Previous Issue
Volume 17, September
 
 

Pharmaceutics, Volume 17, Issue 10 (October 2025) – 33 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
28 pages, 4484 KB  
Article
Formulation of Self-Emulsifying Microemulsion for Acemetacin Using D-Optimal Design: Enteric-Coated Capsule for Targeted Intestinal Release and Bioavailability Enhancement
by Zaineb Z. Abduljaleel and Khalid K. Al-Kinani
Pharmaceutics 2025, 17(10), 1270; https://doi.org/10.3390/pharmaceutics17101270 (registering DOI) - 27 Sep 2025
Abstract
Objectives: The current work aimed to formulate and optimize a self-emulsifying microemulsion drug delivery system (SEME) for acemetacin (ACM) to increase ACM’s aqueous solubility, improve oral bioavailability, and reduce gastrointestinal complications. Methods: Screening of components capable of enhancing ACM solubility was [...] Read more.
Objectives: The current work aimed to formulate and optimize a self-emulsifying microemulsion drug delivery system (SEME) for acemetacin (ACM) to increase ACM’s aqueous solubility, improve oral bioavailability, and reduce gastrointestinal complications. Methods: Screening of components capable of enhancing ACM solubility was performed. Pseudo-ternary phase diagrams were performed to choose the optimal formulation ratio. The ACM-SEME formulation’s composition was optimized using D-optimal design. Oil, Smix, and water percentages were used as independent variables, while globule size, polydispersity index, ACM content, and in vitro ACM release after 90 min were used as dependent variables. Also, thermodynamic stability and transmittance percentage tests were studied. Zeta potential was assessed for the optimized ACM-SEME formulation, which was then subjected to spray drying. The dried ACM-SEME was characterized using field-emission scanning electron microscope, Fourier-transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. The dried ACM-SEME formulation was filled into hard gelatin capsules and coated with Eudragit L100 to achieve pH-dependent release. Results: The antinociceptive activity of ACM-SEME was evaluated in vivo using Eddy’s hot plate test in rats, revealing a significant prolongation of the noxious time threshold compared to control groups. Ex vivo permeation studies across rat intestinal tissue confirmed the enhanced permeation potential of the ACM-SEME. Conclusions: It was concluded that the developed ACM-SEME system demonstrated improved physicochemical properties, enhanced release behavior, and superior therapeutic performance, highlighting its potential as a safer and more effective oral delivery platform for ACM. Full article
(This article belongs to the Special Issue Advances in Emulsifying Drug Delivery Systems)
Show Figures

Graphical abstract

25 pages, 4927 KB  
Article
Rational Design of Non-Toxic Multidrug Combinations Demonstrates Durable and Hypoxia-Enhanced Efficacy Against Renal Cell Carcinoma
by Valentin Mieville, Jakub Gubala, Mathis Fiault, Marie Ota, Seungsu Han, Muriel Urwyler, Daniel Benamran, Jean-Christophe Tille, Massimo Valerio and Patrycja Nowak-Sliwinska
Pharmaceutics 2025, 17(10), 1269; https://doi.org/10.3390/pharmaceutics17101269 (registering DOI) - 27 Sep 2025
Abstract
Background/Objectives: Despite recent therapeutic advances, the clinical management of renal cell carcinoma (RCC) remains suboptimal. Current treatments are hindered by limited efficacy, the emergence of acquired drug resistance, suboptimal tolerability, and a lack of tumor-specific targeting. While development of novel agents remains [...] Read more.
Background/Objectives: Despite recent therapeutic advances, the clinical management of renal cell carcinoma (RCC) remains suboptimal. Current treatments are hindered by limited efficacy, the emergence of acquired drug resistance, suboptimal tolerability, and a lack of tumor-specific targeting. While development of novel agents remains an important avenue, it is often constrained by high costs, long development time, and low success rates. As an alternative approach, drug combinations of approved agents offer a promising strategy. Methods: Using our proprietary drug combination methodology, we identified multidrug combinations in RCC cells representing the clear cell (786O) and sarcomatoid chromophobe (UOK276) histological subtypes of RCC. Results: From an initial panel of 10 drugs, either approved or undergoing clinical trial, the optimized drug combinations (ODCs) contained crizotinib, telaglenastat, U-104, and vismodegib at clinical and subtherapeutic doses. The ODCs were non-toxic in advanced hepatic, renal, and cardiac cellular models. Importantly, their anti-tumor activity, already notable in normoxic (21% O2) conditions (approx. 50%) was markedly enhanced in tumor-relevant hypoxia (1.5% O2), reaching up to 77% in 2D and 62% in 3D spheroid 786O models. Moreover, chronic exposure of 786O and UOK276 cells led to durable responses, suggesting a prolonged effect in responders. Conclusions: Our findings demonstrate the potential of optimized, non-toxic drug combinations as a highly selective and effective strategy for accelerating the development of precision RCC treatment. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

19 pages, 3672 KB  
Review
Development of a Novel Compound Effective Against Juvenile, Adult, and Drug-Resistant Schistosoma Species
by Sevan N. Alwan, Alexander B. Taylor, Stanton F. McHardy, Michael D. Cameron and Philip T. LoVerde
Pharmaceutics 2025, 17(10), 1268; https://doi.org/10.3390/pharmaceutics17101268 (registering DOI) - 27 Sep 2025
Abstract
Schistosomiasis, a neglected tropical disease affecting over 250 million people worldwide, relies on praziquantel (PZQ) as its sole treatment. However, PZQ has significant limitations, including inactivity against juvenile worms, inability to prevent reinfection, and emerging drug resistance. In this review, we outline the [...] Read more.
Schistosomiasis, a neglected tropical disease affecting over 250 million people worldwide, relies on praziquantel (PZQ) as its sole treatment. However, PZQ has significant limitations, including inactivity against juvenile worms, inability to prevent reinfection, and emerging drug resistance. In this review, we outline the development of CIDD-0150303, a novel oxamniquine (OXA) derivative with pan-species and pan-stage activity against Schistosoma mansoni, PZQ-resistant S. mansoni, and S. haematobium. Using a structure-guided design approach, over 350 OXA analogs were synthesized and screened to identify leading drug candidate CIDD-0150303. CIDD-0150303 demonstrates 100% lethality in vitro and up to 80% reduction in worm burden in vivo. CIDD-0150303 is effective against both juvenile and adult parasites as well as PZQ-resistant S. mansoni. This compound represents a promising advance in schistosomiasis treatment to address urgent gaps in control/elimination strategies and PZQ resistance. However, dedicated safety and toxicity studies are still ongoing, and additional in vivo validation is required. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

37 pages, 2974 KB  
Review
Latest Achievements in the Development of Nanoparticle-Based Drug Delivery Systems of Pt Drugs and Prodrugs in Cancer Therapy
by Vlad Iova, Gilda Mihaela Iova, Andreea Taisia Tiron, Ioana Scrobota, Silviu Vlad and Mihail Silviu Tudosie
Pharmaceutics 2025, 17(10), 1267; https://doi.org/10.3390/pharmaceutics17101267 - 26 Sep 2025
Abstract
Even though Pt(II)-based drugs represent the standard in cancer therapy, their use is seriously limited by severe side-effects (renal toxicity, allergic reactions, gastrointestinal disorders, hemorrhage and hearing loss), drug resistance and a grim prognosis. This review presents the results of multiple studies showing [...] Read more.
Even though Pt(II)-based drugs represent the standard in cancer therapy, their use is seriously limited by severe side-effects (renal toxicity, allergic reactions, gastrointestinal disorders, hemorrhage and hearing loss), drug resistance and a grim prognosis. This review presents the results of multiple studies showing different nanoparticle-based platforms as delivery agents in order to overcome these drawbacks. The approach of using nanoparticle-based drug delivery systems of Pt drugs and prodrugs is promising due to key advantages like specific targeting and thereby reduced toxicity to healthy cells; increased stability in the bloodstream; multiple mechanisms of action such as stimulating anti-tumor immunity, responding to environmental stimuli (light, pH, etc.), or penetrating deeper into tissues; enhanced efficacy by their combination with other therapies (chemotherapy, gene therapy) to amplify the anti-tumor effect. However, certain challenges need to be overcome before these solutions can be widely applied in clinics. These include issues related to biocompatibility, large-scale production, and regulatory approvals. In conclusion, using nanoparticles to deliver Pt-based drugs represents an advanced and highly promising strategy to make chemotherapy more effective and less toxic. Nonetheless, further studies are required for the better understanding of intracellular mechanisms of action, toxicity and the pharmacokinetics of nanoparticles, and physical–chemical standardization. Full article
(This article belongs to the Special Issue Prodrug Strategies for Enhancing Drug Stability and Pharmacokinetics)
Show Figures

Figure 1

41 pages, 3917 KB  
Article
Physiologically Based Pharmacokinetic Modeling and Simulations in Lieu of Clinical Pharmacology Studies to Support the New Drug Application of Asciminib
by Ioannis Loisios-Konstantinidis, Felix Huth, Matthias Hoch and Heidi J. Einolf
Pharmaceutics 2025, 17(10), 1266; https://doi.org/10.3390/pharmaceutics17101266 - 26 Sep 2025
Abstract
Background: Asciminib (Scemblix®) is approved for the first-line treatment of adult patients with chronic myeloid leukemia in the chronic phase at 40 mg twice daily (BID) and 80 mg once daily (QD) or 200 mg BID for patients harboring the [...] Read more.
Background: Asciminib (Scemblix®) is approved for the first-line treatment of adult patients with chronic myeloid leukemia in the chronic phase at 40 mg twice daily (BID) and 80 mg once daily (QD) or 200 mg BID for patients harboring the T315I mutation. Objectives: (1) Extrapolate the DDI magnitude as the perpetrator or victim of other drugs and the effect of organ impairment to untested doses; (2) Predict clinically untested DDI scenarios. Methods: Asciminib is primarily cleared by cytochrome P450 (CYP)3A4, UDP-glucuronosyltransferases (UGT)2B7, UGT2B17, UGT1A3/4, and the breast-cancer-resistance protein (BCRP). In vitro asciminib is an inhibitor of several CYP, UGT enzymes, and transporters and is an inducer of CYP1A2 and CYP3A4. Clinical DDI studies assessed asciminib 40 mg BID as a perpetrator on CYP-sensitive substrates. Additional studies evaluated the impact of strong CYP3A4 perpetrators and imatinib on a single 40 mg dose of asciminib. Hepatic and renal impairment studies were also conducted at the 40 mg dose. A nonlinear whole-body physiologically based pharmacokinetic (PBPK) model was developed and verified for asciminib as a CYP3A4, UGT, and BCRP substrate and a perpetrator of several CYP and UGT enzymes. Results: This PBPK model was applied in lieu of clinical pharmacology studies to support the new drug application of Scemblix® and to bridge data from 40 mg BID to the 80 mg QD and 200 mg BID dose regimens. Conclusions: The PBPK predictions informed the drug product label and are estimated to have replaced at least 10 clinical studies. Full article
(This article belongs to the Special Issue In Silico Pharmacokinetic and Pharmacodynamic (PK-PD) Modeling)
Show Figures

Figure 1

34 pages, 6702 KB  
Article
Development of Novel Neratinib and Docetaxel Core-Loaded and Trastuzumab Surface-Conjugated Nanoparticle for Treatment of HER-2 Positive Breast Cancer
by Victor Ejigah, Gantumur Battogtokh, Bharathi Mandala and Emmanuel O. Akala
Pharmaceutics 2025, 17(10), 1265; https://doi.org/10.3390/pharmaceutics17101265 - 26 Sep 2025
Abstract
Background/Objectives: This study developed a targeted drug delivery nanoplatform for treating HER2-positive breast cancer. The nanoplatform encapsulated two hydrophobic anticancer agents, neratinib (NTB) and docetaxel (DTX), within nanoparticles (DTX+NTB−NP) functionalized for conjugation to trastuzumab to form trastuzumab-tagged nanoparticles (TRZ−NP). Trastuzumab is a [...] Read more.
Background/Objectives: This study developed a targeted drug delivery nanoplatform for treating HER2-positive breast cancer. The nanoplatform encapsulated two hydrophobic anticancer agents, neratinib (NTB) and docetaxel (DTX), within nanoparticles (DTX+NTB−NP) functionalized for conjugation to trastuzumab to form trastuzumab-tagged nanoparticles (TRZ−NP). Trastuzumab is a HER2-specific monoclo-nal antibody that binds to HER2 receptors, blocking signal transduction and inducing an-tibody-dependent cellular cytotoxicity (ADCC). Upon receptor-mediated endocytosis, neratinib inhibits cytosolic HER2 signaling, while docetaxel disrupts mitotic cell division, collectively leading to tumor cell death. Methods: Nanoparticles were fabricated by the nanoprecipitation technique, followed by surface modification with a crosslinker and a targeting moiety. DTX+NTB−NP, TRZ−NP, and singly loaded nanoparticles (NTB−NP and DTX−NP) were characterized and their effects evaluated in HER2-positive cancer cell line and xenograft model. Results: In vitro antiproliferation assay in SKBR-3 cell line re-veals a dose and time-dependent cytotoxicity. There was no significant difference in cyto-toxicity observed between DTX+NTB−NP and its free form (DTX+NTB) [p = 0.9172], and between TRZ−NP and its free form (TRZ+DTX+NTB) [p = 0.6750]. However, TRZ−NP, at half the concentration of the singly loaded nanoparticles, significantly reduced the viabil-ity of SKBR-3 cells compared to pure trastuzumab (TRZ) [p < 0.001], NTB−NP [p = 0.0019], and DTX−NP [p = 0.0002]. In vivo evaluation in female athymic nude mice showed sig-nificant log relative tumor volume (%) reduction in groups treated with TRZ−NP and DTX+NTB−NP compared to PBS (phosphate-buffered saline) controls (p ≤ 0.001 and p ≤ 0.001), respectively. Notably, TRZ−NP demonstrated a statistically significant regression in the log relative tumor volume (%) compared to DTX+NTB−NP (p = 0.001). Conclusions: These findings underscore the therapeutic potential and suitability of these nanoplatforms for the precise and controlled targeting of HER2-positive tumors. This study is the first to synchronize the delivery of multiple agents-docetaxel, neratinib, and trastuzumab-within a nanoparticle system for treating HER2-positive tumors, offering a promising strategy to enhance treatment outcomes for HER2 positive breast cancer patients. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Combination Therapy and Diagnosis)
Show Figures

Figure 1

27 pages, 1325 KB  
Systematic Review
Sustained-Release Oral Delivery of NSAIDs and Acetaminophen: Advances and Recent Formulation Strategies—A Systematic Review
by Paulina Drapińska, Katarzyna Skulmowska-Polok, Joanna Chałupka and Adam Sikora
Pharmaceutics 2025, 17(10), 1264; https://doi.org/10.3390/pharmaceutics17101264 - 26 Sep 2025
Abstract
Background: Sustained-release (SR) formulations of non-steroidal anti-inflammatory drugs (NSAIDs) aim to prolong therapeutic activity, reduce dosing frequency, and improve patient adherence. However, currently marketed SR NSAIDs exhibit persistent limitations, including incomplete control over release kinetics, high interpatient variability in bioavailability, limited reduction [...] Read more.
Background: Sustained-release (SR) formulations of non-steroidal anti-inflammatory drugs (NSAIDs) aim to prolong therapeutic activity, reduce dosing frequency, and improve patient adherence. However, currently marketed SR NSAIDs exhibit persistent limitations, including incomplete control over release kinetics, high interpatient variability in bioavailability, limited reduction in gastrointestinal adverse effects, and insufficient dose flexibility for individualized therapy. In many cases, conventional excipients and release mechanisms remain predominant, leaving drug-specific physicochemical and pharmacokinetic constraints only partially addressed. These gaps highlight the need for a comprehensive synthesis of recent technological advances to guide the development of more effective, patient-centered delivery systems. Methods: A narrative literature review was conducted using Web of Science and PubMed databases to identify original research articles and comprehensive technological studies on oral SR formulations of NSAIDs and paracetamol published between January 2020 and March 2025. Inclusion criteria focused on preclinical and technological research addressing formulation design, excipient innovations, and manufacturing approaches. Results: Sixty-four studies met the inclusion criteria, encompassing polymeric matrices (31%), lipid-based carriers (18%), microspheres/hydrogel beads/interpenetrating polymer networks (30%), nanostructured systems (11%), and hybrid platforms (10%). The most common strategies involved pH-dependent release, mucoadhesive systems, and floating drug delivery, aiming to optimize release kinetics, minimize mucosal irritation, and sustain therapeutic plasma levels. Advances in manufacturing—such as hot-melt extrusion, 3D printing, electrospinning, and spray drying—enabled enhanced control of drug release profiles, improved stability, and in some cases up to 30–50% prolongation of release time or reduction in Cmax fluctuations compared with conventional formulations. Conclusions: Recent formulation strategies show substantial potential to overcome long-standing limitations of SR NSAID delivery, with expected benefits for patient compliance and quality of life through reduced dosing frequency, better tolerability, and more predictable therapeutic effects. Nevertheless, integration of in vitro performance with pharmacokinetic and clinical safety outcomes remains limited, and the translation to clinical practice is still in its early stages. This review provides a comprehensive overview of current technological trends, identifies persisting gaps, and proposes future research directions to advance SR NSAID systems toward safer, more effective, and patient-focused therapy. Full article
Show Figures

Graphical abstract

19 pages, 1923 KB  
Article
Folate-Functionalized ROS-Scavenging Covalent Organic Framework for Oral Targeted Delivery of Ferulic Acid in Ulcerative Colitis
by Jin Xue, Zifan Qiao, Shiyu Huang, Mubarak G. Bello and Lihua Chen
Pharmaceutics 2025, 17(10), 1263; https://doi.org/10.3390/pharmaceutics17101263 - 26 Sep 2025
Abstract
Background/Objectives: Ulcerative colitis (UC) involves chronic colon inflammation and oxidative stress. Treating UC is challenging due to systemic drug side effects and poor targeted delivery. Nanocarriers responsive to the UC microenvironment, particularly elevated reactive oxygen species (ROS), could overcome these limitations. This study [...] Read more.
Background/Objectives: Ulcerative colitis (UC) involves chronic colon inflammation and oxidative stress. Treating UC is challenging due to systemic drug side effects and poor targeted delivery. Nanocarriers responsive to the UC microenvironment, particularly elevated reactive oxygen species (ROS), could overcome these limitations. This study developed an oral delivery system for ROS-triggered drug release and active targeting. Using ferulic acid (FER), a system was designed to enhance site-specific accumulation and therapeutic efficacy against colitis. Methods: A ROS-sensitive covalent organic framework (COF) was synthesized from γ-cyclodextrin and functionalized with folic acid (FA) to create a carrier (COF-FA) designed for potential active targeting. This carrier was loaded with FER to form FER@COF-FA. The system was characterized (SEM, FTIR, TGA), and its ROS scavenging and sustained drug release profiles were confirmed in vitro. Biocompatibility was evaluated in cell lines, and therapeutic efficacy was tested in a DSS-induced murine colitis model. Results: The synthesized FER@COF-FA demonstrated high drug loading, potent ROS-scavenging capability, and a sustained drug release profile. It showed excellent biocompatibility and, in the murine model, significantly outperformed free FER. Treatment alleviated disease severity, prevented colon shortening, restored healthy tissue histology, and rebalanced pro- and anti-inflammatory cytokines. Conclusions: The FER@COF-FA system represents a highly promising therapeutic strategy for UC. Its superior efficacy is attributed to a synergistic multi-mechanism approach, combining sustained release, ROS-responsive drug delivery, intrinsic antioxidant activity, and potential folate receptor-mediated targeting, which collectively enhance site-specific accumulation and therapeutic outcomes in the inflammatory colon microenvironment. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
24 pages, 1572 KB  
Article
Antidiabetic Potential of Mangiferin: An In Silico and In Vivo Approach
by Anna Vesnina, Violeta Le, Svetlana Ivanova and Alexander Prosekov
Pharmaceutics 2025, 17(10), 1262; https://doi.org/10.3390/pharmaceutics17101262 - 26 Sep 2025
Abstract
Objectives: According to published data, mangiferin has the potential to prevent diabetes mellitus. The aim of this work was to obtain in vivo evidence of the biological activity of mangiferin predicted in silico. Methods: A prediction using the IT Microcosm system was employed [...] Read more.
Objectives: According to published data, mangiferin has the potential to prevent diabetes mellitus. The aim of this work was to obtain in vivo evidence of the biological activity of mangiferin predicted in silico. Methods: A prediction using the IT Microcosm system was employed to identify the correlation between the spatial structure of mangiferin and its biological activity. MAPK10, HCAR2, and CALCRL biotargets were used as the basis for predicting moderate antiglycation activity in silico. The presence of anti-inflammatory and antidiabetic activities in mangiferin was empirically tested in in vivo models. To assess anti-inflammatory activity in female Sprague–Dawley rats, acute exudative inflammation and chronic proliferative inflammation were induced. To assess hypoglycemic activity in female Sprague–Dawley rats, diabetes mellitus was modeled with an alloxan solution (150.0 mg/kg). During the experiment, fasting body weight, glucose, and total cholesterol concentrations in the blood serum of the animals were assessed weekly. To study hypocholesterolemic activity in female Mus musculus mice, hypercholesterolemia was modeled by administering a solution of Kolliphor P 407 three times a week. Mangiferin (50.0 mg/kg, 100.0 mg/kg) was administered orally daily for 7 days (in the last week of the experiment) or for 14 days (hypercholesterolemia model). Results: In vivo studies showed that mangiferin showed pro-inflammatory activity without affecting body weight and did not reduce glucose and cholesterol concentrations. The obtained results contribute to the evidence regarding the presence/absence of the anti-inflammatory, hypoglycemic, and hypocholesterolemic properties of mangiferin. Conclusions: The discrepancy between mangiferin’s actual activity and the in silico predictions suggests the need for further studies using lower doses of mangiferin and investigating approaches to enhance its bioavailability. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

17 pages, 1686 KB  
Article
Solid Lipid Nanoparticles by Coacervation from Natural Soaps: Preliminary Studies for Oral Delivery of an Insulin Analogue
by Annalisa Bozza, Arianna Marengo, Federica Blua, Elisabetta Marini, Stefano Bagatella, Elena Ugazio, Elisabetta Muntoni and Luigi Battaglia
Pharmaceutics 2025, 17(10), 1261; https://doi.org/10.3390/pharmaceutics17101261 - 26 Sep 2025
Abstract
Background/Objectives: Oral insulin continues to constitute a challenge due to its low uptake by the gut wall and degradation by gastrointestinal proteolytic enzymes. Such concerns might be surmounted by means of nanoparticle delivery. Methods: In this study, glargine insulin has been [...] Read more.
Background/Objectives: Oral insulin continues to constitute a challenge due to its low uptake by the gut wall and degradation by gastrointestinal proteolytic enzymes. Such concerns might be surmounted by means of nanoparticle delivery. Methods: In this study, glargine insulin has been loaded into solid lipid nanoparticles prepared via coacervation from Shea and Mango soaps, due to hydrophobic ion pairing. Subsequently, ex vivo tied-up-gut experiments were performed with fluorescently labeled peptide. Additionally, re-dispersible oral solid dosage forms (powders and tablets) were obtained from nanoparticle suspensions via freeze-drying and spray-drying. Results: Solid lipid nanoparticles are capable of enhancing peptide permeation into different gut sections. Furthermore, spray-drying permits the preparation, which can be scaled up, of a re-dispersible powder from the nanoparticle suspension. Conclusions: This engineered process is suitable for the formulation of solid oral dosage forms, such as granulates and tablets, and presents promising potential for oral insulin delivery, paving the way for the assessment of its pharmacological efficacy in further in vivo studies. Full article
(This article belongs to the Special Issue Recent Advances in Peptide and Protein-Based Drug Delivery Systems)
Show Figures

Figure 1

24 pages, 6190 KB  
Article
Benzoxazine–Purine Hybrids as Antiproliferative Agents: Rational Design and Divergent Mechanisms of Action
by Houria Boulaiz, Yaiza Jiménez-Martínez, Francisco Franco-Montalbán, Jesús Peña-Martín, Ana Conejo-García and M. Dora Carrión
Pharmaceutics 2025, 17(10), 1260; https://doi.org/10.3390/pharmaceutics17101260 - 26 Sep 2025
Abstract
Background/Objectives: Targeted cancer therapies increasingly rely on modulating specific cell death pathways and kinase signaling. Due to their structural versatility and potential to induce mechanistically distinct cytotoxic responses, benzoxazine–purine hybrids represent a promising scaffold for anticancer drug development. The objective of this study [...] Read more.
Background/Objectives: Targeted cancer therapies increasingly rely on modulating specific cell death pathways and kinase signaling. Due to their structural versatility and potential to induce mechanistically distinct cytotoxic responses, benzoxazine–purine hybrids represent a promising scaffold for anticancer drug development. The objective of this study was to design and evaluate novel benzoxazine–purine derivatives for their antiproliferative activity and elucidate their underlying mechanisms of action. Methods: A series of benzoxazine–purine compounds was synthesized via a modular and efficient approach. The synthetic route involved a one-pot cyclization of substituted 2-aminophenols with epichlorohydrin, followed by tosylation and subsequent Mitsunobu coupling with halogenated purines. Their antiproliferative activity was assessed in MCF-7 (breast) and HCT-116 (colon) cancer cell lines using MTT assays. Selected compounds were evaluated further for kinase inhibition, effects on the cell cycle, membrane integrity (Annexin V/PI staining), ultrastructural changes (SEM), and caspase activation (Western blot). In silico ADMET profiling was also performed. Results: Compounds 9 and 12 exhibited the most potent antiproliferative activity, with low micromolar IC50 values. Compound 12 showed dual HER2/JNK1 kinase inhibition and induced caspase-8-dependent pyroptosis-like cell death, characterized by membrane rupture and inflammatory features. In contrast, compound 8 lacked kinase inhibition and promoted S-phase arrest with apoptotic-like morphology. Both compounds demonstrated favorable physicochemical and ADMET profiles, including high intestinal absorption and an absence of mutagenicity. Conclusions: The rational design of benzoxazine–purine hybrids resulted in the discovery of compounds with distinct mechanisms of action. Compound 12 induces inflammatory cell death by modulating kinases, while compound 9 acts through a kinase-independent apoptotic pathway. These results underscore the therapeutic potential of scaffold-based diversification for developing targeted anticancer agents. Full article
(This article belongs to the Special Issue Recent Advances in Inhibitors for Targeted Therapies)
Show Figures

Figure 1

11 pages, 1071 KB  
Article
Homotypic Targeting of [89Zr]Zr-Oxine Labeled PC3 and 4T1 Cells in Tumor-Bearing Mice
by Volkan Tekin, Noel E. Archer, Solana R. Fernandez, Hailey A. Houson, Jennifer L. Bartels and Suzanne E. Lapi
Pharmaceutics 2025, 17(10), 1259; https://doi.org/10.3390/pharmaceutics17101259 - 26 Sep 2025
Abstract
Background/Objectives: Homotypic targeting refers to the ability of cells to preferentially interact with other cells of the same type. An understanding of how cells use homotypic targeting (self-homing) characteristics for tumor-targeting purposes may aid in the effective delivery of radionuclides or other [...] Read more.
Background/Objectives: Homotypic targeting refers to the ability of cells to preferentially interact with other cells of the same type. An understanding of how cells use homotypic targeting (self-homing) characteristics for tumor-targeting purposes may aid in the effective delivery of radionuclides or other drugs for imaging or therapeutic applications. Additionally, studies investigating the targeting properties of cells from the same lineage may shed light on this interesting mechanism, allowing it to be harnessed for other applications. The objective of this study was to assess the tumor-self targeting potential of PC3 prostate cancer and 4T1 breast cancer cells using a direct cell labeling technique, with a focus on evaluation of cellular labeling efficiency, cell viability, cellular efflux, and in vivo tumor-self targeting capability using both identical and dissimilar tumor models. Methods: [89Zr]Zr-oxine was prepared and utilized for the labeling of PC3 and 4T1 cells. Following the assessment of cell labeling efficacy, viability, and efflux, PET/CT imaging and biodistribution studies were conducted with [89Zr]Zr-oxine labeled PC3 and 4T1 cells in PC3 and 4T1 tumor-bearing mice models. Results: Both PC3 cells and 4T1 cells were radiolabeled with [89Zr]oxine, with PC3 cells illustrating a higher labeling efficiency (86.55 ± 0.38%) than 4T1 cells (46.95 ± 1.47%). Notably, radiolabeled PC3 cells illustrated significant uptake in PC3 tumors (7.54 ± 1.07%ID/gram at 24 h and 6.95 ± 3.56%ID/gram at 48 h) with lower tumor uptake in the 4T1 xenograft model (1.79 ± 0.29%ID/gram at 24 h and 1.42 ± 0.71%ID/gram at 48 h), illustrating the potential of self-targeting. Conclusions: Both PC3 and 4T1 cells followed a similar pattern of biodistribution, with labeled PC3 cells demonstrating lower blood retention and reduced uptake in non-target organs such as lungs and heart. Taken together, these results may indicate that PC3 cells illustrate homotypic targeting, warranting further investigation of this phenomenon. Full article
(This article belongs to the Special Issue Cell-Mediated Delivery Systems)
Show Figures

Graphical abstract

69 pages, 3282 KB  
Review
Formulation Strategies for Immunomodulatory Natural Products in 3D Tumor Spheroids and Organoids: Current Challenges and Emerging Solutions
by Chang-Eui Hong and Su-Yun Lyu
Pharmaceutics 2025, 17(10), 1258; https://doi.org/10.3390/pharmaceutics17101258 - 25 Sep 2025
Abstract
Background/Objectives: Natural products exhibit significant immunomodulatory potential but face severe efficacy loss in three-dimensional (3D) tumor models. This review comprehensively examines the penetration–activity trade-off and proposes integrated strategies for developing effective natural product-based cancer immunotherapies. Methods: We analyzed formulation strategies across three natural [...] Read more.
Background/Objectives: Natural products exhibit significant immunomodulatory potential but face severe efficacy loss in three-dimensional (3D) tumor models. This review comprehensively examines the penetration–activity trade-off and proposes integrated strategies for developing effective natural product-based cancer immunotherapies. Methods: We analyzed formulation strategies across three natural product categories (hydrophobic, macromolecular, stability-sensitive), evaluating penetration enhancement versus activity preservation in spheroids, organoids, and advanced 3D platforms. Results: Tumor spheroids present formidable barriers: dense extracellular matrix (33-fold increased fibronectin), pH gradients (7.4 → 6.5), and extreme cell density (6 × 107 cells/cm3). While nanoparticles, liposomes, and cyclodextrins achieve 3–20-fold penetration improvements, biological activity frequently declines through conformational changes, incomplete release (10–75%), and surface modification interference. Critically, immune cells remain peripheral (30–50 μm), questioning deep penetration pursuit. Patient-derived organoids display 68% predictive accuracy, while emerging vascularized models unveil additional complexity. Food and Drug Administration (FDA) Modernization Act 2.0 enables regulatory acceptance of these advanced models. Conclusions: Effective therapeutic outcomes depend on maintaining immunomodulatory activity in peripherally-located immune cell populations rather than achieving maximum tissue penetration depth. Our five-stage evaluation framework and standardization protocols guide development. Future priorities include artificial intelligence-driven optimization, personalized formulation strategies, and integration of multi-organ platforms to bridge the critical gap between enhanced delivery and therapeutic efficacy. Full article
Show Figures

Figure 1

18 pages, 6403 KB  
Article
Tannic Acid/Fe(III)-Coated Curcumin Self-Assembled Nanoparticles for Combination Therapy to Treat Triple-Negative Breast Cancer
by Jialing Li, Ning Han, Mingyue Ruan, Hongmei Wei, Yunan Dong, Haitong Zhang, Zishuo Guo, Shouying Du and Pengyue Li
Pharmaceutics 2025, 17(10), 1257; https://doi.org/10.3390/pharmaceutics17101257 - 25 Sep 2025
Abstract
Background/Objectives: Triple-negative breast cancer (TNBC) exhibits pronounced biological heterogeneity, aggressive behavior, and a high risk of recurrence and metastasis. The conventional treatments for TNBC have notable limitations: surgical resection may leave residual tumor cells; chemotherapy (CT) frequently induces systemic toxicity and drug resistance; [...] Read more.
Background/Objectives: Triple-negative breast cancer (TNBC) exhibits pronounced biological heterogeneity, aggressive behavior, and a high risk of recurrence and metastasis. The conventional treatments for TNBC have notable limitations: surgical resection may leave residual tumor cells; chemotherapy (CT) frequently induces systemic toxicity and drug resistance; and radiotherapy damages surrounding organs and compromises the patients’ immune function. Methods: Herein, we designed a carrier-free nanodrug delivery system composed of self-assembled Curcumin nanoparticles (NPs) coated with a tannic acid (TA)/Fe(III) network (denoted as CUR@TA-Fe(III) NPs). We systematically evaluated the in vitro cytotoxicity and photothermal–ferroptosis synergistic therapeutic efficacy of CUR@TA-Fe(III) NPs in 4T1 breast cancer cells, as well as the in vivo antitumor activity using 4T1 tumor-bearing mouse models. Results: CUR@TA-Fe(III) NPs had high drug loading efficiency (LE) of 27.99%, good dispersion stability, and photothermal properties. Curcumin could inhibit the growth of 4T1 cancer cells, while TA-Fe(III) efficiently converted light energy into heat upon exposure to near-infrared (NIR) light, leading to direct thermal ablation of 4T1 cells. Additionally, TA-Fe(III) could supply Fe(II) via TA, increase intracellular Fe(II) content, and generate reactive oxygen species (ROS) through the Fenton reaction, in turn inducing lipid peroxidation (LPO), a decrease in mitochondrial membrane potential (MMP), and glutathione depletion, eventually triggering ferroptosis. Conclusions: This treatment strategy, which integrates CT, PTT, and ferroptosis, is expected to overcome the limitations of traditional single-treatment methods and provide a more effective method for the treatment of TNBC. Full article
Show Figures

Figure 1

34 pages, 8883 KB  
Review
Next-Generation Natural Hydrogels in Oral Tissue Engineering
by Mariana Chelu, Monica Popa and José María Calderón Moreno
Pharmaceutics 2025, 17(10), 1256; https://doi.org/10.3390/pharmaceutics17101256 - 25 Sep 2025
Abstract
Hydrogels have emerged as promising biomaterials for oral tissue regeneration thanks to their high-water content, excellent biocompatibility, and ability to mimic native tissue environments. These versatile materials can be tailored to support cell adhesion, proliferation, and differentiation, making them suitable for repairing both [...] Read more.
Hydrogels have emerged as promising biomaterials for oral tissue regeneration thanks to their high-water content, excellent biocompatibility, and ability to mimic native tissue environments. These versatile materials can be tailored to support cell adhesion, proliferation, and differentiation, making them suitable for repairing both soft and hard oral tissues. When engineered from natural polymers and enriched with bioactive agents, hydrogels offer enhanced regenerative potential. Biopolymer-based hydrogels, derived from materials such as chitosan, alginate, collagen, hyaluronic acid, and gelatin, are particularly attractive due to their biodegradability, bioactivity, and structural similarity to the extracellular matrix, creating an optimal microenvironment for cell growth and tissue remodeling. Recent innovations have transformed these systems into multifunctional platforms capable of supporting targeted regeneration of periodontal tissues, alveolar bone, oral mucosa, dental pulp, and dentin. Integration of bioactive molecules, particularly essential oils, bio-derived constituents, cells, or growth factors, has introduced intrinsic antimicrobial, anti-inflammatory, and antioxidant functionalities, addressing the dual challenge of promoting tissue regeneration while at the same time attenuating microbial contamination in the oral environment. This review explores the design strategies, material selection, functional properties, and biomedical applications in periodontal therapy, guided tissue regeneration, and implant integration of natural polymer-based hydrogels enriched with bioactive factors, highlighting their role in promoting oral tissue regeneration. In addition, we discuss current challenges related to mechanical stability, degradation rates, and clinical translation, while highlighting future directions for optimizing these next-generation bioactive hydrogel systems in regenerative dentistry. Full article
Show Figures

Figure 1

14 pages, 1345 KB  
Article
Lysosomal Drug Sequestration Mediated by ABC Transporters and Drug Resistance
by Petr Mlejnek
Pharmaceutics 2025, 17(10), 1255; https://doi.org/10.3390/pharmaceutics17101255 - 24 Sep 2025
Viewed by 8
Abstract
Background: Drug resistance (DR) mediated by ABC transporters in the cytoplasmic membrane has been one of the best studied mechanisms of DR in vitro. More recently, it has also been suggested that ABC transporters expressed on lysosomal membranes could increase the sequestration [...] Read more.
Background: Drug resistance (DR) mediated by ABC transporters in the cytoplasmic membrane has been one of the best studied mechanisms of DR in vitro. More recently, it has also been suggested that ABC transporters expressed on lysosomal membranes could increase the sequestration of anticancer drugs in lysosomes, thereby reducing their concentration at target sites, and causing DR. Unfortunately, convincing evidence that such a DR mechanism actually exists is lacking, even in the case of in vitro experiments. Methods: This hypothetical study using simplified models evaluates the effect of ABC transporter-mediated accumulation of anticancer drugs in lysosomes on their concentration at target sites under standard in vitro conditions. Results: Calculations show that an ABC transporter resident on the plasma membrane must create and maintain a relatively small concentration gradient between extracellular space and the target site to reduce the drug concentration at the target site by, for example, half. In contrast, if a lysosomal ABC transporter is to also halve the concentration of the drug at the target site, then it must create and maintain a huge concentration gradient between lysosomes and target sites. It is very likely that massive accumulation of drugs in lysosomes would have a negative effect on the function of the lysosomes themselves. Conclusions: The results of this hypothetical study strongly suggest that the mechanism of DR mediated by lysosomal ABC transporters is questionable, as it requires enormous accumulation of the drug in lysosomes, which would likely also impair their function. Therefore, it is highly unlikely that this hypothetical DR mechanism could actually be utilized by tumor cells to defend against the cytotoxic effects of chemotherapy in vitro. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

15 pages, 4708 KB  
Article
mRNA-Based Combination Therapy for Inflammation-Driven Osteoarthritis Induced by Monosodium Iodoacetate
by Yuki Terai, Erica Yada, Hideyuki Nakanishi and Keiji Itaka
Pharmaceutics 2025, 17(10), 1254; https://doi.org/10.3390/pharmaceutics17101254 - 24 Sep 2025
Viewed by 27
Abstract
Background/Objectives: Osteoarthritis (OA) is a progressive joint disease characterized by inflammation, cartilage degradation, and subchondral bone changes, for which effective disease-modifying therapies are lacking. Messenger RNA (mRNA)-based therapeutics offer a versatile approach to modulate joint pathology, but their application to OA remains limited. [...] Read more.
Background/Objectives: Osteoarthritis (OA) is a progressive joint disease characterized by inflammation, cartilage degradation, and subchondral bone changes, for which effective disease-modifying therapies are lacking. Messenger RNA (mRNA)-based therapeutics offer a versatile approach to modulate joint pathology, but their application to OA remains limited. Methods: We evaluated intra-articular delivery of therapeutic mRNAs using polyplex nanomicelles, a non-inflammatory and minimally invasive carrier system, in a rat model of inflammation-driven OA induced by monosodium iodoacetate (MIA). Results: IL-1 receptor antagonist (IL-1Ra) mRNA reduced synovial inflammation and alleviated pain and swelling. RUNX1 mRNA, a transcription factor critical for chondrogenesis, supported chondrocyte viability, type II collagen expression, and cartilage structure. Under conditions of pronounced inflammation, however, the protective effects of RUNX1 mRNA alone were modest. Notably, combined administration of IL-1Ra and RUNX1 mRNAs produced synergistic therapeutic benefits, with enhanced chondroprotection and preservation of subchondral bone integrity. Conclusions: These findings suggest that while RUNX1 is essential for maintaining cartilage homeostasis, effective control of joint inflammation is required for its therapeutic activity. Dual mRNA therapy delivered by polyplex nanomicelles therefore represents a promising strategy to address the multifactorial pathology of OA. Full article
Show Figures

Figure 1

22 pages, 4349 KB  
Article
In Vitro Investigation of the Antiproliferative and Antimetastatic Effects of Atorvastatin: A Focus on Cervical and Head and Neck Cancers
by Hiba F. Muddather, Noémi Bózsity, György T. Balogh, Zsuzsanna Schelz and István Zupkó
Pharmaceutics 2025, 17(10), 1253; https://doi.org/10.3390/pharmaceutics17101253 - 24 Sep 2025
Viewed by 87
Abstract
Background/Objectives: In spite of substantial treatment progress, cancer persists as a leading health challenge. With the slow advancement in developing new anticancer agents, drug repurposing provides a promising strategy to enhance cancer therapy. This study investigates the antiproliferative and antimetastatic properties of [...] Read more.
Background/Objectives: In spite of substantial treatment progress, cancer persists as a leading health challenge. With the slow advancement in developing new anticancer agents, drug repurposing provides a promising strategy to enhance cancer therapy. This study investigates the antiproliferative and antimetastatic properties of two 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, atorvastatin and rosuvastatin, which represent lipophilic and hydrophilic statins, respectively. Methods: Growth inhibition was evaluated in a panel of human cancer cells using the standard MTT assay. Apoptotic effects were determined through flow cytometry, caspase-3 activity assay, mitochondrial membrane potential assessment, and Hoechst/Propidium iodide fluorescent double staining. Migration and invasion assays were conducted using wound-healing and Boyden chamber assays, respectively. Results: Atorvastatin demonstrated more pronounced growth-inhibitory effects than rosuvastatin, with the IC50 values in the range of 2.57–61.01 µM. Atorvastatin exhibited both biochemical and morphological indicators of apoptosis. Flow cytometry revealed cell cycle disruptions and increased sub-G1 apoptotic populations in HPV-positive oral squamous carcinoma cells (UPCI-SCC-154) and HPV-negative cervical cancer cells (C33A). Atorvastatin also significantly inhibited cell migration and invasion in the tested cell lines. Conclusions: Our results highlight the promising anticancer potential of atorvastatin in cervical cancer and oral squamous carcinoma cells. However, these findings are limited to in vitro models and warrant further in vivo validation. Full article
(This article belongs to the Special Issue Drug Delivery Strategies and Novel Approaches for Cancer Treatment)
Show Figures

Graphical abstract

20 pages, 2374 KB  
Review
A Scoping Review of Recent Developments in Cellulose-Derived Hydrogels for Dental Applications
by Smriti Aryal A C, Md Sofiqul Islam, Marwan Mansoor Mohammed, Lina Abu-Nada, Elaf Akram Abdulhameed, Sangeetha Narasimhan, Snigdha Pattanaik and Ghee Seong Lim
Pharmaceutics 2025, 17(10), 1252; https://doi.org/10.3390/pharmaceutics17101252 - 24 Sep 2025
Viewed by 86
Abstract
Application of cellulose-based hydrogels in dentistry has gained significant attention. They are emerging as novel biomaterials in the field of tissue engineering, regeneration, and drug delivery in dentistry. The objective of this scoping review is to highlight and summarize recent developments of cellulose-based [...] Read more.
Application of cellulose-based hydrogels in dentistry has gained significant attention. They are emerging as novel biomaterials in the field of tissue engineering, regeneration, and drug delivery in dentistry. The objective of this scoping review is to highlight and summarize recent developments of cellulose-based hydrogels in their designs, reported applications, and laboratory functions. Methods: Between the periods of November 2014 and November 2024 (searches completed and datasets locked on 30th Nov 2024), the comprehensive electronic database search was performed in PubMed, Science Direct, Scopus, and MyEBSCO. All the studies that are related to cellulose-based and dentistry were included in this review. This review followed the PRISMA-ScR guidelines for the Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews. Results: Out of 518 entries found, 13 studies were qualified for inclusion. When comparative analysis of cellulose-based hydrogel-related studies was performed, most of the included studies were conducted in vitro, and they highlighted significant advancements in their functionality, their inert properties such as mechanical adaptability, design, bioactivity, biodegradability, and clinical potential. Conclusions: Cellulose-based hydrogels show great potential in regenerative dentistry, providing a biomimetic platform for tissue regeneration and drug delivery. Addressing present challenges and exploring pathways towards clinical translation will be critical to know their potential in the future. This review critically evaluates the strengths and weaknesses that are used in the current studies and thus, it provides a resource for future research directions for innovations in the field of regenerative dentistry and tissue engineering. Full article
Show Figures

Figure 1

24 pages, 5557 KB  
Article
The Antidepressant Effect of Targeted Release of Ketamine-Loaded Nanodroplets Stimulated by Low-Intensity Focused Ultrasound
by Bailing Wu, Yu Xu, Yuhang Xie, Youzhuo Li, Yue Huang, Yuran Feng and Mei Zhu
Pharmaceutics 2025, 17(10), 1251; https://doi.org/10.3390/pharmaceutics17101251 - 24 Sep 2025
Viewed by 91
Abstract
Objectives: Ketamine has demonstrated rapid and sustained antidepressant effects; however, its clinical utility is limited by the risk of addiction and systemic side effects. This study aimed to develop ketamine-loaded nanodroplets (Ket-NDs) with high encapsulation efficiency (EE) and stability for targeted low-dose [...] Read more.
Objectives: Ketamine has demonstrated rapid and sustained antidepressant effects; however, its clinical utility is limited by the risk of addiction and systemic side effects. This study aimed to develop ketamine-loaded nanodroplets (Ket-NDs) with high encapsulation efficiency (EE) and stability for targeted low-dose intravenous (IV) administration in a mice model of depression. Low-intensity focused ultrasound (LIFU) was employed to induce transcranial, region-specific drug release in the lateral habenula (LHb). Methods: Ket-NDs were synthesized using a thin-film hydration method with sonication and emulsification, incorporating perfluoropentane as the core material. Characterization was performed using light microscopy, cryogenic scanning electron microscopy (cryo-SEM), transmission electron microscopy, and dynamic light scattering (DLS). Drug EE and loading efficiency (LE) were quantified by reversed-phase high-performance liquid chromatography. A chronic restraint stress model was established, and Ket-NDs were administered intravenously followed by LIFU targeting the LHb. Antidepressant efficacy and biosafety were systematically evaluated. Results: (1) Ket-NDs exhibited uniform spherical morphology and a narrow size distribution, as confirmed by DLS (particle size: 139.75 ± 9.43 nm; Polydispersity index: 0.225 ± 0.025) and cryo-SEM analysis (number-average diameter: 109.5 ± 10.4 nm). The zeta potential was −15.93 ± 5.906 mV, and the formulation remained stable under 4 °C storage. (2) Ket-NDs demonstrated high EE (78.25 ± 16.13%) and LE (15.55 ± 4.49%). (3) In depressive mice, IV administration of Ket-NDs followed by LIFU targeting the LHb significantly improved behavioral outcomes: increased locomotor activity in the open field test, elevated sucrose preference index, and reduced immobility time in the tail suspension test. (4) Safety assessments revealed no significant organ toxicity or brain tissue damage in ultrasound-exposed regions. Conclusions: In summary, this study developed stable Ket-NDs. When combined with LIFU, they enable precise regional drug delivery to the brain, showcasing a promising treatment strategy for depression with reduced systemic side effects. Full article
Show Figures

Figure 1

16 pages, 2917 KB  
Article
In Vitro Comparative Study on Oppositely Charged Donepezil-Loaded Intranasal Liposomes
by Elika Valehi, Gábor Katona, Dorina Gabriella Dobó and Ildikó Csóka
Pharmaceutics 2025, 17(10), 1250; https://doi.org/10.3390/pharmaceutics17101250 - 24 Sep 2025
Viewed by 86
Abstract
Background/Objectives: Intranasal delivery is a promising approach for targeting the central nervous system (CNS); however, most of the drugs show poor permeability through the nasal mucosa. Nanocarriers such as liposomes can improve nasal drug absorption; however, the surface charge of liposomes has [...] Read more.
Background/Objectives: Intranasal delivery is a promising approach for targeting the central nervous system (CNS); however, most of the drugs show poor permeability through the nasal mucosa. Nanocarriers such as liposomes can improve nasal drug absorption; however, the surface charge of liposomes has a key role in the nasal mucosal uptake process. Therefore, the present study aimed to formulate and compare the intranasal applicability of oppositely charged liposomes loaded with donepezil hydrochloride (DPZ) as CNS-active model compound using two different charge inducers, the negatively charged dicethyl phosphate (DCP) and the positively charged stearylamine (SA). Methods: Liposomes were prepared with a fixed phosphatidylcholine (PC)/cholesterol (CH) 7:2 molar ratio, while the effect of DCP and SA was studied in a 0.5:2 molar ratio. The most important properties for intranasal administration were studied, e.g., colloidal parameters, drug release and permeability behavior, and mucoadhesion. Results: It has been revealed that the reduction in liposome vesicle size is directly proportional to the amount of DCP, while it is inversely proportional to the amount of SA. This was also supported by the drug release studies—the lower vesicle size resulted in faster drug release. Both charge inducers increased the drug encapsulation efficiency (~60–80%) through tighter packing or increased spacing of the lipid bilayer structure. DCP also improved the in vitro nasal permeability compared to the initial DPZ solution. The positively charged SA showed more remarkable mucoadhesive properties than DCP. Conclusions: We can conclude that both charge inducers can be useful for improving nasal absorption of liposomal carriers, DCP in higher (PC:CH:DCP 7:2:2), while SA in lower concentrations (PC:CH:SA 7:2:0.5). Full article
(This article belongs to the Special Issue Advances in Colloidal Drug Delivery Systems)
Show Figures

Figure 1

33 pages, 6726 KB  
Review
Recent Techniques to Improve Amorphous Dispersion Performance with Quality Design, Physicochemical Monitoring, Molecular Simulation, and Machine Learning
by Hari Prasad Bhatta, Hyo-Kyung Han, Ravi Maharjan and Seong Hoon Jeong
Pharmaceutics 2025, 17(10), 1249; https://doi.org/10.3390/pharmaceutics17101249 - 24 Sep 2025
Viewed by 183
Abstract
Amorphous solid dispersions (ASDs) represent a promising formulation strategy for improving the solubility and bioavailability of poorly water-soluble drugs, a major challenge in pharmaceutical development. This review provides a comprehensive analysis of the physicochemical principles underlying ASD stability, with a focus on drug–polymer [...] Read more.
Amorphous solid dispersions (ASDs) represent a promising formulation strategy for improving the solubility and bioavailability of poorly water-soluble drugs, a major challenge in pharmaceutical development. This review provides a comprehensive analysis of the physicochemical principles underlying ASD stability, with a focus on drug–polymer miscibility, molecular mobility, and thermodynamic properties. The main manufacturing techniques including hot-melt extrusion, spray drying, and KinetiSol® dispersing are discussed for their impact on formulation homogeneity and scalability. Recent advances in excipient selection, molecular modeling, and in silico predictive approaches have transformed ASD design, reducing dependence on traditional trial-and-error methods. Furthermore, machine learning and artificial intelligence (AI)-based computational platforms are reshaping formulation strategies by enabling accurate predictions of drug–polymer interactions and physical stability. Advanced characterization methods such as solid-state NMR, IR, and dielectric spectroscopy provide valuable insights into phase separation and recrystallization. Despite these technological innovations, ensuring long-term stability and maintaining supersaturation remain significant challenges for ASDs. Integrated formulation design frameworks, including PBPK modeling and accelerated stability testing, offer potential solutions to address these issues. Future research should emphasize interdisciplinary collaboration, leveraging computational advancements together with experimental validation to refine formulation strategies and accelerate clinical translation. The scientists can unlock the full therapeutic potential with emerging technologies and a data-driven approach. Full article
Show Figures

Graphical abstract

15 pages, 626 KB  
Article
Analgesic Effect of a Novel Intravenous Ibuprofen-Low-Dose Tramadol Combination: A Multimodal Approach to Moderate-to-Severe Postoperative Dental Pain
by M. Rosario Salas-Butrón, Leonor Laredo-Velasco, Ana B. Rivas-Paterna, Aránzazu González-Corchon, Mario F. Muñoz-Guerra, Alberto M. Borobia, Julio J. Acero-Sanz, Carla Pérez-Ingidua, Francisco Abad-Santos, Jose-Luis Cebrián, María Ángeles Gálvez-Múgica, Irene Serrano-García, Carmen Portolés-Díez, Lucia Llanos, Dolores Martínez, Nuria Sanz, Carlos Calandria, Emilio Vargas-Castrillón, Rafael Martín-Granizo and Antonio Portolés-Pérez
Pharmaceutics 2025, 17(10), 1248; https://doi.org/10.3390/pharmaceutics17101248 - 24 Sep 2025
Viewed by 119
Abstract
Background: Drug combinations with complementary mechanisms of action are able to achieve effective analgesia at lower doses, thereby reducing the risk of adverse effects (AEs). This study evaluated the analgesic efficacy and tolerability of two fixed-dose combinations (FDCs) of ibuprofen/tramadol (IBU/TRA) compared with [...] Read more.
Background: Drug combinations with complementary mechanisms of action are able to achieve effective analgesia at lower doses, thereby reducing the risk of adverse effects (AEs). This study evaluated the analgesic efficacy and tolerability of two fixed-dose combinations (FDCs) of ibuprofen/tramadol (IBU/TRA) compared with tramadol and a placebo. Methods: This multicenter, randomized, double-blind, dose-finding, pilot clinical trial compared IBU/TRA (400/37.5 mg and 400/75 mg) with 100 mg of tramadol and a placebo in patients with moderate-to-severe pain following dental surgery. The primary endpoints were pain intensity at 6 h (PI6h) and the pain intensity difference from baseline to 6 h (PID6h). PID7h, the sum of pain intensity differences from baseline to 7 h (SPID0–7h), pain relief (PAR7h), total pain relief (TOTPAR7h), the use of rescue medication and AEs were also assessed. Results: Seventy-two patients were randomized and evaluated. Both FDCs showed superiority over the placebo for PI6h and PID6h (p < 0.05) but were not significantly different from 100 mg of tramadol. The statistical superiority of FDCs over the placebo was observed for PID7h, SPID0–7h, PAR7h and TOTPAR7h. The percentage of patients receiving rescue medication was higher in the placebo (94.1%) and tramadol (52.6%) groups than the FDC groups (35.3% and 36.8% for 400/37.5 mg and 400/75 mg, respectively). A post hoc analysis showed that the FDCs had a superior analgesic efficacy to 100 mg of tramadol in the SPID0–4h (p < 0.005). The incidence of AEs was comparable between treatment groups. Conclusions: Both FDCs of IBU/TRA provided superior analgesic efficacy compared to the placebo. We propose using SPID0–4h as the preferred variable for evaluating the efficacy of this type of drug combination. Full article
(This article belongs to the Special Issue Emerging Drugs and Formulations for Pain Treatment)
Show Figures

Graphical abstract

17 pages, 1741 KB  
Article
Fabrication and Characterization of Curcumin-Complexed Nanoparticles Using Coconut Protein Nanoparticles
by Leila Ziaeifar, Maryam Salami, Gholamreza Askari, Zahra Emam-Djomeh, Raimar Loebenberg, Michael J Serpe and Neal M. Davies
Pharmaceutics 2025, 17(10), 1247; https://doi.org/10.3390/pharmaceutics17101247 - 24 Sep 2025
Viewed by 103
Abstract
Background/Objectives: Curcumin (Cur) has various biological properties, including anti-microbial, antioxidant, anticancer, anti-diabetic, anticarcinogenic, antitumor, and anti-inflammatory activities. However, using Cur in functional food products is challenging because of its low solubility in an aqueous environment, rapid degradation, and low bioavailability. Nanostructure delivery [...] Read more.
Background/Objectives: Curcumin (Cur) has various biological properties, including anti-microbial, antioxidant, anticancer, anti-diabetic, anticarcinogenic, antitumor, and anti-inflammatory activities. However, using Cur in functional food products is challenging because of its low solubility in an aqueous environment, rapid degradation, and low bioavailability. Nanostructure delivery systems provide a high surface area to volume ratio and sustainable release properties. Methods: Coconut protein nanoparticles (CPNPs) have been fabricated through heat treatment at 85 °C and pH 2 for 5 h. The formation of CPNP-Cur was used to improve Cur solubility, followed by antioxidant activity at neutral pH in an aqueous solution. Results: The maximum efficiency and loading capacity of Cur in CPNP were 96.6% and 19.32 µg/mg protein, respectively. Scanning electron microscopy indicated the spherical and organized shape of CPNP with a small size of 80 nm. The fluorescence quenching of CPNP-Cur confirmed the potential of Cur to bind to the tryptophane and tyrosine residues in CPNP. The structural properties of CPNP and CPNP-Cur were investigated using FTIR and X-ray diffraction. The antioxidant activity of samples, measured with the ABTS radical scavenging method, demonstrated that the antioxidant capacity of the aqueous solution of Cur was significantly enhanced through the encapsulation into CPNP. The steady release of Cur was observed in the simulated gastrointestinal tract, and the percentage of the cumulative release increased up to 29.2% after 4 h. Conclusions: Our findings suggest that CPNP was a suitable nanocarrier for Cur due to improved antioxidant activity and controlled release behavior. These results are valuable for the development of coconut protein nanoparticles to use as a novel nano-delivery system of bioactive components. Full article
Show Figures

Figure 1

25 pages, 2183 KB  
Systematic Review
Skin Microbiome, Nanotoxicology, and Regulatory Gaps: Chronic Cosmetic Exposure and Skin Barrier Dysfunction—A Systematic Review
by Loredana-Elena Pîrvulescu, Sorana-Cristiana Popescu, Roman Popescu, Vlad-Mihai Voiculescu and Carolina Negrei
Pharmaceutics 2025, 17(10), 1246; https://doi.org/10.3390/pharmaceutics17101246 - 24 Sep 2025
Viewed by 176
Abstract
Background: Engineered nanoparticles (NPs)—titanium dioxide, silver, zinc oxide and silica—are widely used in cosmetics for UV protection, antimicrobial activity and texturising effects. Chronic consumer-level exposure may impair skin-barrier integrity, disturb microbiome composition and dysregulate immune signalling via the gut–skin axis. Current regulatory frameworks [...] Read more.
Background: Engineered nanoparticles (NPs)—titanium dioxide, silver, zinc oxide and silica—are widely used in cosmetics for UV protection, antimicrobial activity and texturising effects. Chronic consumer-level exposure may impair skin-barrier integrity, disturb microbiome composition and dysregulate immune signalling via the gut–skin axis. Current regulatory frameworks typically omit chronic- or microbiome-focused safety assessments, leaving potential gaps. Objectives: This study aimed to evaluate the long-term effects of cosmetic-relevant NPs (titanium dioxide, silver, zinc oxide, silica) on skin and gut microbiota, epithelial-barrier integrity and immune signalling—including telocyte- and exosome-mediated pathways—and to identify regulatory shortcomings, particularly the absence of microbiome endpoints, validated chronic models and consideration of vulnerable populations. Methods: Following PRISMA 2020, PubMed, Scopus and Web of Science were searched for English-language in vivo animal or human studies (December 2014–April 2025) meeting chronic-exposure criteria (≥90 days in rodents or >10% of lifespan in other species; for humans, prolonged, repetitive application over months to years consistent with cosmetic use). Although not registered in PROSPERO, the review adhered to a pre-specified protocol. Two independent reviewers screened studies; risk of bias was assessed using a modified SYRCLE tool (animal) or adapted NIH guidance (zebrafish). Owing to heterogeneity, findings were synthesised narratively. Results: Of 600 records, 450 unique articles were screened, 50 full texts were assessed and 12 studies were included. Oral exposure predominated and was associated with dysbiosis, barrier impairment, immune modulation and metabolic effects. Dermal models showed outcomes from minimal change to pronounced immune activation, contingent on host susceptibility. Comparative human–animal findings are summarised; telocyte and exosome pathways were largely unexplored. Regulatory reviews (EU SCCS, US FDA and selected Asian frameworks) revealed no requirements for chronic microbiome endpoints. Limitations: Evidence is limited by the small number of eligible studies, heterogeneity in NP characteristics and exposure routes, predominance of animal models and a scarcity of longitudinal human data. Conclusions: Cosmetic nanoparticles may disrupt the microbiome, compromise barrier integrity and trigger immune dysregulation—risks amplified in vulnerable users. Existing regulations lack requirements for chronic exposure, microbiome endpoints and testing in vulnerable groups, and neglect mechanistic pathways involving telocytes and exosomes. Long-term, real-world exposure studies integrating gut–skin microbiome and immune outcomes, and harmonised global nanomaterial-safety standards, are needed to ensure safer cosmetic innovation. Full article
(This article belongs to the Special Issue Skin Care Products for Healthy and Diseased Skin)
Show Figures

Graphical abstract

3 pages, 8416 KB  
Correction
Correction: Bonaccorso et al. Optimization of Curcumin Nanocrystals as Promising Strategy for Nose-to-Brain Delivery Application. Pharmaceutics 2020, 12, 476
by Angela Bonaccorso, Maria Rosa Gigliobianco, Rosalia Pellitteri, Debora Santonocito, Claudia Carbone, Piera Di Martino, Giovanni Puglisi and Teresa Musumeci
Pharmaceutics 2025, 17(10), 1245; https://doi.org/10.3390/pharmaceutics17101245 - 24 Sep 2025
Viewed by 47
Abstract
In the original publication [...] Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 5

15 pages, 1226 KB  
Article
Vitamin D Nanoliposomes to Improve Solubility, Stability, and Uptake Across Intestinal Barrier
by Cosimo Landi, Elisa Landucci, Costanza Mazzantini, Rebecca Castellacci and Maria Camilla Bergonzi
Pharmaceutics 2025, 17(10), 1244; https://doi.org/10.3390/pharmaceutics17101244 - 23 Sep 2025
Viewed by 139
Abstract
Background/Objectives: Vitamin D (VD) is a fat-soluble vitamin essential for bone health, and calcium and phosphorus absorption. Recently, new interesting functions are reported such as neuroprotective activity, regulatory roles in the immune system, and protective effects in cancer patients. However, the lipophilic [...] Read more.
Background/Objectives: Vitamin D (VD) is a fat-soluble vitamin essential for bone health, and calcium and phosphorus absorption. Recently, new interesting functions are reported such as neuroprotective activity, regulatory roles in the immune system, and protective effects in cancer patients. However, the lipophilic nature of VD represents a limitation, as it is associated with low solubility and poor absorption; additionally, VD exhibits poor stability. Methods: Two nanoliposomes containing VD, conventional (LP-VD) and conjugated with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS, LPT-VD), were developed. The physical and chemical stability during the storage and gastrointestinal stability, the dissolution profile, the cytotoxicity and the Caco-2 cellular uptake were investigated. Nanoliposomes were fully characterized determining sizes, PdI, Zeta potential, encapsulation efficiency and recovery and they were lyophilized to improve stability. Subsequently, the freeze-dried liposomes were encapsulated in hard gelatin capsules to mimic an oral dosage form, and they were subjected to dissolution test. Results: LP-VD exhibited an average size of 85.50 ± 5.70 nm, a PdI of 0.24 ± 0.06, and a ZP of −20.90 ± 4.37 mV. LPT-VD showed an average size of 61.70 ± 3.90 nm, a PdI of 0.26 ± 0.02, and a ZP of −9.45 ± 2.99 mV. The EE% values were 95.76 ± 1.26% and 97.54 ± 3.24% for LP-VD and LPT-VD, respectively. Both nanoliposomes solubilized 2 mg/mL of VD and improved both its storage stability and stability in aqueous and gastrointestinal environment. The freeze-dried products guarantee constant chemical-physical parameters for 28 days at 25 °C. VD dissolution profile was improved. Conclusions: Nanoliposomes, in particular LPT-VD, showed the best results in terms of chemical stability, dissolution profile, and Caco-2 cellular uptake, confirming the stabilization, bioenhancer properties and P-gp inhibition capabilities of TPGS. Full article
(This article belongs to the Special Issue Liposomes Applied in Drug Delivery Systems)
Show Figures

Figure 1

47 pages, 903 KB  
Review
The Role of Natural Hydrogels in Enhancing Wound Healing: From Biomaterials to Bioactive Therapies
by Paula Stefana Pintilei, Roya Binaymotlagh, Laura Chronopoulou and Cleofe Palocci
Pharmaceutics 2025, 17(10), 1243; https://doi.org/10.3390/pharmaceutics17101243 - 23 Sep 2025
Viewed by 131
Abstract
Wound healing is a complex, multifaceted biological process that plays a vital role in recovery and overall quality of life. However, conventional wound care methods often prove insufficient, resulting in delayed healing, higher infection risk, and other complications. In response, biomaterials—especially hydrogels—have gained [...] Read more.
Wound healing is a complex, multifaceted biological process that plays a vital role in recovery and overall quality of life. However, conventional wound care methods often prove insufficient, resulting in delayed healing, higher infection risk, and other complications. In response, biomaterials—especially hydrogels—have gained attention for their advanced wound management capabilities, which support wound healing by maintaining moisture, mimicking the extracellular matrix (ECM), and enabling targeted drug delivery triggered by wound-specific signals. They frequently carry antimicrobial or anti-inflammatory agents, promote blood vessel and nerve regeneration, and are biocompatible with customizable properties suited to different healing stages. Natural hydrogels, derived from polysaccharides, proteins, and peptides, offer several advantages over synthetic options, including inherent bioactivity, enzymatic degradability, and cell-adhesive qualities that closely resemble the native ECM. These features facilitate cell interaction, modulate inflammation, and speed up tissue remodeling. Moreover, natural hydrogels can be engineered as delivery systems for therapeutic agents like antimicrobial compounds, nanoparticles, growth factors, and exosomes. This review discusses recent advances in the use of natural hydrogels as multifunctional wound dressings and delivery platforms, with a focus on their composition, mechanisms of action, and potential for treating chronic and infected wounds by incorporating antimicrobial and regenerative additives such as silver and zinc oxide nanoparticles. Full article
Show Figures

Graphical abstract

29 pages, 2911 KB  
Review
Polymeric Nanocarrier-Based Drug Formulations for Enhancing Nose-to-Brain Delivery
by Tobeka Naki, Sijongesonke Peter and Sibusiso Alven
Pharmaceutics 2025, 17(10), 1242; https://doi.org/10.3390/pharmaceutics17101242 - 23 Sep 2025
Viewed by 254
Abstract
Neurological-related diseases are among the most debilitating and difficult to manage. Many possible pharmacological treatments for neurological diseases struggle to cross the blood–brain barrier (BBB) to achieve concentrations that can produce a therapeutic benefit. This is primarily because of the existence of the [...] Read more.
Neurological-related diseases are among the most debilitating and difficult to manage. Many possible pharmacological treatments for neurological diseases struggle to cross the blood–brain barrier (BBB) to achieve concentrations that can produce a therapeutic benefit. This is primarily because of the existence of the BBB, which poses significant hurdles for both therapeutic and diagnostic efforts by restricting the entry of most medications. Nasal-to-brain drug transportation has surfaced as an encouraging approach to tackle the difficulties linked with conventional drug administration techniques for neurological disorders. In response, innovative methods for improving drug delivery focus on breaking down the BBB via physical techniques, including optical and photothermal therapy, electrical stimulation, and acoustic or mechanical stimulation. Nanocarriers represent a promising approach for facilitating nasal systemic and brain delivery of active compounds. Hence, the achievement of therapeutically relevant concentrations of exogenous molecules within the body is significantly contingent upon the nanocarriers’ capability to surpass biological barriers. Polymers in nanocarrier formulations can result in significantly enhanced nose-to-brain drug delivery by protecting drugs from premature biodegradation, increasing permeability, improving mucoadhesion, and targeting specific cells in the brain. Polymeric nanocarriers are frequently functionalized with cell-penetrating peptides to further improve the specificity of the loaded therapeutic molecules. This review focuses on the use of nanocarrier-based therapeutic agents to enhance the efficacy of nose-to-brain delivery systems. Full article
Show Figures

Figure 1

20 pages, 3916 KB  
Article
LMT2368 (1-(4-Chlorophenyl)-3-(3-fluoro-5-(trifluoromethyl)phenyl)urea) Negatively Regulates Inflammation by Inhibiting NLRP3 Inflammasome Activation
by Thai Uy Nguyen, Su Jeong Kwon, Sunghoon Hurh, Ashok Kale, Jae Min Cho, Hossam Nada, Chang Seong Kim, Peela Induvadana, Beom Jin Park, Kyeong Lee, Yongseok Choi and Jong-Ik Hwang
Pharmaceutics 2025, 17(10), 1241; https://doi.org/10.3390/pharmaceutics17101241 - 23 Sep 2025
Viewed by 166
Abstract
Background/Objectives: The dysregulation of NLRP3 inflammasome activation has been established as a key driver of inflammatory disease pathology, which marks NLRP3 as an attractive therapeutic target. However, the clinical development of NLRP3 inhibitors such as MCC950 has been hampered by their associated [...] Read more.
Background/Objectives: The dysregulation of NLRP3 inflammasome activation has been established as a key driver of inflammatory disease pathology, which marks NLRP3 as an attractive therapeutic target. However, the clinical development of NLRP3 inhibitors such as MCC950 has been hampered by their associated toxicity profiles, highlighting an unmet clinical need. Methods: Herein, we present LMT2368, a novel urea-based NLRP3 inhibitor identified through screening of urea-based derivatives from our in-house compound library. Results: Biolayer interferometry confirmed direct binding of LMT2368 to the NLRP3 NACHT domain with a (KD = 27.4 ± 1.2 μM which was superior to MCC950. Molecular docking studies predicted enhanced binding interactions for LMT2368, consistent with its improved biological activity. In LPS-primed macrophages, LMT2368 dose-dependently suppressed IL-1β secretion (IC50 = 0.8 μM in J774A.1 cells) and caspase-1 activation without affecting NF-κB signaling. Importantly, LMT2368 inhibited ASC oligomerization and pyroptosis while maintaining excellent safety margins (CC50 > 50 μM). In a murine model of LPS-induced acute lung injury, LMT2368 (10 mg/kg) reduced bronchoalveolar lavage fluid immune cell infiltration by 68% (p < 0.001), suppressed pro-inflammatory cytokine release (IL-1β/IL-6/TNF-α), and preserved lung histoarchitecture. Notably, LMT2368 showed selectivity for NLRP3 inhibition without affecting TNF-α/IL-6 production during TLR4 priming in monocytic cell lines. Conclusions: Together, these findings establish LMT2368 as a promising lead compound for developing safer NLRP3 inhibitors with therapeutic potential for inflammasome-driven diseases. Full article
(This article belongs to the Special Issue Recent Advances in Inhibitors for Targeted Therapies)
Show Figures

Figure 1

Previous Issue
Back to TopTop