; Viskelis, J.; Janulis, V. Phytochemical Composition of Cranberry (Vaccinium oxycoccos L.) Fruits Growing in Protected Areas of Lithuania. Plants 2023, 12, 1974. [Google Scholar] [CrossRef]
- Jungfer, E.; Zimmermann, B.F.; Ruttkat, A.; Galensa, R. Comparing Procyanidins in Selected Vaccinium Species by UHPLC-MS 2 with Regard to Authenticity and Health Effects. J. Agric. Food Chem. 2012, 60, 9688–9696. [Google Scholar] [CrossRef] [PubMed]
- Vilkickyte, G.; Motiekaityte, V.; Vainoriene, R.; Liaudanskas, M.; Raudone, L. Development, Validation, and Application of UPLC-PDA Method for Anthocyanins Profiling in Vaccinium L. Berries. J. Berry Res. 2021, 11, 583–599. [Google Scholar] [CrossRef]
- Urbstaite, R.; Raudone, L.; Liaudanskas, M.; Janulis, V. Development, Validation, and Application of the UPLC-DAD Methodology for the Evaluation of the Qualitative and Quantitative Composition of Phenolic Compounds in the Fruit of American Cranberry (Vaccinium macrocarpon Aiton). Molecules 2022, 27, 467. [Google Scholar] [CrossRef] [PubMed]
- Heil, M.; Baumann, B.; Andary, C.; Linsenmair, E.K.; McKey, D. Extraction and Quantification of “Condensed Tannins” as a Measure of Plant Anti-Herbivore Defence? Revisiting an Old Problem. Naturwissenschaften 2002, 89, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Raudone, L.; Vilkickyte, G.; Pitkauskaite, L.; Raudonis, R.; Vainoriene, R.; Motiekaityte, V. Antioxidant Activities of Vaccinium vitis-idaea L. Leaves within Cultivars and Their Phenolic Compounds. Molecules 2019, 24, 844. [Google Scholar] [CrossRef] [PubMed]
- Asghar, M.N.; Khan, I.U. Measurement of Antioxidant Activity with Trifluoperazine Dihydrochloride Radical Cation. Braz. J. Med. Biol. Res. 2008, 41, 455–461. [Google Scholar] [CrossRef]
- Raudone, L.; Raudonis, R.; Liaudanskas, M.; Janulis, V.; Viskelis, P. Phenolic Antioxidant Profiles in the Whole Fruit, Flesh and Peel of Apple Cultivars Grown in Lithuania. Sci. Hortic. 2017, 216, 186–192. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Tütem, E.; Başkan, K.S.; Erçağ, E.; Esin Çelik, S.; Baki, S.; Yıldız, L.; Karaman, Ş.; Apak, R. A Comprehensive Review of CUPRAC Methodology. Anal. Methods 2011, 3, 2439. [Google Scholar] [CrossRef]
- Grigalius, I.; Petrikaite, V. Relationship between Antioxidant and Anticancer Activity of Trihydroxyflavones. Molecules 2017, 22, 2169. [Google Scholar] [CrossRef] [PubMed]
- Zubrickė, I.; Jonuškienė, I.; Kantminienė, K.; Tumosienė, I.; Petrikaitė, V. Synthesis and In Vitro Evaluation as Potential Anticancer and Antioxidant Agents of Diphenylamine-Pyrrolidin-2-One-Hydrazone Derivatives. Int. J. Mol. Sci. 2023, 24, 16804. [Google Scholar] [CrossRef]
- Šermukšnytė, A.; Kantminienė, K.; Jonuškienė, I.; Tumosienė, I.; Petrikaitė, V. The Effect of 1,2,4-Triazole-3-Thiol Derivatives Bearing Hydrazone Moiety on Cancer Cell Migration and Growth of Melanoma, Breast, and Pancreatic Cancer Spheroids. Pharmaceuticals 2022, 15, 1026. [Google Scholar] [CrossRef] [PubMed]
- Nazaruk, J.; Borzym-Kluczyk, M. The Role of Triterpenes in the Management of Diabetes Mellitus and Its Complications. Phytochem. Rev. 2015, 14, 675–690. [Google Scholar] [CrossRef]
- Ndhlala, A.; Moyo, M.; Van Staden, J. Natural Antioxidants: Fascinating or Mythical Biomolecules? Molecules 2010, 15, 6905–6930. [Google Scholar] [CrossRef] [PubMed]
- Vattem, D.A.; Ghaedian, R.; Shetty, K. Enhancing Health Benefits of Berries through Phenolic Antioxidant Enrichment: Focus on Cranberry. Asia Pac. J. Clin. Nutr. 2005, 14, 120–130. [Google Scholar] [PubMed]
- Lv, Q.; Long, J.; Gong, Z.; Nong, K.; Liang, X.; Qin, T.; Huang, W.; Yang, L. Current State of Knowledge on the Antioxidant Effects and Mechanisms of Action of Polyphenolic Compounds. Nat. Prod. Commun. 2021, 16, 1934578X2110277. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, L.; Tan, J.; Zhou, X.; Xiao, L.; Yang, X.; Wang, B. Glucosidase Inhibitory Activity and Antioxidant Activity of Flavonoid Compound and Triterpenoid Compound from Agrimonia pilosa Ledeb. BMC Complement. Altern. Med. 2014, 14, 12. [Google Scholar] [CrossRef]
- Grace, M.H.; Esposito, D.; Dunlap, K.L.; Lila, M.A. Comparative Analysis of Phenolic Content and Profile, Antioxidant Capacity, and Anti-Inflammatory Bioactivity in Wild Alaskan and Commercial Vaccinium Berries. J. Agric. Food Chem. 2014, 62, 4007–4017. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Otieno, M.; Colson, K.; Neto, C. Influence of the Growing Region on the Phytochemical Composition and Antioxidant Properties of North American Cranberry Fruit (Vaccinium macrocarpon Aiton). Plants 2023, 12, 3595. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Murphy, B.T.; Hammond, G.B.; Vinson, J.A.; Neto, C.C. Antioxidant Activities and Antitumor Screening of Extracts from Cranberry Fruit (Vaccinium macrocarpon). J. Agric. Food Chem. 2002, 50, 5844–5849. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Phenolic Compounds. In Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–50. [Google Scholar]
- Borges, G.; Degeneve, A.; Mullen, W.; Crozier, A. Identification of Flavonoid and Phenolic Antioxidants in Black Currants, Blueberries, Raspberries, Red Currants, and Cranberries. J. Agric. Food Chem. 2010, 58, 3901–3909. [Google Scholar] [CrossRef] [PubMed]
- Klavins, L.; Perkons, I.; Mezulis, M.; Viksna, A.; Klavins, M. Procyanidins from Cranberry Press Residues—Extraction Optimization, Purification and Characterization. Plants 2022, 11, 3517. [Google Scholar] [CrossRef] [PubMed]
- Oldoni, T.L.C.; Melo, P.S.; Massarioli, A.P.; Moreno, I.A.M.; Bezerra, R.M.N.; Rosalen, P.L.; da Silva, G.V.J.; Nascimento, A.M.; Alencar, S.M. Bioassay-Guided Isolation of Proanthocyanidins with Antioxidant Activity from Peanut (Arachis hypogaea) Skin by Combination of Chromatography Techniques. Food Chem. 2016, 192, 306–312. [Google Scholar] [CrossRef]
- Ni, L.; Zhao, F.; Li, B.; Wei, T.; Guan, H.; Ren, S. Antioxidant and Fluorescence Properties of Hydrogenolyzised Polymeric Proanthocyanidins Prepared Using SO42−/ZrO2 Solid Superacids Catalyst. Molecules 2018, 23, 2445. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef]
- Oszmiański, J.; Kolniak-Ostek, J.; Lachowicz, S.; Gorzelany, J.; Matłok, N. Phytochemical Compounds and Antioxidant Activity in Different Cultivars of Cranberry (Vaccinium macrocarpon L): Phytochemicals in Cultivars of Cranberry. J. Food Sci. 2017, 82, 2569–2575. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.; Gośliński, M.; Kłębukowska, L. Antioxidant and Antimicrobial Properties of Selected Fruit Juices. Plant Foods Hum. Nutr. 2022, 77, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Gniewosz, M.; Stobnicka, A. Bioactive Components Content, Antimicrobial Activity, and Foodborne Pathogen Control in Minced Pork by Cranberry Pomace Extracts. J. Food Saf. 2018, 38, e12398. [Google Scholar] [CrossRef]
- LaPlante, K.L.; Sarkisian, S.A.; Woodmansee, S.; Rowley, D.C.; Seeram, N.P. Effects of Cranberry Extracts on Growth and Biofilm Production of Escherichia coli and Staphylococcus Species. Phytother. Res. 2012, 26, 1371–1374. [Google Scholar] [CrossRef] [PubMed]
- Stobnicka, A.; Gniewosz, M. Antimicrobial Protection of Minced Pork Meat with the Use of Swamp Cranberry (Vaccinium oxycoccos L.) Fruit and Pomace Extracts. J. Food Sci. Technol. 2018, 55, 62–71. [Google Scholar] [CrossRef]
- Lacombe, A.; Wu, V.C.H.; Tyler, S.; Edwards, K. Antimicrobial Action of the American Cranberry Constituents; Phenolics, Anthocyanins, and Organic Acids, against Escherichia coli O157:H7. Int. J. Food Microbiol. 2010, 139, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Vostalova, J.; Vidlar, A.; Simanek, V.; Galandakova, A.; Kosina, P.; Vacek, J.; Vrbkova, J.; Zimmermann, B.F.; Ulrichova, J.; Student, V. Are High Proanthocyanidins Key to Cranberry Efficacy in the Prevention of Recurrent Urinary Tract Infection? Are High PAC Key to Cranberry Efficacy in the Prevention rUTI? Phytother. Res. 2015, 29, 1559–1567. [Google Scholar] [CrossRef]
- De Llano, D.G.; Moreno-Arribas, M.V.; Bartolomé, B. Cranberry Polyphenols and Prevention against Urinary Tract Infections: Relevant Considerations. Molecules 2020, 25, 3523. [Google Scholar] [CrossRef] [PubMed]
- De Llano, D.G.; Liu, H.; Khoo, C.; Moreno-Arribas, M.V.; Bartolome, B. Some New Findings Regarding the Antiadhesive Activity of Cranberry Phenolic Compounds and Their Microbial-Derived Metabolites against Uropathogenic Bacteria. J. Agric. Food Chem. 2019, 67, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
- Kylli, P.; Nohynek, L.; Puupponen-Pimiä, R.; Westerlund-Wikström, B.; Leppänen, T.; Welling, J.; Moilanen, E.; Heinonen, M. Lingonberry (Vaccinium vitis-idaea) and European Cranberry (Vaccinium microcarpon) Proanthocyanidins: Isolation, Identification, and Bioactivities. J. Agric. Food Chem. 2011, 59, 3373–3384. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, C.; Quirantes-Piné, R.; Uberos, J.; Jiménez-Sánchez, C.; Peña, A.; Segura-Carretero, A. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli. Food Funct. 2016, 7, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.A.G.; Xavier, C.P.R.; Pereira, R.F.; Petrikaitė, V.; Vasconcelos, M.H. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers 2021, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Weh, K.; Clarke, J.; Kresty, L. Cranberries and Cancer: An Update of Preclinical Studies Evaluating the Cancer Inhibitory Potential of Cranberry and Cranberry Derived Constituents. Antioxidants 2016, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Neto, C.C. Cranberry and Its Phytochemicals: A Review of In Vitro Anticancer Studies. J. Nutr. 2007, 137, 186S–193S. [Google Scholar] [CrossRef]
- Seeram, N.P.; Adams, L.S.; Hardy, M.L.; Heber, D. Total Cranberry Extract versus Its Phytochemical Constituents: Antiproliferative and Synergistic Effects against Human Tumor Cell Lines. J. Agric. Food Chem. 2004, 52, 2512–2517. [Google Scholar] [CrossRef] [PubMed]
- Waheed, A.; Akram, S.; Mushtaq, M.; Adnan, A. Oleanolic Acid and Ursolic Acid. In A Centum of Valuable Plant Bioactives; Elsevier: Amsterdam, The Netherlands, 2021; pp. 93–115. [Google Scholar]
- Cai, C.; Zhi, Y.; Xie, C.; Geng, S.; Sun, F.; Ji, Z.; Zhang, P.; Wang, H.; Tang, J. Ursolic Acid-downregulated Long Noncoding RNA ASMTL-AS1 Inhibits Renal Cell Carcinoma Growth via Binding to HuR and Reducing Vascular Endothelial Growth Factor Expression. J. Biochem. Mol. Toxicol. 2023, 37, e23389. [Google Scholar] [CrossRef] [PubMed]
- Vilkickyte, G.; Petrikaite, V.; Marksa, M.; Ivanauskas, L.; Jakstas, V.; Raudone, L. Fractionation and Characterization of Triterpenoids from Vaccinium vitis-idaea L. Cuticular Waxes and Their Potential as Anticancer Agents. Antioxidants 2023, 12, 465. [Google Scholar] [CrossRef] [PubMed]
- Neto, C.C. Cranberry and Blueberry: Evidence for Protective Effects against Cancer and Vascular Diseases. Mol. Nutr. Food Res. 2007, 51, 652–664. [Google Scholar] [CrossRef]
- Déziel, B.A.; Patel, K.; Neto, C.; Gottschall-Pass, K.; Hurta, R.A.R. Proanthocyanidins from the American Cranberry (Vaccinium macrocarpon) Inhibit Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity in Human Prostate Cancer Cells via Alterations in Multiple Cellular Signalling Pathways. J. Cell. Biochem. 2010, 111, 742–754. [Google Scholar] [CrossRef]
- Neto, C.C.; Krueger, C.G.; Lamoureaux, T.L.; Kondo, M.; Vaisberg, A.J.; Hurta, R.A.; Curtis, S.; Matchett, M.D.; Yeung, H.; Sweeney, M.I.; et al. MALDI-TOF MS Characterization of Proanthocyanidins from Cranberry Fruit (Vaccinium macrocarpon) That Inhibit Tumor Cell Growth and Matrix Metalloproteinase Expression In Vitro. J. Sci. Food Agric. 2006, 86, 18–25. [Google Scholar] [CrossRef]
- MacLean, M.; Scott, B.; Deziel, B.; Nunnelley, M.; Liberty, A.; Gottschall-Pass, K.; Neto, C.; Hurta, R. North American Cranberry (Vaccinium macrocarpon) Stimulates Apoptotic Pathways in DU145 Human Prostate Cancer Cells In Vitro. Nutr. Cancer 2010, 63, 109–112. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Khan, I.A.; ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer Potential of Quercetin: A Comprehensive Review. Phytother. Res. 2018, 32, 2109–2130. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.-M.; Deng, X.-T.; Zhou, J.; Li, Q.-P.; Ge, X.-X.; Miao, L. Pharmacological Basis and New Insights of Quercetin Action in Respect to Its Anti-Cancer Effects. Biomed. Pharmacother. 2020, 121, 109604. [Google Scholar] [CrossRef] [PubMed]
- Vilkickyte, G.; Raudone, L.; Petrikaite, V. Phenolic Fractions from Vaccinium vitis-idaea L. and Their Antioxidant and Anticancer Activities Assessment. Antioxidants 2020, 9, 1261. [Google Scholar] [CrossRef]
Compound | OE | OW | ME | MW |
---|---|---|---|---|
Proanthocyanidins | - | 1531 ± 46 a | - | 1359 ± 119 b |
Chlorogenic acid | 86.4 ± 0.5 c | 1897.3 ± 18.9 a | 6.6 ± 0.1 d | 458.2 ± 4.6 b |
Flavonols | ||||
Myricetin-3-galactoside | - | 753.7 ± 4.3 a | - | 680.0 ± 3.9 b |
Quercetin-3-galactoside | 8.8 ± 0.1 d | 850.2 ± 8.5 b | 54.2 ± 0.5 c | 1236.2 ± 12.3 a |
Quercetin-3-glucoside | - | 126.3 ± 1.3 a | - | 34.1 ± 0.4 b |
Quercetin-3-α-L-arabinopyranoside | - | 94.1 ± 1.0 a | - | 99.1 ± 1.0 a |
Quercetin-3-α-L-arabinofuranoside | 4.8 ± 0.1 d | 195.2 ± 2.0 b | 36.5 ± 0.4 c | 532.2 ± 5.6 a |
Quercetin-3-rhamnoside | 19.2 ± 0.2 d | 121.1 ± 1.3 b | 51.2 ± 0.5 c | 250. ± 2.7 a |
Quercetin | 4.0 ± 0.0 d | 78.7 ± 0.6 a | 13.6 ± 0.1 c | 17.2 ± 0.1 b |
Myricetin | 8.9 ± 0.1 d | 67.9 ± 0.5 a | 13.6 ± 0.1 c | 15.0 ± 0.1 b |
Sum of flavonols | 45.7 ± 0.4 d | 2287.3 ± 19.5 b | 169.1 ± 1.7 c | 2864.6 ± 26.1 a |
Anthocyanins and anthocyanidins | ||||
Delphinidin-3-galactoside | 6.9 ± 0.1 d | 18.0 ± 0.2 a | 8.2 ± 0.1 c | 12.7 ± 0.1 b |
Cyanidin-3-galactoside | 131.3 ± 2.6 d | 1092.9 ± 21.9 b | 149.8 ± 3.0 c | 1734.0 ± 34.7 a |
Cyanidin-3-glucoside | 42.9 ± 1.0 b | 174.7 ± 4.0 a | 11.9 ± 0.3 d | 38.5 ± 0.9 c |
Cyanidin-3-arabinoside | 19.5 ± 0.3 d | 952.8 ± 12.5 b | 29.8 ± 0.4 c | 1116.7 ± 14.6 a |
Peonidin-3-galactoside | 197.5 ± 2.1 d | 1370.1 ± 14.4 b | 269.0 ± 2.8 c | 2329.6 ± 24.6 a |
Peonidin-3-glucoside | 153.6 ± 1.8 b | 395.1 ± 4.8 a | 52.7 ± 0.6 d | 124.2 ± 1.5 c |
Peonidin-3-arabinoside | 8.3 ± 0.1 c | 688.3 ± 8.3 b | - | 786.8 ± 8.8 a |
Malvidin-3-galactoside | 21.3 ± 0.3 a | 11.7 ± 0.1 b | 3.3 ± 0.0 c | 11.5 ± 0.1 b |
Malvidin-3-arabinoside | - | 16.9 ± 0.2 a | - | 9.1 ± 0.1 b |
Cyanidin chloride | 495.9 ± 5.5 b | 28.5 ± 0.3 c | 1361.6 ± 13.6 a | 9.9 ± 0.1 d |
Peonidin chloride | 902.3 ± 10.4 b | 23.8 ± 0.3 c | 2121.1 ± 24.4 a | 6.1 ± 0.1 d |
Malvidin chloride | 249.9 ± 3.6 b | - | 304.3 ± 4.4 a | - |
Sum of anthocyanins and anthocyanidins | 2229.4 ± 27.7 d | 4773.0 ± 66.8 b | 4311.8 ± 49.7 c | 6179.1 ± 85.6 a |
Triterpenoids | ||||
Maslinic acid | 425.1 ± 5.6 a | - | 13.1 ± 0.2 b | - |
Corosolic acid | 57.2 ± 1.0 b | - | 109.6 ± 1.9 a | - |
Oleanolic acid | 1422.7 ± 18.6 a | - | 913.9 ± 12.0 b | - |
Ursolic acid | 5220.8 ± 81.0 a | - | 3047.1 ± 47.3 b | - |
Sum of triterpenoids | 7125.9 ± 106.2 a | - | 4083.6 ± 61.3 b | - |
β-sitosterol | 742.9 ± 10.9 b | 386.7 ± 5.7 d | 793.1 ± 11.7 a | 560.0 ± 8.2 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šedbarė, R.; Janulis, V.; Pavilonis, A.; Petrikaite, V. Comparative In Vitro Study: Assessing Phytochemical, Antioxidant, Antimicrobial, and Anticancer Properties of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Fruit Extracts. Pharmaceutics 2024, 16, 735. https://doi.org/10.3390/pharmaceutics16060735
Šedbarė R, Janulis V, Pavilonis A, Petrikaite V. Comparative In Vitro Study: Assessing Phytochemical, Antioxidant, Antimicrobial, and Anticancer Properties of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Fruit Extracts. Pharmaceutics. 2024; 16(6):735. https://doi.org/10.3390/pharmaceutics16060735
Chicago/Turabian StyleŠedbarė, Rima, Valdimaras Janulis, Alvydas Pavilonis, and Vilma Petrikaite. 2024. "Comparative In Vitro Study: Assessing Phytochemical, Antioxidant, Antimicrobial, and Anticancer Properties of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Fruit Extracts" Pharmaceutics 16, no. 6: 735. https://doi.org/10.3390/pharmaceutics16060735
APA StyleŠedbarė, R., Janulis, V., Pavilonis, A., & Petrikaite, V. (2024). Comparative In Vitro Study: Assessing Phytochemical, Antioxidant, Antimicrobial, and Anticancer Properties of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Fruit Extracts. Pharmaceutics, 16(6), 735. https://doi.org/10.3390/pharmaceutics16060735