In Vitro Skin Models as Non-Animal Methods for Dermal Drug Development and Safety Assessment
Abstract
Highlights
- Extrapolation from animal skin models poorly predicts clinical outcomes.
- A spectrum of in vitro human skin models, built from defined cell types and sources, reproduces key in vivo characteristics and supports longer cultures.
- Validated in vitro skin models can replace animal testing while improving translational relevance and ethics.
- Emerging biofabrication and microphysiological technologies enable more complex, human-relevant systems.
Abstract
1. Introduction
Methods of the Narrative Review
2. History and Regulation
3. Cell Types Used in In Vitro Skin Models
3.1. Keratinocytes, Fibroblasts, and Melanocytes
3.2. Dendritic Cells of the Skin
3.3. Endothelial Cells
3.4. Adipose Cells
3.5. Cutaneous Appendages
4. Applications of In Vitro Skin Models
| In Vitro Skin Model | Cell Types | Skin Model Type | Model Validated by the OECD | Model Application |
|---|---|---|---|---|
| KeraSkin™ [176,183,184,185,186] | Primary human keratinocytes | Reconstructed epidermis | Yes | Irritation test (TG 439), phototoxicity, Genotoxicity |
| Reconstructed Human Epidermis [187] | Primary human keratinocytes | Reconstructed epidermis | No | Skin barrier function and hydration, Skin irritation, Skin corrosion, UV exposure, DNA damage, Bacterial adhesion, Omics, Permeability, and disease studies |
| SkinEthic™ RHE [174,188,189,190,191,192] | Primary human keratinocytes | Reconstructed epidermis | Yes | Skin irritation, Skin corrosion, Medical devices, UV Exposure, DNA Damage, Bacterial adhesion, Omics, Permeability, |
| EpiSkin™ Human Epidermis [175,179,193,194,195,196] | Primary human keratinocytes | Reconstructed epidermis | Yes | Skin irritation, Skin corrosion, UV Exposure, DNA Damage, Bacterial adhesion, Omics, Permeability |
| LabCyte EPI-MODEL [197,198,199,200,201] | Primary human keratinocytes | Reconstructed epidermis | Yes | Skin irritation, Skin corrosion, Skin sensitisation, Molecular analyses, Evaluation of biological processes |
| EpiDerm™ [202,203,204,205] | Primary human keratinocytes | Reconstructed epidermis | Yes | Skin irritation, skin corrosion, Skin Hydration, Dermal Drug Delivery, Phototoxicity, Dermal Genotoxicity, Epidermal Differentiation |
| Straticell RHE [206,207] | Primary human keratinocytes | Reconstructed epidermis | No | Safety and efficacy testing of topical products, skin penetration studies, and interactions with skin microorganisms |
| In house reconstructed human epidermis (ALI) [88,89,208,209,210] | Primary human keratinocytes | Reconstructed epidermis | No | Analyses of toxicological studies, assessment of skin phototoxicity, biochemical studies, and disease studies |
| Straticell RHE-MEL [211] | Primary human keratinocytes and melanocytes | Reconstructed epidermis (pigmented) | No | Evaluation of depigmenting ingredients and investigation of pigmentation disorders |
| KeraSkin-M™ [176,177,178,183,184,212] | Primary human keratinocytes and melanocytes | Reconstructed epidermis (pigmented) | No | Irritation test (TG 439), Regulation of skin pigmentation |
| SkinEthic™ RHPE [213,214,215,216] | Primary human keratinocytes and melanocytes | Reconstructed epidermis (pigmented) | No | Pigmentation, Depigmentation, Omics, UV Exposure |
| MelanoDerm™ [217,218,219,220] | Primary human keratinocytes and melanocytes | Reconstructed epidermis (pigmented) | No | Skin Brightening, Pigmentation Studies |
| SkinEthic™ RHE-LC [120,216,221,222] | Primary human keratinocytes and Langerhans cells | Reconstructed epidermis & Langerhans | No | Skin Immune Response, UV Exposure, Bacterial adhesion, Omics, Permeability |
| Straticell RHE-huSN [223] | Primary human keratinocytes and iPSC-derived sensory neurons | Reconstructed epidermis & sensory neurons | No | Neurocutaneous interactions, assessment of soothing properties of dermocosmetic ingredients, and investigation of sensory mechanisms |
| KeraSkin-FT™ [183,224,225] | Primary human keratinocytes and fibroblasts | Full thickness skin (epidermis & dermis) | No | Irritation test (TG 439), Microbiome, ageing |
| Full Thickness Skin Model [226] | Primary human keratinocytes and fibroblasts | Full thickness reconstructed skin tissue (epidermis & dermis) | No | Skin irritation, skin sensitisation, genotoxicity, Pigmentation, skin barrier function and moisturising, anti-ageing, stress/inflammation, UV protection |
| T-Skin™ [180,188,227,228,229] | Primary human keratinocytes and fibroblasts | Full thickness reconstructed skin tissue (epidermis & dermis) | No | UV Exposure, DNA Damage, Bacterial adhesion, Omics, Permeability |
| EpiDerm™ FT [230,231,232,233] | Primary human keratinocytes and fibroblasts | Full thickness reconstructed skin tissue (epidermis & dermis) | No | Anti-ageing, Wound Healing, Skin Hydration, UV Protection |
| Phenion® FT Skin Model [234,235,236] | Primary human keratinocytes and fibroblasts | Full thickness reconstructed skin tissue (epidermis & dermis) | No | Used for basic and clinical dermatological research, cosmetic claim support, drug delivery and penetration studies, wound healing, toxicity testing, and evaluating environmental effects on skin physiology |
| Phenion® FT AGED [234,237,238] | Primary human keratinocytes and fibroblasts | Full thickness reconstructed skin tissue (epidermis & dermis)—senescent | No | Skin ageing and testing the efficacy of anti-aging products. |
| Phenion® FT LONG-LIFE [234,239] | Primary human keratinocytes and fibroblasts | Full thickness reconstructed skin tissue (epidermis & dermis)—aged | No | long-term studies, enabling evaluation of delayed effects, repeated substance exposure, skin regeneration, and in vitro research on skin tumour development and treatment. |
| Skimune 3D® [240,241] | Primary human keratinocytes and fibroblasts | Full thickness reconstructed skin tissue (epidermis & dermis) | No | Assessment of toxicity and safety of drugs, cosmetics, chemicals, and biologics. It evaluates immune responses, including dose toxicity, cell viability, apoptosis, necrosis, and effects on cytokines, growth factors, and chemokines, helping to identify immune reactions missed by simpler assays. |
| Pigmented Skin Model [99,242,243,244] | Primary human keratinocytes, fibroblasts and melanocytes | Full thickness reconstructed skin tissue (epidermis & dermis, pigmented) | No | Skin pigmentation, Pigmentation disorder, Skin ageing |
| Neurodermatology Cell Model [245] | Primary human keratinocytes, sensory neurons | Full thickness reconstructed skin tissue (epidermis & dermis) incl. sensory neurons | No | Skin ageing, Inflammatory skin disorders, Soothing, Skin pigmentation Photo-aging, Warming sensation, Microcirculation, Hair growth |
| Vascularised Human Skin Equivalent [224] | Primary human keratinocytes, dermal fibroblasts, HUVECs, preadipocytes, mature adipocytes | Bioprinting vascularised human skin equivalent | No | Development of cosmetics, topical treatments for skin rejuvenation, and therapies to improve skin health and appearance in ageing populations |
| In house full-thickness skin [91] | Primary human keratinocytes, diabetic dermal fibroblasts, diabetic adipocytes | Full-thickness skin with vascularised hypodermis | No | Diabetic skin model, Insulin resistance, Inflammation, Skin disease modelling, Drug testing |
| Vascularised Human Skin Equivalent [246] | Primary human keratinocytes, dermal fibroblasts, cord blood-derived endothelial cells, placental pericytes | Bioprinting vascularised human skin equivalent | No | Regenerative medicine (skin grafts) |
| Skimune® [241,247] | Full thickness skin tissue (explant) incl. Peripheral Blood Mononuclear Cells | Full thickness reconstructed skin tissue (explant)—dermis, epidermis; incl. Blood samples | No | Assessment of immunotoxicity and hypersensitivity in response to chemicals, drugs, biologics, and cell or gene therapies, using autologous skin and blood to predict human immune responses. |
| Ex vivo explants [248] | Full thickness skin tissue (explant) | Full thickness skin tissue (explant)—dermis, epidermis | No | Anti Aging Pigmentation Stress/Inflammation UV Protection |
| HypoSkin® [249,250] | Full thickness skin tissue (explant) | Full thickness skin tissue (explant)—dermis, epidermis & hypodermis (adipose) | No | Evaluation of local injection reactions, testing injectable formulations’ safety, investigating immune mechanisms, and conducting molecular analyses to understand skin responses |
| NativeSkin® [251,252,253,254] | Full thickness skin tissue (explant) | Full thickness skin tissue (explant)—dermis, epidermis | No | Cosmetic claims, Skin delivery, Toxicity, Wound healing, Skin microbiome |
| Full-thickness skin equivalent with integrated hair follicle [164] | Primary human keratinocytes, dermal fibroblasts, dermal papilla cells (DPCs), human umbilical vein endothelial cells (HUVECs), melanocytes | Full-thickness skin equivalent with integrated hair follicle-like structures via 3D bioprinting | No | Hair follicle formation, Skin appendage modelling, Drug testing, Cosmetic testing, Regenerative medicine |
| Full-thickness human skin-on-a-chip with enhanced epidermal morphogenesis and barrier function [181] | Primary human fibroblasts and N/TERT human keratinocytes | Full-thickness human skin equivalent on chip, with fibrin-based dermal matrix and dynamic perfusion. | No | In vitro tool for basic research and pharmaceutical, toxicological, and cosmetic sectors |
Pharmaceutical Applications
5. In Vitro Models to Study Skin Diseases
6. Advances in Skin Models
7. Challenges and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, H.J.; Kim, M. Skin Barrier Function and the Microbiome. Int. J. Mol. Sci. 2022, 23, 13071. [Google Scholar] [CrossRef]
- Yousef, H.; Alhajj, M.; Sharma, S. Anatomy, Skin (Integument), Epidermis; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Bernard, F.-X.; Morel, F.; Camus, M.; Pedretti, N.; Barrault, C.; Garnier, J.; Lecron, J.-C. Keratinocytes under Fire of Proinflammatory Cytokines: Bona Fide Innate Immune Cells Involved in the Physiopathology of Chronic Atopic Dermatitis and Psoriasis. J. Allergy 2012, 2012, 718725. [Google Scholar] [CrossRef]
- Das, P.; Mounika, P.; Yellurkar, M.L.; Prasanna, V.S.; Sarkar, S.; Velayutham, R.; Arumugam, S. Keratinocytes: An Enigmatic Factor in Atopic Dermatitis. Cells 2022, 11, 1683. [Google Scholar] [CrossRef]
- Lefèvre-Utile, A.; Braun, C.; Haftek, M.; Aubin, F. Five Functional Aspects of the Epidermal Barrier. Int. J. Mol. Sci. 2021, 22, 11676. [Google Scholar] [CrossRef]
- Brown, T.M.; Krishnamurthy, K. Histology, Dermis; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Olusegun, O.A.; Martincigh, B.S. Allergic Contact Dermatitis: A Significant Environmental and Occupational Skin Disease. Int. J. Dermatol. 2021, 60, 1082–1091. [Google Scholar] [CrossRef]
- Uter, W.; Aalto-Korte, K.; Agner, T.; Andersen, K.E.; Bircher, A.J.; Brans, R.; Bruze, M.; Diepgen, T.L.; Foti, C.; Giménez Arnau, A.; et al. The Epidemic of Methylisothiazolinone Contact Allergy in Europe: Follow-up on Changing Exposures. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 333–339. [Google Scholar] [CrossRef]
- Pesonen, M.; Koskela, K.; Aalto-Korte, K. Hairdressers’ Occupational Skin Diseases in the Finnish Register of Occupational Diseases in a Period of 14 Years. Contact Dermat. 2021, 84, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Karagounis, T.K.; Cohen, D.E. Occupational Hand Dermatitis. Curr. Allergy Asthma Rep. 2023, 23, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.K.; Pheby, D.; Henehan, G.; Brown, R.; Sieving, P.; Sykora, P.; Marks, R.; Falsini, B.; Capodicasa, N.; Miertus, S.; et al. Ethical Considerations Regarding Animal Experimentation. J. Prev. Med. Hyg. 2022, 63, E255–E266. [Google Scholar] [CrossRef] [PubMed]
- Doke, S.K.; Dhawale, S.C. Alternatives to Animal Testing: A Review. Saudi Pharm. J. 2015, 23, 223–229. [Google Scholar] [CrossRef]
- Kinter, L.B.; Dehaven, R.; Johnson, D.K.; Degeorge, J.J. A Brief History of Use of Animals in Biomedical Research and Perspective on Non-Animal Alternatives. ILAR J. 2021, 62, 7–16. [Google Scholar] [CrossRef]
- Taylor, K.; Alvarez, L.R. An Estimate of the Number of Animals Used for Scientific Purposes Worldwide in 2015. Altern. Lab. Anim. 2019, 47, 196–213. [Google Scholar] [CrossRef]
- Van Norman, G.A. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Is It Time to Rethink Our Current Approach? JACC Basic Transl. Sci. 2019, 4, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Ram, R. Extrapolation of Animal Research Data to Humans: An Analysis of the Evidence. In Animal Experimentation: Working Towards a Paradigm Change; Brill: Leiden, The Netherlands, 2019; pp. 341–375. ISBN 9789004391192. [Google Scholar] [CrossRef]
- Husain, A.; Meenakshi, D.U.; Ahmad, A.; Shrivastava, N.; Khan, S.A. A Review on Alternative Methods to Experimental Animals in Biological Testing: Recent Advancement and Current Strategies. J. Pharm. Bioallied Sci. 2023, 15, 165–171. [Google Scholar] [CrossRef]
- Duval, K.; Grover, H.; Han, L.H.; Mou, Y.; Pegoraro, A.F.; Fredberg, J.; Chen, Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology 2017, 32, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Liu, A.; Yang, X.; Gong, J.; Yu, M.; Yao, X.; Wang, H.; He, Y. 3D Cell Culture—Can It Be as Popular as 2D Cell Culture? Adv. NanoBiomed Res. 2021, 1, 2000066. [Google Scholar] [CrossRef]
- Fontoura, J.C.; Viezzer, C.; dos Santos, F.G.; Ligabue, R.A.; Weinlich, R.; Puga, R.D.; Antonow, D.; Severino, P.; Bonorino, C. Comparison of 2D and 3D Cell Culture Models for Cell Growth, Gene Expression and Drug Resistance. Mater. Sci. Eng. C 2020, 107, 110264. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 439: In Vitro Skin Irritation—Reconstructed Human Epidermis Test Method; TG 439 OECD Guidelines for the Testing of Chemicals; OECD: Paris, France, 2013. [Google Scholar] [CrossRef]
- Costa, S.; Vilas-Boas, V.; Lebre, F.; Granjeiro, J.M.; Catarino, C.M.; Moreira Teixeira, L.; Loskill, P.; Alfaro-Moreno, E.; Ribeiro, A.R. Microfluidic-Based Skin-on-Chip Systems for Safety Assessment of Nanomaterials. Trends Biotechnol. 2023, 41, 1282–1298. [Google Scholar] [CrossRef]
- Fernandez-Carro, E.; Angenent, M.; Gracia-Cazaña, T.; Gilaberte, Y.; Alcaine, C.; Ciriza, J. Modeling an Optimal 3D Skin-on-Chip within Microfluidic Devices for Pharmacological Studies. Pharmaceutics 2022, 14, 1417. [Google Scholar] [CrossRef]
- EMA. Guideline on Quality and Equivalence of Locally Applied, Locally Acting Cutaneous Products; European Medicines Agency: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Eichner, A.; Mrestani, Y.; Hukauf, M.; Wohlrab, J. Discussion of EMA Draft Guideline on Quality and Equivalence of Topical Products Based on Comparison of Approved Mometasone Furoate Drugs. Dermatol. Ther. 2024, 14, 2153–2169. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research (CDER), FDA. Cder In Vitro Permeation Test Studies for Topical Drug Products Submitted in ANDAs Guidance for Industry; DRAFT GUIDANCE; Center for Drug Evaluation and Research (CDER), FDA: Silver Spring, MD, USA, 2022. [Google Scholar]
- Frühwein, H.; Paul, N.W. “Lost in Translation?” Animal Research in the Era of Precision Medicine. J. Transl. Med. 2025, 23, 152. [Google Scholar] [CrossRef]
- Wax, P.M. Elixirs, Diluents, and the Passage of the 1938 Federal Food, Drug and Cosmetic Act. Ann. Intern. Med. 1995, 122, 456–461. [Google Scholar] [CrossRef]
- Greek, R.; Pippus, A.; Hansen, L.A. The Nuremberg Code Subverts Human Health and Safety by Requiring Animal Modeling. BMC Med. Ethics 2012, 13, 16. [Google Scholar] [CrossRef]
- Swaters, D.; van Veen, A.; van Meurs, W.; Turner, J.E.; Ritskes-Hoitinga, M. A History of Regulatory Animal Testing: What Can We Learn? Altern. Lab. Anim. 2022, 50, 322–329. [Google Scholar] [CrossRef]
- Tannenbaum, J.; Bennett, T. Russell and Burch’s 3Rs Then and Now: The for Clarity in Definition and Purpose. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 120–132. [Google Scholar]
- Pedrosa, T.N. Desenvolvimento de Epiderme Humana Reconstruída (RHE) Como Plataforma de Testes In Vitro Para Irritação, Sensibilização, Dermatite Atópica e Fotoimunossupressão. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2016. [Google Scholar] [CrossRef]
- Pauwels, M.; Rogiers, V. Human Health Safety Evaluation of Cosmetics in the EU: A Legally Imposed Challenge to Science. Toxicol. Appl. Pharmacol. 2010, 243, 260–274. [Google Scholar] [CrossRef]
- ICCVAM. Interagency Coordinating Committee on Validation of Alternative Methods; National Institutes of Health (NIH): Bethesda, MD, USA, 2019. [Google Scholar]
- FDA—U.S. Food & Drug Administration. Animal Testing & Cosmetics. Available online: https://www.fda.gov/cosmetics/product-testing-cosmetics/animal-testing-cosmetics (accessed on 3 October 2025).
- Liebsch, M.; Traue, D.; Barrabas, C.; Spielmann, H.; Uphill, P.; Wilkins, S.; Mcpherson, J.P.; Wiemann, C.; Kaufmann, T.; Remmele, M.; et al. The ECVAM Prevalidation Study on the Use of EpiDerm for Skin Corrosivity Testing. Altern. Lab. Anim. 2000, 28, 371–401. [Google Scholar] [CrossRef]
- Catarino, C.M.; do Nascimento Pedrosa, T.; Pennacchi, P.C.; de Assis, S.R.; Gimenes, F.; Consolaro, M.E.L.; de Moraes Barros, S.B.; Maria-Enlger, S.S. Skin Corrosion Test: A Comparison between Reconstructed Human Epidermis and Full Thickness Skin Models. Eur. J. Pharm. Biopharm. 2018, 125, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Fentem, J.H.; Botham, P.A. ECVAM’s Activities in Validating Alternative Tests for Skin and Irritation. Altern. Lab. Anim. 2002, 30, 61–67. [Google Scholar] [CrossRef] [PubMed]
- ECHA. How to Use New or Revised in Vitro Test Methods to address Skin Corrosion/Irritation; European Chemicals Agency: Helsinki, Finland, 2017. [Google Scholar]
- ECHA. Skin Sensitisation; European Chemicals Agency: Helsinki, Finland, 2021. [Google Scholar]
- Non-Animal Methods in Science and Regulation; EURL ECVAM Status Report 2024; Publications Office of the European Union: Luxembourg, 2025.
- European Commission. Medical Devices. Available online: https://health.ec.europa.eu/medical-devices-sector_en (accessed on 3 October 2025).
- Han, J.J. FDA Modernization Act 2.0 Allows for Alternatives to Animal Testing. Artif. Organs 2023, 47, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Adashi, E.Y.; O’Mahony, D.P.; Cohen, I.G. The FDA Modernization Act 2.0: Drug Testing in Animals Is Rendered Optional. Am. J. Med. 2023, 136, 853–854. [Google Scholar] [CrossRef]
- Department for Environment, Food & Rural Affairs (DEFRA). Promoting Alternative Methods to Animal Testing. Available online: https://www.gov.uk/government/publications/reviews-and-reports-on-uk-reach/promoting-alternative-methods-to-animal-testing (accessed on 3 October 2025).
- HSE. Minimisation of Animal Testing. Available online: https://www.hse.gov.uk/reach/animal-testing/index.htm (accessed on 3 October 2025).
- Silva, R.J.; Tamburic, S. A State-of-the-Art Review on the Alternatives to Animal Testing for the Safety Assessment of Cosmetics. Cosmetics 2022, 9, 90. [Google Scholar] [CrossRef]
- Government of Canada. Animal Testing Ban on Cosmetics. Available online: https://www.canada.ca/en/health-canada/services/cosmetics/animal-testing-ban.html (accessed on 3 October 2025).
- Government of Canada. Guidance Document: Animal Testing Ban on Cosmetics. Available online: https://www.canada.ca/en/health-canada/services/cosmetics/animal-testing-ban/guidance-document.html (accessed on 3 October 2025).
- Brazil—Ministry of Health. Métodos Alternativos Ao Uso de Animais São Aprovados. Available online: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2016/metodos-alternativos-ao-uso-de-animais-sao-aprovados (accessed on 3 October 2025).
- Ministério da Ciência, Tecnologia e Inovação; Conselho Nacional de Controle de Experimentação Animal. RESOLUÇÃO No 58, DE 24 DE FEVEREIRO DE 2023. Available online: http://www.abmes.org.br/public/index.php/legislacoes/detalhe/4219/resolucao-concea-n-58 (accessed on 3 October 2025).
- Regina de Oliveira, N.; Borges Gouveia Barroso, W.; Fernandes Delgado, I. Organ-on-a-Chip Technology: Assessing the Global of Applicability in the Regulatory Context of pharmaceutical Products. Vigilância Sanitária em Debate 2025, e02311. [Google Scholar] [CrossRef]
- REACH24. China NIFDC Introduces Technical Guidelines for Cosmetics Safety Assessment. Available online: https://cosmetic.chemlinked.com/news/cosmetic-news/china-nifdc-introduces-technical-guidelines-for-cosmetics-safety-assessment (accessed on 3 October 2025).
- PETA. A Big Win for Compassion: India Ends Mandatory Animal Testing in Drug Development. Available online: https://www.petaindia.com/blog/a-big-win-for-compassion-india-ends-mandatory-animal-testing-in-drug-development/ (accessed on 3 October 2025).
- Ministry of food and Drug Safety. MFDS-Developed Skin Irritation Test Method Approved as OECD Test Guideline. Available online: https://mfds.go.kr/eng/brd/m_61/view.do?seq=114&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=5 (accessed on 3 October 2025).
- Kim, J.; Kang, N.-H.; Kim, J.S.; Kim, I.S.; Kim, Y. Round Robin Study for Evaluation an in Vitro Skin Irritation Test for Medical Device Extracts Using KeraSkinTM in Korea. Food Chem. Toxicol. 2024, 192, 114942. [Google Scholar] [CrossRef]
- JaCVAM. OECD Test Guidelines Validated by JaCVAM. Available online: https://www.jacvam.go.jp/en/international-acceptance-test-methods.html (accessed on 4 October 2025).
- Edwards, M.; Blanquie, O.; Moriarty, O.; Beken, S.; Ehmann, F. New Approach Methodologies: EU Regulatory Horizons. Nat. Rev. Drug Discov. 2025, 24, 571–572. [Google Scholar] [CrossRef] [PubMed]
- Forlini, C.; Koraichi-Emeriau, F.; Schmitt, B.G.; Koch, W.; Seidel, S.; Gura, E.; Haack, M.; Eigler, D. Applicability of the in Vitro Skin Irritation Methods (EpiSkinTM, EpiDermTM SIT) to Organosilicon-Based Substances. Regul. Toxicol. Pharmacol. 2025, 157, 105778. [Google Scholar] [CrossRef] [PubMed]
- Bas, A.; Burns, N.; Gulotta, A.; Junker, J.; Drasler, B.; Lehner, R.; Aicher, L.; Constant, S.; Petri-Fink, A.; Rothen-Rutishauser, B. Understanding the Development, Standardization, and Validation Process of Alternative In Vitro Test Methods for Regulatory Approval from a Researcher Perspective. Small 2021, 17, e2006027. [Google Scholar] [CrossRef] [PubMed]
- Corsini, E.; Roggen, E.L. Immunotoxicology: Opportunities for Non-Animal Test Development. Altern. Lab. Anim. 2009, 37, 387–397. [Google Scholar] [CrossRef]
- Piersma, A.H.; Burgdorf, T.; Louekari, K.; Desprez, B.; Taalman, R.; Landsiedel, R.; Barroso, J.; Rogiers, V.; Eskes, C.; Oelgeschläger, M.; et al. Workshop on Acceleration of the Validation and Regulatory Acceptance of Alternative Methods and Implementation of Testing Strategies. Toxicol. In Vitro 2018, 50, 62–74. [Google Scholar] [CrossRef]
- Zhang, A.; Xing, L.; Zou, J.; Wu, J.C. Shifting Machine Learning for Healthcare from Development to Deployment and from Models to Data. Nat. Biomed. Eng. 2022, 6, 1330–1345. [Google Scholar] [CrossRef]
- Arora, A.; Arora, A. Generative Adversarial Networks and Synthetic Patient Data: Current Challenges and Future Perspectives. Future Healthc. J. 2022, 9, 190–193. [Google Scholar] [CrossRef]
- Rao, M.S.; Gupta, R.; Liguori, M.J.; Hu, M.; Huang, X.; Mantena, S.R.; Mittelstadt, S.W.; Blomme, E.A.G.; Van Vleet, T.R. Novel Computational Approach to Predict Off-Target Interactions for Small Molecules. Front. Big Data 2019, 2, 25. [Google Scholar] [CrossRef]
- Zushin, P.J.H.; Mukherjee, S.; Wu, J.C. FDA Modernization Act 2.0: Transitioning beyond Animal Models with Human Cells, Organoids, and AI/ML-Based Approaches. J. Clin. Investig. 2023, 133, e175824. [Google Scholar] [CrossRef] [PubMed]
- REACH24. Technical Guidelines for IATA. Available online: https://cosmetic.chemlinked.com/database/view/1808 (accessed on 4 October 2025).
- AICIS. AICIS Categorisation Guidelines 24 September 2024. 2024. Available online: https://www.industrialchemicals.gov.au/sites/default/files/2024-09/Categorisation%20Guidelines%2024%20September%202024.pdf (accessed on 4 October 2025).
- Choi, M.; Park, M.; Lee, S.; Lee, J.W.; Cho, M.C.; Noh, M.; Lee, C. Establishment of Immortalized Primary Human Foreskin Keratinocytes and Their Application to Toxicity Assessment and Three Dimensional Skin Culture Construction. Biomol. Ther. 2017, 25, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Sugarman, J. Ethics Considerations Regarding Donors’ and Patients’ Consent. In Brain Organoids in Research and Therapy; Springer: Cham, Switzerland, 2022; pp. 121–130. [Google Scholar]
- Ellul, B.; Galea, G. Ethical and Regulatory Aspects of Cell and Tissue Banking. In Essentials of Tissue and Cells Banking; Springer: Cham, Switzerland, 2021; pp. 241–271. [Google Scholar]
- Pan, C.; Kumar, C.; Bohl, S.; Klingmueller, U.; Mann, M. Comparative Proteomic Phenotyping of Cell Lines and Primary Cells to Assess Preservation of Cell Type-Specific Functions. Mol. Cell. Proteom. 2009, 8, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Supp, D.M.; Hahn, J.M.; Combs, K.A.; McFarland, K.L.; Powell, H.M. Isolation and Feeder-Free Primary Culture of Four Cell Types from a Single Human Skin Sample. STAR Protoc. 2022, 3, 101172. [Google Scholar] [CrossRef] [PubMed]
- Kabacik, S.; Lowe, D.; Cohen, H.; Felton, S.; Spitzer, J.; Raj, K. Isolation of Five Different Primary Cell Types from a Single Sample of Human Skin. STAR Protoc. 2022, 3, 101378. [Google Scholar] [CrossRef]
- Szymański, Ł.; Jęderka, K.; Cios, A.; Ciepelak, M.; Lewicka, A.; Stankiewicz, W.; Lewicki, S. A Simple Method for the Production of Human Skin Equivalent in 3D, Multi-Cell Culture. Int. J. Mol. Sci. 2020, 21, 4644. [Google Scholar] [CrossRef]
- Madelaire, C.B.; Klink, A.C.; Israelsen, W.J.; Hindle, A.G. Fibroblasts as an Experimental Model System for the Study of Comparative Physiology. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2022, 260, 110735. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; et al. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Sci. Rep. 2007, 318, 1917–1920. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Huangfu, D. Human Pluripotent Stem Cells: An Emerging Model in Developmental Biology. Development 2013, 140, 705–717. [Google Scholar] [CrossRef]
- Avior, Y.; Sagi, I.; Benvenisty, N. Pluripotent Stem Cells in Disease Modelling and Drug Discovery. Nat. Rev. Mol. Cell Biol. 2016, 17, 170–182. [Google Scholar] [CrossRef]
- Khurana, P.; Kolundzic, N.; Flohr, C.; Ilic, D. Human Pluripotent Stem Cells: An Alternative for 3D in Vitro Modelling of Skin Disease. Exp. Dermatol. 2021, 30, 1572–1587. [Google Scholar] [CrossRef]
- Oceguera-Yanez, F.; Avila-Robinson, A.; Woltjen, K. Differentiation of Pluripotent Stem Cells for Modeling Human Skin Development and Potential Applications. Front. Cell Dev. Biol. 2022, 10, 1030339. [Google Scholar] [CrossRef]
- Fritsche, E.; Haarmann-Stemmann, T.; Kapr, J.; Galanjuk, S.; Hartmann, J.; Mertens, P.R.; Kämpfer, A.A.M.; Schins, R.P.F.; Tigges, J.; Koch, K. Stem Cells for Next Level Toxicity Testing in the 21st Century. Small 2021, 17, e2006252. [Google Scholar] [CrossRef]
- Marinova, I.N.; Wandall, H.H.; Dabelsteen, S. Protocol for CRISPR-Cas9 Modification of Glycosylation in 3D Organotypic Skin Models. STAR Protoc. 2021, 2, 100668. [Google Scholar] [CrossRef]
- Dabelsteen, S.; Pallesen, E.M.H.; Marinova, I.N.; Nielsen, M.I.; Adamopoulou, M.; Rømer, T.B.; Levann, A.; Andersen, M.M.; Ye, Z.; Thein, D.; et al. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev. Cell 2020, 54, 669–684.e7. [Google Scholar] [CrossRef] [PubMed]
- Enjalbert, F.; Dewan, P.; Caley, M.P.; Jones, E.M.; Morse, M.A.; Kelsell, D.P.; Enright, A.J.; O’Toole, E.A. 3D Model of Harlequin Ichthyosis Reveals Inflammatory Therapeutic Targets. J. Clin. Investig. 2020, 130, 4798–4810. [Google Scholar] [CrossRef]
- Aasen, T.; Belmonte, J.C.I. Isolation and Cultivation of Human Keratinocytes from Skin or Plucked Hair for the Generation of Induced Pluripotent Stem Cells. Nat. Protoc. 2010, 5, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Gagosian, V.S.C.; Claro, F.C.; Schwarzer, A.C.d.A.P.; Cruz, J.V.; Thá, E.L.; Trindade, E.d.S.; Magalhães, W.L.E.; Pestana, C.B.; Leme, D.M. The Potential Use of Kraft Lignins as Natural Ingredients for Cosmetics: Evaluating Their Photoprotective Activity and Skin Irritation Potential. Int. J. Biol. Macromol. 2022, 222, 2535–2544. [Google Scholar] [CrossRef]
- Capallere, C.; Plaza, C.; Meyrignac, C.; Arcioni, M.; Brulas, M.; Busuttil, V.; Garcia, I.; Bauza, É.; Botto, J.M. Property Characterization of Reconstructed Human Epidermis Equivalents, and Performance as a Skin Irritation Model. Toxicol. In Vitro 2018, 53, 45–56. [Google Scholar] [CrossRef]
- Botchkareva, N.V.; Westgate, G.E. (Eds.) Molecular Dermatology: Methods and Protocols (Methods in Molecular Biology); Humana: Totowa, NJ, USA, 2020. [Google Scholar]
- Kim, B.S.; Ahn, M.; Cho, W.W.; Gao, G.; Jang, J.; Cho, D.W. Engineering of Diseased Human Skin Equivalent Using 3D Cell Printing for Representing Pathophysiological Hallmarks of Type 2 Diabetes in Vitro. Biomaterials 2021, 272, 120776. [Google Scholar] [CrossRef]
- Şenkal, S.; Burukçu, D.; Hayal, T.B.; Kiratli, B.; Şişli, H.B.; Sağraç, D.; Asutay, B.; Sümer, E.; Şahin, F.; Doğan, A. 3D Culture of HaCaT Keratinocyte Cell Line as an in vitro Toxicity Model. Trak. Univ. J. Nat. Sci. 2022, 23, 211–220. [Google Scholar] [CrossRef]
- Mini, C.A.; Dreossi, S.A.C.; Abe, F.R.; Maria-Engler, S.S.; Oliveira, D.P. Immortalized Keratinocytes Cells Generates an Effective Model of Epidermal Human Equivalent for Irritation and Corrosion Tests. Toxicol. In Vitro 2021, 71, 105069. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.R.W.; Moralí, D. National Human Embryo and Embryoid Research Policies: A Survey of 22 Top Research-Intensive Countries. Regen. Med. 2020, 15, 1905–1917. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Toh, W.S.; Liu, H.; Lu, K.; Li, M.; Hande, M.P.; Cao, T. Autologous Feeder Cells from Embryoid Body Outgrowth Support the Long-Term Growth of Human Embryonic Stem Cells More Effectively than Those from Direct Differentiation. Tissue Eng. Part C 2010, 16, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Kidwai, F.K.; Liu, H.; Toh, W.S.; Fu, X.; Jokhun, D.S.; Movahednia, M.M.; Li, M.; Zou, Y.; Squier, C.A.; Phan, T.T.; et al. Differentiation of Human Embryonic Stem Cells into Clinically Amenable Keratinocytes in an Autogenic Environment. J. Investig. Dermatol. 2013, 133, 618–628. [Google Scholar] [CrossRef]
- Cherbuin, T.; Movahednia, M.M.; Toh, W.S.; Cao, T. Investigation of Human Embryonic Stem Cell-Derived Keratinocytes as an In Vitro Research Model for Mechanical Stress Dynamic Response. Stem Cell Rev. Rep. 2015, 11, 460–473. [Google Scholar] [CrossRef]
- Luo, Z.; Gong, C.; Mao, X.; Wang, Z.; Liu, Z.; Ben, Y.; Zhang, W. Integrated Organ-on-a-Chip with Human-Induced Pluripotent Stem Cells Directional Differentiation for 3D Skin Model Generation. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2022, 37, 1271–1278. [Google Scholar] [CrossRef]
- Cohen, C.; Flouret, V.; Herlyn, M.; Fukunaga-Kalabis, M.; Li, L.; Bernerd, F. Induced Pluripotent Stem Cells Reprogramming Overcomes Technical Limitations for Highly Pigmented Adult Melanocyte Amplification and Integration in 3D Skin Model. Pigment. Cell Melanoma Res. 2023, 36, 232–245. [Google Scholar] [CrossRef]
- Mathes, S.H.; Ruffner, H.; Graf-Hausner, U. The Use of Skin Models in Drug Development. Adv. Drug Deliv. Rev. 2014, 69–70, 81–102. [Google Scholar] [CrossRef]
- Nissan, X.; Larribere, L.; Saidani, M.; Hurbain, I.; Delevoye, C.; Feteira, J.; Lemaitre, G.; Peschanski, M.; Baldeschi, C. Functional Melanocytes Derived from Human Pluripotent Stem Cells Engraft into Pluristratified Epidermis. Proc. Natl. Acad. Sci. USA 2011, 108, 14861–14866. [Google Scholar] [CrossRef]
- Dinella, J.; Koster, M.I.; Koch, P.J. Use of Induced Pluripotent Stem Cells in Dermatological Research. J. Investig. Dermatol. 2014, 134, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Naito, C.; Yamaguchi, T.; Katsumi, H.; Kimura, S.; Kamei, S.; Morishita, M.; Sakane, T.; Kawabata, K.; Yamamoto, A. Utility of Three-Dimensional Skin from Human-Induced Pluripotent Stem Cells as a Tool to Evaluate Transdermal Drug Permeation. J. Pharm. Sci. 2019, 108, 3524–3527. [Google Scholar] [CrossRef] [PubMed]
- Kabashima, K.; Honda, T.; Ginhoux, F.; Egawa, G. The Immunological Anatomy of the Skin. Nat. Rev. Immunol. 2019, 19, 19–30. [Google Scholar] [CrossRef]
- Fransson, J.; Heffler, L.C.; Tengvall Linder, M.; Scheynius, A. Culture of Human Epidermal Langerhans Cells in a Skin Equivalent. Br. J. Dermatol. 1998, 139, 598–604. [Google Scholar] [CrossRef]
- Romani, N.; Clausen, B.E.; Stoitzner, P. Langerhans Cells and More: Langerin-Expressing Dendritic Cell Subsets in the Skin. Immunol. Rev. 2010, 234, 120–141. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelska-Dyrbuś, J.; Szepietowski, J.C. Density of Langerhans Cells in Nonmelanoma Skin Cancers: A Systematic Review. Mediat. Inflamm. 2020, 2020, 8745863. [Google Scholar] [CrossRef]
- Zaba, L.C.; Krueger, J.G.; Lowes, M.A. Resident and “Inflammatory” Dendritic Cells in Human Skin. J. Investig. Dermatol. 2009, 129, 302–308. [Google Scholar] [CrossRef]
- Zaba, L.C.; Fuentes-Duculan, J.; Steinman, R.M.; Krueger, J.G.; Lowes, M.A. Normal Human Dermis Contains Distinct Populations of CD11c+BDCA-1+ Dendritic Cells and CD163+FXIIIA+ Macrophages. J. Clin. Investig. 2007, 117, 2517–2525. [Google Scholar] [CrossRef]
- Ni, X.; Lai, Y. Crosstalk between Keratinocytes and Immune Cells in Inflammatory Skin Diseases. Explor. Immunol. 2021, 1, 418–431. [Google Scholar] [CrossRef]
- Chieosilapatham, P.; Kiatsurayanon, C.; Umehara, Y.; Trujillo-Paez, J.V.; Peng, G.; Yue, H.; Nguyen, L.T.H.; Niyonsaba, F. Keratinocytes: Innate Immune Cells in Atopic Dermatitis. Clin. Exp. Immunol. 2021, 204, 296–309. [Google Scholar] [CrossRef]
- Morizane, S.; Mukai, T.; Sunagawa, K.; Tachibana, K.; Kawakami, Y.; Ouchida, M. “Input/Output Cytokines” in Epidermal Keratinocytes and the Involvement in Inflammatory Skin Diseases. Front. Immunol. 2023, 14, 123959. [Google Scholar] [CrossRef]
- Xu, H.; Guan, H.; Zu, G.; Bullard, D.; Hanson, J.; Slater, M.; Elmets, C.A. The Role of ICAM-1 Molecule in the Migration of Langerhans Cells in the Skin and Regional Lymph Node. Eur. J. Immunol. 2001, 10, 3085–3093. [Google Scholar] [CrossRef]
- Scheib, N.; Tiemann, J.; Becker, C.; Probst, H.C.; Raker, V.K.; Steinbrink, K. The Dendritic Cell Dilemma in the Skin: Between Tolerance and Immunity. Front. Immunol. 2022, 13, 929000. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Hochgerner, M.; Cichoń, M.A.; Benezeder, T.; Bieber, T.; Wolf, P. Langerhans Cells: Central Players in the Pathophysiology of Atopic Dermatitis. J. Eur. Acad. Dermatol. Venereol. 2024, 39, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Lenz, D.; Köhler, R.; Zhang, E.; Cendon, C.; Li, J.; Massoud, M.; Wachtlin, J.; Bodo, J.; Hauser, A.E.; et al. Rapid Isolation of Functional Ex Vivo Human Skin Tissue-Resident Memory T Lymphocytes. Front. Immunol. 2021, 12, 624013. [Google Scholar] [CrossRef]
- Masterson, A.J.; Sombroek, C.C.; De Gruijl, T.D.; Graus, Y.M.F.; Van Der Vliet, H.J.J.; Lougheed, S.M.; Van Den Eertwegh, A.J.M.; Pinedo, H.M.; Scheper, R.J. MUTZ-3, a Human Cell Line Model for the Cytokine-Induced Differentiation of Dendritic Cells from CD34+ Precursors. Blood 2002, 100, 701–703. [Google Scholar] [CrossRef]
- Sakamoto, T.; Koya, T.; Togi, M.; Yoshida, K.; Kato, T.; Ishigaki, Y.; Shimodaira, S. Different In Vitro-Generated MUTZ-3-Derived Dendritic Cell Types Secrete Dexosomes with Distinct Phenotypes and Antigen Presentation Potencies. Int. J. Mol. Sci. 2022, 23, 8362. [Google Scholar] [CrossRef]
- Laubach, V.; Zöller, N.; Rossberg, M.; Görg, K.; Kippenberger, S.; Bereiter-Hahn, J.; Kaufmann, R.; Bernd, A. Integration of Langerhans-like Cells into a Human Skin Equivalent. Arch. Dermatol. Res. 2011, 303, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Ouwehand, K.; Teissier, S.M.; Gibbs, S.; McLeod, J.; Roggen, E.L. The Impact of Sensitizing Compounds on the Interactions between Epithelial Cells and dendritic Cells. In Progress Towards Novel Testing Strategies for in Vitro Assessment of Allergens; Transworld Research Network: Kerala, India, 2011; pp. 55–65. ISBN 9788178955193. [Google Scholar]
- Bock, S.; Said, A.; Müller, G.; Schäfer-Korting, M.; Zoschke, C.; Weindl, G. Characterization of Reconstructed Human Skin Containing Langerhans Cells to Monitor Molecular Events in Skin Sensitization. Toxicol. In Vitro 2018, 46, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Neves, C.T.; Spiekstra, S.W.; de Graaf, N.P.J.; Rustemeyer, T.; Feilzer, A.J.; Kleverlaan, C.J.; Gibbs, S. Titanium Salts Tested in Reconstructed Human Skin with Integrated MUTZ-3-Derived Langerhans Cells Show an Irritant Rather than a Sensitizing Potential. Contact Dermat. 2020, 83, 337–346. [Google Scholar] [CrossRef]
- Regnier, M.; Patwardhan, I.A.; Scheynius, A.; Schmidt, R. Reconstructed Human Epidermis Composed of Keratinocytes, Melanocytes and Langerhans Cells. Med. Biol. Eng. Comput. 1998, 36, 821–824. [Google Scholar] [CrossRef]
- Bechetoille, N.; Dezutter-Dambuyant, C.; Damour, O.; André, V.; Orly, I.; Perrier, E. Effects of Solar Ultraviolet Radiation on Engineered Human Skin Equivalent Containing Both Langerhans Cells and Dermal Dendritic Cells. Tissue Eng. 2007, 13, 2667–2679. [Google Scholar] [CrossRef]
- Hölken, J.M.; Teusch, N. The Monocytic Cell Line THP-1 as a Validated and Robust Surrogate Model for Human Dendritic Cells. Int. J. Mol. Sci. 2023, 24, 1452. [Google Scholar] [CrossRef]
- dos Santos, G.G.; Reinders, J.; Ouwehand, K.; Rustemeyer, T.; Scheper, R.J.; Gibbs, S. Progress on the Development of Human in Vitro Dendritic Cell Based Assays for Assessment of the Sensitizing Potential of a Compound. Toxicol. Appl. Pharmacol. 2009, 236, 372–382. [Google Scholar] [CrossRef] [PubMed]
- van den Broek, L.J.; Bergers, L.I.J.C.; Reijnders, C.M.A.; Gibbs, S. Progress and Future Prospectives in Skin-on-Chip Development with Emphasis on the Use of Different Cell Types and Technical Challenges. Stem Cell Rev. Rep. 2017, 13, 418–429. [Google Scholar] [CrossRef]
- Thélu, A.; Catoire, S.; Kerdine-Römer, S. Immune-Competent in Vitro Co-Culture Models as an Approach for Skin Sensitisation Assessment. Toxicol. In Vitro 2020, 62, 104691. [Google Scholar] [CrossRef]
- Frombach, J.; Sonnenburg, A.; Krapohl, B.D.; Zuberbier, T.; Peiser, M.; Stahlmann, R.; Schreiner, M. Lymphocyte Surface Markers and Cytokines Are Suitable for Detection and Potency Assessment of Skin-Sensitizing Chemicals in an in Vitro Model of Allergic Contact Dermatitis: The LCSA-Ly. Arch. Toxicol. 2018, 92, 1495–1505. [Google Scholar] [CrossRef]
- Monkley, S.; Krishnaswamy, J.K.; Göransson, M.; Clausen, M.; Meuller, J.; Thörn, K.; Hicks, R.; Delaney, S.; Stjernborg, L. Optimised Generation of IPSC-Derived Macrophages and Dendritic Cells That Are Functionally and Transcriptionally Similar to Their Primary Counterparts. PLoS ONE 2020, 15, e0243807. [Google Scholar] [CrossRef] [PubMed]
- Elahi, Z.; Jameson, V.; Sakkas, M.; Butcher, S.K.; Mintern, J.D.; Radford, K.J.; Wells, C.A. Efficient Generation of Human Dendritic Cells from Induced Pluripotent Stem Cell by Introducing a Feeder-Free Expansion Step for Hematopoietic Progenitors. J. Leukoc. Biol. 2025, 117, qiaf045. [Google Scholar] [CrossRef]
- Hofmann, E.; Schwarz, A.; Fink, J.; Kamolz, L.P.; Kotzbeck, P. Modelling the Complexity of Human Skin In Vitro. Biomedicines 2023, 11, 794. [Google Scholar] [CrossRef]
- Zhang, S.; Wan, Z.; Kamm, R.D. Vascularized Organoids on a Chip: Strategies for Engineering Organoids with Functional Vasculature. Lab Chip 2021, 21, 473–488. [Google Scholar] [CrossRef]
- Dellaquila, A.; Le Bao, C.; Letourneur, D.; Simon-Yarza, T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. Adv. Sci. 2021, 8, 2100798. [Google Scholar] [CrossRef]
- Costa-Almeida, R.; Gomez-Lazaro, M.; Ramalho, C.; Granja, P.L.; Soares, R.; Guerreiro, S.G. Fibroblast-Endothelial Partners for Vascularization Strategies in Tissue Engineering. Tissue Eng. Part A 2015, 21, 1055–1065. [Google Scholar] [CrossRef]
- Lu, C.; Jin, A.; Liu, H.; Gao, C.; Sun, W.; Zhang, Y.; Dai, Q.; Liu, Y. Advancing Tissue Engineering through Vascularized Cell Spheroids: Building Blocks of the Future. Biomater. Sci. 2025, 13, 1901–1922. [Google Scholar] [CrossRef]
- Gao, C.; Lu, C.; Qiao, H.; Zhang, Y.; Liu, H.; Jian, Z.; Guo, Z.; Liu, Y. Strategies for Vascularized Skin Models in Vitro. Biomater. Sci. 2022, 10, 4724–4739. [Google Scholar] [CrossRef]
- Rimal, R.; Muduli, S.; Desai, P.; Marquez, A.B.; Möller, M.; Platzman, I.; Spatz, J.; Singh, S. Vascularized 3D Human Skin Models in the Forefront of Dermatological Research. Adv. Healthc. Mater. 2024, 13, e2303351. [Google Scholar] [CrossRef] [PubMed]
- Nyström, A.; Bruckner-Tuderman, L. Matrix Molecules and Skin Biology. Semin. Cell Dev. Biol. 2019, 89, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Khoshnood, N.; Zamanian, A. Decellularized Extracellular Matrix Bioinks and Their Application in Skin Tissue Engineering. Bioprinting 2020, 20, e00095. [Google Scholar] [CrossRef]
- Footner, E.; Firipis, K.; Liu, E.; Baker, C.; Foley, P.; Kapsa, R.M.I.; Pirogova, E.; O’Connell, C.; Quigley, A. Layer-by-Layer Analysis of In Vitro Skin Models. ACS Biomater. Sci. Eng. 2023, 9, 5933–5952. [Google Scholar] [CrossRef]
- Sanchez, B.; Li, L.; Dulong, J.; Aimond, G.; Lamartine, J.; Liu, G.; Sigaudo-Roussel, D. Impact of Human Dermal Microvascular Endothelial Cells on Primary Dermal Fibroblasts in Response to Inflammatory Stress. Front. Cell Dev. Biol. 2019, 7, 44. [Google Scholar] [CrossRef]
- Sanchez, M.C.; Lancel, S.; Boulanger, E.; Neviere, R. Targeting Oxidative Stress and Mitochondrial Dysfunction in the Treatment of Impaired Wound Healing: A Systematic Review. Antioxidants 2018, 7, 98. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.S.Y.; Tan, T.; Pang, A.S.R.; Srinivasan, D.K. The Role of Cytokines in Wound Healing: From Mechanistic Insights to Therapeutic Applications. Explor. Immunol. 2025, 5, 1003183. [Google Scholar] [CrossRef]
- Amirsadeghi, A.; Jafari, A.; Eggermont, L.J.; Hashemi, S.S.; Bencherif, S.A.; Khorram, M. Vascularization Strategies for Skin Tissue Engineering. Biomater. Sci. 2020, 8, 4052–4073. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, S.; Klar, A.S. Bioengineered Skin Substitutes: Advances and Future Trends. Appl. Sci. 2021, 11, 1493. [Google Scholar] [CrossRef]
- Ponmozhi, J.; Dhinakaran, S.; Varga-medveczky, Z.; Fónagy, K.; Bors, L.A.; Iván, K.; Erdő, F. Development of Skin-on-a-chip Platforms for Different Utilizations: Factors to Be Considered. Micromachines 2021, 12, 294. [Google Scholar] [CrossRef] [PubMed]
- Bouwstra, J.A.; Helder, R.W.J.; El Ghalbzouri, A. Human Skin Equivalents: Impaired Barrier Function in Relation to the Lipid and Protein Properties of the Stratum Corneum. Adv. Drug Deliv. Rev. 2021, 175, 113802. [Google Scholar] [CrossRef]
- Lightfoot Vidal, S.E.; Tamamoto, K.A.; Nguyen, H.; Abbott, R.D.; Cairns, D.M.; Kaplan, D.L. 3D Biomaterial Matrix to Support Long Term, Full Thickness, Immuno-Competent Human Skin Equivalents with Nervous System Components. Biomaterials 2019, 198, 194–203. [Google Scholar] [CrossRef]
- Huayllani, M.T.; Sarabia-Estrada, R.; Restrepo, D.J.; Boczar, D.; Sisti, A.; Nguyen, J.H.; Rinker, B.D.; Moran, S.L.; Quiñones-Hinojosa, A.; Forte, A.J. Adipose-Derived Stem Cells in Wound Healing of Full-Thickness Skin Defects: A Review of the Literature. J. Plast. Surg. Hand Surg. 2020, 54, 263–279. [Google Scholar] [CrossRef]
- Jäger, J.; Vahav, I.; Thon, M.; Waaijman, T.; Spanhaak, B.; de Kok, M.; Bhogal, R.K.; Gibbs, S.; Koning, J.J. Reconstructed Human Skin with Hypodermis Shows Essential Role of Adipose Tissue in Skin Metabolism. Tissue Eng. Regen. Med. 2024, 21, 499–511. [Google Scholar] [CrossRef]
- Zografou, A.; Tsigris, C.; Papadopoulos, O.; Kavantzas, N.; Patsouris, E.; Donta, I.; Perrea, D. Improvement of Skin-Graft Survival after Autologous Transplantation of Adipose-Derived Stem Cells in Rats. J. Plast. Reconstr. Aesthetic Surg. 2011, 64, 1647–1656. [Google Scholar] [CrossRef]
- Vidor, S.B.; Terraciano, P.B.; Valente, F.S.; Rolim, V.M.; Kuhl, C.P.; Ayres, L.S.; Garcez, T.N.A.; Lemos, N.E.; Kipper, C.E.; Pizzato, S.B.; et al. Adipose-Derived Stem Cells Improve Full-Thickness Skin Grafts in a Rat Model. Res. Vet. Sci. 2018, 118, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Chen, J.; Duscher, D.; Liu, Y.; Guo, G.; Kang, Y.; Xiong, H.; Zhan, P.; Wang, Y.; Wang, C.; et al. Microvesicles from Human Adipose Stem Cells Promote Wound Healing by Optimizing Cellular Functions via AKT and ERK Signaling Pathways. Stem Cell Res. Ther. 2019, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Samberg, M.; Stone, R.; Natesan, S.; Kowalczewski, A.; Becerra, S.; Wrice, N.; Cap, A.; Christy, R. Platelet Rich Plasma Hydrogels Promote in Vitro and in Vivo Angiogenic Potential of Adipose-Derived Stem Cells. Acta Biomater. 2019, 87, 76–87. [Google Scholar] [CrossRef]
- Lin, Y.C.; Grahovac, T.; Oh, S.J.; Ieraci, M.; Rubin, J.P.; Marra, K.G. Evaluation of a Multi-Layer Adipose-Derived Stem Cell Sheet in a Full-Thickness Wound Healing Model. Acta Biomater. 2013, 9, 5243–5250. [Google Scholar] [CrossRef]
- Sun, B.; Guo, S.; Xu, F.; Wang, B.; Liu, X.; Zhang, Y.; Xu, Y. Concentrated Hypoxia-Preconditioned Adipose Mesenchymal Stem Cell-Conditioned Medium Improves Wounds Healing in Full-Thickness Skin Defect Model. Int. Sch. Res. Not. 2014, 2014, 652713. [Google Scholar] [CrossRef]
- Ozpur, M.A.; Guneren, E.; Canter, H.I.; Karaaltin, M.V.; Ovali, E.; Yogun, F.N.; Baygol, E.G.; Kaplan, S. Generation of Skin Tissue Using Adipose Tissue-Derived Stem Cells. Plast. Reconstr. Surg. 2016, 137, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, M.Y.; Tai, H.C.; Cheng, N.C. Cell Sheet Composed of Adipose-Derived Stem Cells Demonstrates Enhanced Skin Wound Healing with Reduced Scar Formation. Acta Biomater. 2018, 77, 191–200. [Google Scholar] [CrossRef]
- Hsu, L.C.; Peng, B.Y.; Chen, M.S.; Thalib, B.; Ruslin, M.; Tung, T.D.X.; Chou, H.H.; Ou, K.L. The Potential of the Stem Cells Composite Hydrogel Wound Dressings for Promoting Wound Healing and Skin Regeneration: In Vitro and in Vivo Evaluation. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 278–285. [Google Scholar] [CrossRef]
- Quílez, C.; Bebiano, L.B.; Jones, E.; Maver, U.; Meesters, L.; Parzymies, P.; Petiot, E.; Rikken, G.; Risueño, I.; Zaidi, H.; et al. Targeting the Complexity of In Vitro Skin Models: A Review of Cutting-Edge Developments. J. Investig. Dermatol. 2024, 144, 2650–2670. [Google Scholar] [CrossRef]
- Lee, J.; Rabbani, C.C.; Gao, H.; Steinhart, M.R.; Woodruff, B.M.; Pflum, Z.E.; Kim, A.; Heller, S.; Liu, Y.; Shipchandler, T.Z.; et al. Hair-Bearing Human Skin Generated Entirely from Pluripotent Stem Cells. Nature 2020, 582, 399–404. [Google Scholar] [CrossRef]
- Ahmed, I.; Sun, J.; Brown, J.; Khosrotehrani, K.; Shafiee, A. An Optimized Protocol for Generating Appendage-Bearing Skin Organoids from Human-Induced Pluripotent Stem Cells. Biol. Methods Protoc. 2024, 9, bpae019. [Google Scholar] [CrossRef]
- Catarino, C.M.; Schuck, D.C.; Dechiario, L.; Karande, P. Incorporation of Hair Follicles in 3D Bioprinted Models of Human Skin. Sci. Adv. Appl. Sci. Eng. 2023, 9, eadg0297. [Google Scholar]
- Robles-Munoz, V.D. The Development of an in Vitro 3D Histotypic Model of The Human Eccrine Sweat Gland. Ph.D. Thesis, Queen Mary University, London, UK, 2014. [Google Scholar]
- Dingwall, H.L.; Tomizawa, R.R.; Aharoni, A.; Hu, P.; Qiu, Q.; Kokalari, B.; Martinez, S.M.; Donahue, J.C.; Aldea, D.; Mendoza, M.; et al. Sweat Gland Development Requires an Eccrine Dermal Niche and Couples Two Epidermal Programs. Dev. Cell 2024, 59, 20–32.e6. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; van der Valk, W.H.; Serdy, S.A.; Deakin, C.C.; Kim, J.; Le, A.P.; Koehler, K.R. Generation and Characterization of Hair-Bearing Skin Organoids from Human Pluripotent Stem Cells. Nat. Protoc. 2022, 17, 1266–1305. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.X.; Zhu, S.T.; Li, H.; Luo, J.Z.; Yang, Y.; An, Y.; Wang, X.; Wang, K. Bioengineered Skin Organoids: From Development to Applications. Mil. Med. Res. 2023, 10, 40. [Google Scholar] [CrossRef]
- Morgner, B.; Tittelbach, J.; Wiegand, C. Induction of Psoriasis- and Atopic Dermatitis-like Phenotypes in 3D Skin Equivalents with a Fibroblast-Derived Matrix. Sci. Rep. 2023, 13, 1807. [Google Scholar] [CrossRef] [PubMed]
- Cacciamali, A.; Villa, R.; Dotti, S. 3D Cell Cultures: Evolution of an Ancient Tool for New Applications. Front. Physiol. 2022, 13, 836480. [Google Scholar] [CrossRef]
- Roguet, R.; Cohen, C.; Dossou, K.G.; Rougier, A. Episkin, a Reconstituted Human Epidermis for Assessing in Vitro the Irritancy of Topically Applied Compounds. Toxicol. In Vitro 1994, 8, 283–291. [Google Scholar] [CrossRef]
- Cannon, C.L.; Neal, P.J.; Southee, J.A.; Kubilus, J.; Klausner, M. New Epidermal Model for Dermal Irritancy Testing. Toxicol. In Vitro 1994, 8, 889–891. [Google Scholar] [CrossRef] [PubMed]
- Poumay, Y.; Coquette, A. Modelling the Human Epidermis in Vitro: Tools for Basic and Applied Research. Arch. Dermatol. Res. 2007, 298, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, A.F.; Lisboa, C.; Branco, J.; Pellevoisin, C.; Miranda, I.M.; Rodrigues, A.G. Malassezia Interaction with a Reconstructed Human Epidermis: Keratinocyte Immune Response. Mycoses 2019, 62, 932–936. [Google Scholar] [CrossRef]
- Alépée, N.; Grandidier, M.H.; Cotovio, J. Sub-Categorisation of Skin Corrosive Chemicals by the EpiSkinTM Reconstructed Human Epidermis Skin Corrosion Test Method According to UN GHS: Revision of OECD Test Guideline 431. Toxicol. In Vitro 2014, 28, 131–145. [Google Scholar] [CrossRef]
- Han, J.; Kim, S.; Lee, S.H.; Kim, J.S.; Chang, Y.J.; Jeong, T.C.; Kang, M.J.; Kim, T.S.; Yoon, H.S.; Lee, G.Y.; et al. Me-Too Validation Study for in Vitro Skin Irritation Test with a Reconstructed Human Epidermis Model, KeraSkinTM for OECD Test Guideline 439. Regul. Toxicol. Pharmacol. 2020, 117, 104725. [Google Scholar] [CrossRef]
- Kim, S.; Lee, G.; Ji Gwak, E.; Ji Kim, S.; Hyon Lee, S.; Lim, K.-M. Development of an In Vitro Pigmented Skin Model to Evaluate the Effectiveness of Whitening Functional Cosmetic Ingredients. J. Soc. Cosmet. Sci. Korea 2021, 47, 297–304. [Google Scholar] [CrossRef]
- Yoon, J.H.; Jo, C.S.; Hwang, J.S. Comprehensive Analysis of Exosomal MicroRNAs Derived from UVB-Irradiated Keratinocytes as Potential Melanogenesis Regulators. Int. J. Mol. Sci. 2024, 25, 3095. [Google Scholar] [CrossRef]
- Netzlaff, F.; Lehr, C.M.; Wertz, P.W.; Schaefer, U.F. The Human Epidermis Models EpiSkin®, SkinEthic® and EpiDerm®: An Evaluation of Morphology and Their Suitability for Testing Phototoxicity, Irritancy, Corrosivity, and Substance Transport. Eur. J. Pharm. Biopharm. 2005, 60, 167–178. [Google Scholar] [CrossRef]
- Bataillon, M.; Lelièvre, D.; Chapuis, A.; Thillou, F.; Autourde, J.B.; Durand, S.; Boyera, N.; Rigaudeau, A.S.; Besné, I.; Pellevoisin, C. Characterization of a New Reconstructed Full Thickness Skin Model, t-SkinTM, and Its Application for Investigations of Anti-Aging Compounds. Int. J. Mol. Sci. 2019, 20, 2240. [Google Scholar] [CrossRef]
- Sriram, G.; Alberti, M.; Dancik, Y.; Wu, B.; Wu, R.; Feng, Z.; Ramasamy, S.; Bigliardi, P.L.; Bigliardi-Qi, M.; Wang, Z. Full-Thickness Human Skin-on-Chip with Enhanced Epidermal Morphogenesis and Barrier Function. Mater. Today 2018, 21, 326–340. [Google Scholar] [CrossRef]
- Jang, I.; Kim, J.H.; Kim, M.; Marinho, P.A.; Nho, Y.; Kang, S.; Yun, W.S.; Shim, J.H.; Jin, S. 3D Bioprinting of in Vitro Full-Thickness Skin Model with a Rete Ridge Structure. Int. J. Bioprinting 2024, 10, 487–501. [Google Scholar] [CrossRef]
- KeraSkin 3D Skin Model. Available online: https://keraskin.cafe24.com/shop2/skin-skin2/index2.html#anchor2 (accessed on 8 October 2025).
- Jung, K.M.; Lee, S.H.; Jang, W.H.; Jung, H.S.; Heo, Y.; Park, Y.H.; Bae, S.J.; Lim, K.M.; Seok, S.H. KeraSkinTM-VM: A Novel Reconstructed Human Epidermis Model for Skin Irritation Tests. Toxicol. In Vitro 2014, 28, 742–750. [Google Scholar] [CrossRef]
- Lee, S.-H.; Jung, H.-S.; Kim, S.-Y.; Kim, H.S.; Lim, K.-M.; Chung, Y.-S.; Choe, T.-B. Evaluating the Micronucleus Induction Potential for the Genotoxicity Assay Using the Human Skin Model, KeraSkinTM. J. Soc. Cosmet. Sci. Korea 2016, 42, 211–216. [Google Scholar] [CrossRef]
- Kang, N.H.; Kim, S.H.; Kim, J. KoCVAM-Led Development of Phototoxicity Alternative Test Method Using Reconstructed Human Epidermis Model (KeraSkinTM). Food Chem. Toxicol. 2024, 188, 114698. [Google Scholar] [CrossRef]
- Creative Bioarray. In Vitro Reconstructed Human Epidermis (RHE). Available online: https://www.creative-bioarray.com/in-vitro-reconstructed-human-epidermis-rhe.htm (accessed on 26 May 2025).
- EPISKIN. Episkin. Available online: https://www.episkin.com/ (accessed on 25 May 2025).
- Kandárová, H.; Hayden, P.; Klausner, M.; Kubilus, J.; Sheasgreen, J. An in Vitro Skin Irritation Test (SIT) Using the EpiDerm Reconstructed Human Epidermal (RHE) Model. J. Vis. Exp. 2009, 29, 1366. [Google Scholar] [CrossRef]
- Alépée, N.; Tornier, C.; Robert, C.; Amsellem, C.; Roux, M.H.; Doucet, O.; Pachot, J.; Méloni, M.; de Brugerolle de Fraissinette, A. A Catch-up Validation Study on Reconstructed Human Epidermis (SkinEthicTM RHE) for Full Replacement of the Draize Skin Irritation Test. Toxicol. In Vitro 2010, 24, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Alépée, N.; Grandidier, M.H.; Tornier, C.; Cotovio, J. An Integrated Testing Strategy for in Vitro Skin Corrosion and Irritation Assessment Using SkinEthicTM Reconstructed Human Epidermis. Toxicol. In Vitro 2015, 29, 1779–1792. [Google Scholar] [CrossRef]
- Gautherot, J.; Loiola, R.A.; Barcham, R.; Dini, C.; Alépée, N.; Videau, C. SkinEthicTM Is a Good Alternative for Testing Phototoxicity in Vitro Using Reconstructed Human Epidermis. Toxicol. Lett. 2024, 399, S381. [Google Scholar] [CrossRef]
- EPISKIN. Skin Irritation Protocol SkinEthic (Validated). Available online: https://www.episkin.com/News/SkinEthic-RHE-and-HCE-validated-protocols (accessed on 25 May 2025).
- Flamand, N.; Marrot, L.; Belaidi, J.P.; Bourouf, L.; Dourille, E.; Feltes, M.; Meunier, J.R. Development of Genotoxicity Test Procedures with Episkin®, a Reconstructed Human Skin Model: Towards New Tools for in Vitro Risk Assessment of Dermally Applied Compounds? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2006, 606, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Netzlaff, F.; Kaca, M.; Bock, U.; Haltner-Ukomadu, E.; Meiers, P.; Lehr, C.M.; Schaefer, U.F. Permeability of the Reconstructed Human Epidermis Model Episkin® in Comparison to Various Human Skin Preparations. Eur. J. Pharm. Biopharm. 2007, 66, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Alépée, N.; Grandidier, M.H.; Cotovio, J. The EpiSkinTM Human Epidermis Model for In Vitro Skin Corrosion of Test Chemicals. In Alternatives for Dermal Toxicity Testing; Springer International Publishing: Cham, Switzerland, 2017; pp. 107–125. [Google Scholar]
- Japan Tissue Engineering. LabCyte Epi-Model. Available online: https://www.jpte.co.jp/business/LabCyte/epi-model/index.html (accessed on 27 May 2025).
- Katoh, M.; Hamajima, F.; Ogasawara, T.; Hata, K.I. Assessment of Human Epidermal Model LabCyte EPI-MODEL for in Vitro Skin Irritation Testing According to European Centre for the Validation of Alternative Methods (ECVAM)-Validated Protocol. J. Toxicol. Sci. 2009, 34, 327–334. [Google Scholar] [CrossRef]
- Katoh, M.; Hamajima, F.; Ogasawara, T.; Hata, K. Assessment of the Human Epidermal Model LabCyte-MODEL for In Vitro Skin Corrosion Testing According to the OECD Test Guideline 431. J. Toxicol. Sci. 2010, 35, 411–417. [Google Scholar] [CrossRef]
- Hikima, T.; Kaneda, N.; Matsuo, K.; Tojo, K. Prediction of Percutaneous Absorption in Human Using Three-Dimensional Human Cultured Epidermis LabCyte EPI-MODEL. Biol. Pharm. Bull. 2012, 35, 362–368. [Google Scholar] [CrossRef]
- Kashiwazaki, J.; Nakamura, K.; Hara, Y.; Harada, R.; Wada, I.; Kanemitsu, K. Evaluation of the Cytotoxicity of Various Hand Disinfectants and Ozonated Water to Human Keratinocytes in a Cultured Epidermal Model. Adv. Ski. Wound Care 2020, 33, 313–318. [Google Scholar] [CrossRef] [PubMed]
- MatTek. EpiDermTM. Available online: https://www.mattek.com/mattek-product/epiderm/ (accessed on 25 May 2025).
- Park, Y.H.; Jeong, S.H.; Yi, S.M.; Choi, B.H.; Kim, Y.R.; Kim, I.K.; Kim, M.K.; Son, A.S.W. Assessment of Phototoxicity, Skin Irritation, and Sensitization Potential of Polystyrene and TiO2 Nanoparticles. J. Phys. Conf. Ser. 2011, 304, 012050. [Google Scholar] [CrossRef]
- Chapman, K.E.; Thomas, A.D.; Wills, J.W.; Pfuhler, S.; Doak, S.H.; Jenkins, G.J.S. Automation and Validation of Micronucleus Detection in the 3D EpiDermTM Human Reconstructed Skin Assay and Correlation with 2D Dose Responses. Mutagenesis 2014, 29, 165–175. [Google Scholar] [CrossRef]
- Hayden, P.J.; Bachelor, M.; Ayehunie, S.; Letasiova, S.; Kaluzhny, Y.; Klausner, M.; Kandárová, H. Application of MatTek In Vitro Reconstructed Human Skin Models for Safety, Efficacy Screening, and Basic Preclinical Research. Appl. In Vitro Toxicol. 2015, 1, 226–233. [Google Scholar] [CrossRef]
- Straticell. Epidermis. Available online: https://straticell.com/reconstructed-human-epidermis/ (accessed on 27 May 2025).
- Andres, E.; Molinari, J.; Remoué, N.; Sá-Rocha, V.M.; Barrichello, C.; Hurtado, S.P. Successful Micronucleus Testing with the EPI/001 3D Reconstructed Epidermis Model: Preliminary Findings. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2012, 743, 36–41. [Google Scholar] [CrossRef]
- Groeber, F.; Schober, L.; Schmid, F.F.; Traube, A.; Kolbus-Hernandez, S.; Daton, K.; Hoffmann, S.; Petersohn, D.; Schäfer-Korting, M.; Walles, H.; et al. Catch-up Validation Study of an In Vitro Skin Irritation Test Method Based on an Open Source Reconstructed Epidermis (Phase II). Toxicol. In Vitro 2016, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, T.N.; Catarino, C.M.; Pennacchi, P.C.; Assis, S.R.; Gimenes, F.; Consolaro, M.E.L.; Barros, S.B.M.; Maria-Engler, S.S. A New Reconstructed Human Epidermis for in Vitro Skin Irritation Testing. Toxicol. In Vitro 2017, 42, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Qiao, W.; Yao, Q.; Wu, W.; Kaku, K. Treatment with Docosahexaenoic Acid Improves Epidermal Keratinocyte Differentiation and Ameliorates Inflammation in Human Keratinocytes and Reconstructed Human Epidermis Models. Molecules 2019, 24, 3156. [Google Scholar] [CrossRef]
- Straticell. Pigmentation. Available online: https://straticell.com/pigmentation/ (accessed on 27 May 2025).
- Biosolution Co. Protocol for In Vitro Skin Irritation Test with a 3D-Reconstructed Human Skin Model, KeraSkinTM-VM; Version 1.5. 2019. Available online: https://drive.google.com/file/d/1Q-DDwx4Oe14YTkAoXRWey7YSc0NUMQ4F/view?usp=sharing (accessed on 26 May 2025).
- EPISKIN. RHPE Pigmented Epidermis. Available online: https://www.episkin.com/RHPE-Pigmented-Epidermis (accessed on 28 May 2025).
- Bissett, D.L.; Farmer, T.; Mcphail, S.; Reichling, T.; Tiesman, J.P.; Juhlin, K.D.; Hurley, G.J.; Robinson, M.K. Genomic Expression Changes Induced by Topical N-Acetyl Glucosamine in Skin Equivalent Cultures in Vitro. J. Cosmet. Dermatol. 2007, 6, 232–238. [Google Scholar] [CrossRef]
- Zeitoun, H.; Michael-Jubeli, R.; El Khoury, R.; Baillet-Guffroy, A.; Tfayli, A.; Salameh, D.; Lteif, R. Skin Lightening Effect of Natural Extracts Coming from Senegal Botanical Biodiversity. Int. J. Dermatol. 2020, 59, 178–183. [Google Scholar] [CrossRef]
- Eilstein, J.; Léreaux, G.; Arbey, E.; Daronnat, E.; Wilkinson, S.; Duché, D. Xenobiotic Metabolizing Enzymes in Human Skin and SkinEthic Reconstructed Human Skin Models. Exp. Dermatol. 2015, 24, 547–549. [Google Scholar] [CrossRef]
- MatTek. MelanoDermTM. Available online: https://www.mattek.com/mattek-product/melanoderm/ (accessed on 25 May 2025).
- Coelho, S.G.; Koo, E.; Hearing, V.J. Standardization of in Vitro Macrophotography for Assessment of Cutaneous Responses. Photochem. Photobiol. 2009, 85, 1032–1037. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, E.-S.; Bae, I.-H.; Hwang, J.-A.; Kim, S.-H.; Kim, D.-Y.; Park, N.-H.; Rho, H.S.; Kim, Y.J.; Oh, S.-G.; et al. Antimelanogenic Efficacy of Melasolv (3,4,5-Trimethoxycinnamate Thymol Ester) in Melanocytes and Three-Dimensional Human Skin Equivalent. Skin. Pharmacol. Physiol. 2017, 30, 190–196. [Google Scholar] [CrossRef]
- Nomura, N.; Sawamura, A.; Miyadai, N. Cooperation of Cysteine, Ascorbic Acid, Pyridoxine, and a-Lipoic Acid in Antioxidant Effects on Human Keratinocytes and 3D Human Skin Models. J. Nutr. Sci. Vitaminol. 2024, 70, 454–461. [Google Scholar] [CrossRef] [PubMed]
- EPISKIN. RHE-LC. Available online: https://www.episkin.com/RHE-LC (accessed on 28 May 2025).
- Facy, V.; Flouret, V.; Régnier, M.; Schmidt, R. Reactivity of Langerhans Cells in Human Reconstructed Epidermis to Known Allergens and UV Radiation. Toxicol. In Vitro 2005, 19, 787–795. [Google Scholar] [CrossRef]
- Straticell. Neurocosmetics. Available online: https://straticell.com/neurocosmetics/ (accessed on 27 May 2025).
- Kim, B.S.; Gao, G.; Kim, J.Y.; Cho, D.W. 3D Cell Printing of Perfusable Vascularized Human Skin Equivalent Composed of Epidermis, Dermis, and Hypodermis for Better Structural Recapitulation of Native Skin. Adv. Healthc. Mater. 2019, 8, 1801019. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Lee, S.; Wang, H.; Lee, G.; Kim, S.; Ryu, Y.H.; Chang, N.H.; Kang, Y.W. Analysis of Skin Regeneration and Barrier-Improvement Efficacy of Polydeoxyribonucleotide Isolated from Panax ginseng (C.A. Mey.) Adventitious Root. Molecules 2023, 28, 7240. [Google Scholar] [CrossRef]
- Creative Bioarray. In Vitro Full Thickness Skin Model. Available online: https://www.creative-bioarray.com/in-vitro-full-thickness-skin-model.htm (accessed on 26 May 2025).
- EPISKIN. T-Skin. Available online: https://www.episkin.com/T-Skin (accessed on 28 May 2025).
- Lelièvre, D.; Canivet, F.; Thillou, F.; Tricaud, C.; Le Floc’h, C.; Bernerd, F. Use of Reconstructed Skin Model to Assess the Photoprotection Afforded by Three Sunscreen Products Having Different SPF Values against DNA Lesions and Cellular Alterations. J. Photochem. Photobiol. 2024, 19, 100213. [Google Scholar] [CrossRef]
- Pannakal, S.T.; Durand, S.; Gizard, J.; Sextius, P.; Planel, E.; Warrick, E.; Lelievre, D.; Lelievre, C.; Eilstein, J.; Beaumard, F.; et al. A Proprietary Punica Granatum Pericarp Extract, Its Antioxidant Properties Using Multi-Radical Assays and Protection Against UVA-Induced Damages in a Reconstructed Human Skin Model. Antioxidants 2025, 14, 301. [Google Scholar] [CrossRef]
- MatTek. EpiDermFTTM. Available online: https://www.mattek.com/mattek-product/epidermft/ (accessed on 25 May 2025).
- Afaq, F.; Zaid, M.A.; Khan, N.; Dreher, M.; Mukhtar, H. Protective Effect of Pomegranate-Derived Products on UVB-Mediated Damage in Human Reconstituted Skin. Exp. Dermatol. 2009, 18, 553–561. [Google Scholar] [CrossRef]
- Titova, L.V.; Ayesheshim, A.K.; Golubov, A.; Fogen, D.; Rodriguez-Juarez, R.; Hegmann, F.A.; Kovalchuk, O. Intense THz Pulses Cause H2AX phosphorylation and Activate DNA Damage Response in Human Tissue. Biomed. Opt. Express 2013, 4, 559–568. [Google Scholar] [CrossRef]
- Mei Xiong, Z.; O’Donovan, M.; Sun, L.; Young Choi, J.; Ren, M.; Cao, K. Anti-Aging Potentials of Methylene Blue for Human Skin Longevity. Sci. Rep. 2017, 7, 2475. [Google Scholar] [CrossRef]
- Phenion. Reconstructed Tissues. Available online: https://www.phenion.com/products/reconstructed-tissues (accessed on 29 May 2025).
- Ackermann, K.; Lombardi Borgia, S.; Korting, H.C.; Mewes, K.R.; Schäfer-Korting, M. The Phenion® Full-Thickness Skin Model for Percutaneous Absorption Testing. Ski. Pharmacol. Physiol. 2010, 23, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Page, K.; Westerink, W.; Sullivan, K.; McDonald, T.; Roper, C. Assessment of the Utility of the Novel Phenion® Full Thickness Human Skin Model for Detecting the Skin Irritation Potential of Antimicrobial Cleaning Products. Toxicol. In Vitro 2024, 94, 105726. [Google Scholar] [CrossRef]
- Pinto, D.; Trink, A.; Giuliani, G.; Rinaldi, F. Protective Effects of Sunscreen (50+) and Octatrienoic Acid 0.1% in Actinic Keratosis and UV Damages. J. Investig. Med. 2022, 70, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.; Pekec, T.; Yuan, L.; Shivashankar, G.V. Implanting Mechanically Reprogrammed Fibroblasts for Aged Tissue Regeneration and Wound Healing. Aging Cell 2024, 23, e14032. [Google Scholar] [CrossRef]
- Akh, L.A.; Ishak, M.O.; Harris, J.F.; Glaros, T.G.; Sasiene, Z.J.; Mach, P.M.; Lilley, L.M.; McBride, E.M. -Omics Potential of in Vitro Skin Models for Radiation Exposure. Cell. Mol. Life Sci. 2022, 79, 390. [Google Scholar] [CrossRef]
- Alcyomics. 3D Innervated Skin Model. Available online: https://alcyomics.com/special_programs/3d-innervated-skin-model/ (accessed on 26 May 2025).
- Ahmed, M.M. Bioprinting of Skin Equivalents for Immunotoxicity Testing. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2020. [Google Scholar]
- Creative Bioarray. In Vitro Pigmented Skin Model. Available online: https://www.creative-bioarray.com/in-vitro-pigmented-skin-model.htm (accessed on 26 May 2025).
- Zoio, P.; Ventura, S.; Leite, M.; Oliva, A. Pigmented Full-Thickness Human Skin Model Based on a Fibroblast-Derived Matrix for Long-Term Studies. Tissue Eng. Part C Methods 2021, 27, 433–443. [Google Scholar] [CrossRef]
- Hall, M.J.; Lopes-Ventura, S.; Neto, M.V.; Charneca, J.; Zoio, P.; Seabra, M.C.; Oliva, A.; Barral, D.C. Reconstructed Human Pigmented Skin/Epidermis Models Achieve Epidermal Pigmentation through Melanocore Transfer. Pigment. Cell Melanoma Res. 2022, 35, 425–435. [Google Scholar] [CrossRef]
- Creative Bioarray. In Vitro Neurodermatology Cell Model. Available online: https://www.creative-bioarray.com/in-vitro-neurodermatology-cell-model.htm (accessed on 26 May 2025).
- Baltazar, T.; Merola, J.; Catarino, C.; Xie, C.B.; Kirkiles-Smith, N.C.; Lee, V.; Hotta, S.; Dai, G.; Xu, X.; Ferreira, F.C.; et al. Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells. Tissue Eng. Part A 2020, 26, 227–238. [Google Scholar] [CrossRef]
- ReproCELL & Alcyomics. Skimune® 3D: Human Skin Equivalent Model for Immunotoxicity Testing. Available online: https://alcyomics.com/special_programs/skimune-3d/ (accessed on 29 May 2025).
- Creative Bioarray. Ex Vivo Skin Explants. Available online: https://www.creative-bioarray.com/ex-vivo-skin-explants.htm (accessed on 26 May 2025).
- Genoskin. Skin Model for Subcutaneous Injections. Available online: https://genoskin.com/tissue-samples/skin-model-subcutaneous-injections/ (accessed on 27 May 2025).
- Scholaert, M.; Peries, M.; Braun, E.; Martin, J.; Serhan, N.; Loste, A.; Bruner, A.; Basso, L.; Merle, E.; Descargues, P.; et al. High-Dimensional Profiling of Immune Response to Vaccines Using Bio-Stabilized and Injectable Natural Human Skin. Presented at the Joint Conference of the Société Française d’Immunologie (SFI) and the Deutsche Gesellschaft für Immunologie (DGfI), Soc Francaise dImmunologie, Strasbourg, France, 26–29 September 2023. [Google Scholar]
- Genoskin. NativeSkin®—Human Skin Model. Available online: https://genoskin.com/tissue-samples/human-skin-models-nativeskin/ (accessed on 27 May 2025).
- De Wever, B.; Kurdykowski, S.; Descargues, P. Human Skin Models for Research Applications in Pharmacology and Toxicology: Introducing NativeSkin ®, the “Missing Link” Bridging Cell Culture and/or Reconstructed Skin Models and Human Clinical Testing. Appl. In Vitro Toxicol. 2015, 1, 26–32. [Google Scholar] [CrossRef]
- Dezest, M.; Le Bechec, M.; Chavatte, L.; Desauziers, V.; Chaput, B.; Grolleau, J.L.; Descargues, P.; Nizard, C.; Schnebert, S.; Lacombe, S.; et al. Oxidative Damage and Impairment of Protein Quality Control Systems in Keratinocytes Exposed to a Volatile Organic Compounds Cocktail. Sci. Rep. 2017, 7, 10707. [Google Scholar] [CrossRef]
- Poursharifi, N.; Hassanpouramiri, M.; Zink, A.; Ucuncu, M.; Parlak, O. Transdermal Sensing of Enzyme Biomarker Enabled by Chemo-Responsive Probe-Modified Epidermal Microneedle Patch in Human Skin Tissue. Adv. Mater. 2024, 36, e2403758. [Google Scholar] [CrossRef] [PubMed]
- Frankart, A.; Malaisse, J.; De Vuyst, E.; Minner, F.; Rouvroit, C.L.; Poumay, Y. Epidermal Morphogenesis during Progressive in Vitro 3D Reconstruction at the Air—Liquid Interface. Exp. Dermatol. 2012, 21, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, E.; Fink, J.; Pignet, A.L.; Schwarz, A.; Schellnegger, M.; Nischwitz, S.P.; Holzer-Geissler, J.C.J.; Kamolz, L.P.; Kotzbeck, P. Human In Vitro Skin Models for Wound Healing and Wound Healing Disorders. Biomedicines 2023, 11, 1056. [Google Scholar] [CrossRef]
- Suthar, D.; Raut, R.; Bajaj, A. Advances in Skin-Mimetic Platforms: A Comprehensive Review of Drug Permeation Models. J. Drug Deliv. Sci. Technol. 2024, 98, 105887. [Google Scholar] [CrossRef]
- Fusco, L.; Garrido, M.; Martín, C.; Sosa, S.; Ponti, C.; Centeno, A.; Alonso, B.; Zurutuza, A.; Vázquez, E.; Tubaro, A.; et al. Skin Irritation Potential of Graphene-Based Materials Using a Non-Animal Test. Nanoscale 2020, 12, 610–622. [Google Scholar] [CrossRef]
- Schmidt, S.; Moser, M.; Sperandio, M. The Molecular Basis of Leukocyte Recruitment and Its Deficiencies. Mol. Immunol. 2013, 55, 49–58. [Google Scholar] [CrossRef]
- Basketter, D.A.; Gerberick, G.F. Skin Sensitization Testing: The Ascendancy of Non-Animal Methods. Cosmetics 2022, 9, 38. [Google Scholar] [CrossRef]
- Líšková, A.; Letašiová, S.; Jantová, S.; Brezová, V.; Kandarova, H. Evaluation of Phototoxic and Cytotoxic Potential of TiO2 Nanosheets in a 3D Reconstructed Human Skin Model. ALTEX 2020, 37, 441–450. [Google Scholar] [CrossRef]
- Klicks, J.; von Molitor, E.; Ertongur-Fauth, T.; Rudolf, R.; Hafner, M. In Vitro Skin Three-Dimensional Models and Their Applications. J. Cell Biotechnol. 2017, 3, 21–39. [Google Scholar] [CrossRef]
- ESAC. ESAC Statement on the Scientific Validity of an In-Vitro Test Method for Skin Corrosivity Testing. 2009. Available online: https://tsar.jrc.ec.europa.eu/system/files/Published/ESAC30_skincorrosion_revised%20_20100921.pdf (accessed on 11 December 2024).
- Zhu, R.; Yao, X.; Li, W. Langerhans Cells and Skin Immune Diseases. Eur. J. Immunol. 2024, 54, e2250280. [Google Scholar] [CrossRef]
- Lane, M.E. In Vitro Permeation Testing for the Evaluation of Drug Delivery to the Skin. Eur. J. Pharm. Sci. 2024, 201, 106873. [Google Scholar] [CrossRef] [PubMed]
- White, E.A.; Horne, A.; Runciman, J.; Orazem, M.E.; Navidi, W.C.; Roper, C.S.; Bunge, A.L. On the Correlation between Single-Frequency Impedance Measurements and Human Skin Permeability to Water. Toxicol. In Vitro 2011, 25, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Kundu, D.; Jayaraman, A.; Sen, C.K. Clinical Measurement of Transepidermal Water Loss. Adv. Wound Care 2025. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.S.; Billa, N.; Morris, A.P. Optimizing In Vitro Skin Permeation Studies to Obtain Meaningful Data in Topical and Transdermal Drug Delivery. AAPS PharmSciTech 2025, 26, 147. [Google Scholar] [CrossRef]
- Lehman, P.A.; Franz, T.J. Observations on the Tritiated Water and TEWL Skin Integrity Tests: Relevance to In Vitro Permeation Testing (IVPT). Pharm. Res. 2024, 41, 1149–1161. [Google Scholar] [CrossRef]
- Zhang, Y.; Clarke, J.F.; Dancik, Y. The Impact of Using Measured In Vitro Data to Develop Physiologically Based Pharmacokinetic Models of Dermal Absorption: An IVIVE Case Study. AAPS J. 2025, 27, 135. [Google Scholar] [CrossRef] [PubMed]
- Dancik, Y.; Zhang, Y.; Telaprolu, K.C.; Polak, S. Physiologically Based Pharmacokinetic Modelling of in Vitro Skin Permeation of Sunscreen Actives under Various Experimental Conditions. Int. J. Pharm. 2025, 682, 125977. [Google Scholar] [CrossRef]
- Rath, S.; Kanfer, I. In Vitro–In Vivo Correlations (IVIVC) for Predicting the Clinical Performance of Metronidazole Topical Creams Intended for Local Action. Pharmaceutics 2023, 15, 268. [Google Scholar] [CrossRef] [PubMed]
- Govey-Scotland, J.; Johnstone, L.; Myant, C.; Friddin, M.S. Towards Skin-on-a-Chip for Screening the Dermal Absorption of Cosmetics. Lab Chip 2023, 23, 5068–5080. [Google Scholar] [CrossRef]
- Cho, S.W.; Malick, H.; Kim, S.J.; Grattoni, A. Advances in Skin-on-a-Chip Technologies for Dermatological Disease Modeling. J. Investig. Dermatol. 2024, 144, 1707–1715. [Google Scholar] [CrossRef]
- Tomlinson, L.; Ramsden, D.; Leite, S.B.; Beken, S.; Bonzo, J.A.; Brown, P.; Candarlioglu, P.L.; Chan, T.S.; Chen, E.; Choi, C.K.; et al. Considerations from an International Regulatory and Pharmaceutical Industry (IQ MPS Affiliate) Workshop on the Standardization of Complex In Vitro Models in Drug Development. Adv. Biol. 2024, 8. [Google Scholar] [CrossRef]
- CEN/CENELEC FGOoC. Focus Group Organ-on-Chip Standardization Roadmap. 2024. Available online: https://www.cencenelec.eu/media/publication-july-2024-fg-ooc-roadmap.pdf (accessed on 3 October 2025).
- Davies, D.J.; Ward, R.J.; Heylings, J.R. Multi-Species Assessment of Electrical Resistance as a Skin Integrity Marker for in Vitro Percutaneous Absorption Studies. Toxicol. In Vitro 2004, 18, 351–358. [Google Scholar] [CrossRef] [PubMed]
- FDA. Skin Integrity Testing. Available online: https://www.fda.gov/media/138052/download (accessed on 4 October 2025).
- Sanches, P.L.; Vieira Carias, R.B.; Alves, G.G.; Catarino, C.M.; Bosquetti, B.; De Castilho Costa, M.C.; Di Pietro Micali, A.; Schuck, D.C.; Granjeiro, J.M.; Ribeiro, A.R. Pre-Validation of a Novel Reconstructed Skin Equivalent Model for Skin Irritation and Nanoparticle Risk Assessment. Nanoscale Adv. 2025, 7, 1353–1367. [Google Scholar] [CrossRef]
- Malik, M.; Steele, S.A.; Mitra, D.; Long, C.J.; Hickman, J.J. Trans-Epithelial/Endothelial Electrical Resistance (TEER): Current State of Integrated TEER Measurements in Organ-on-a-Chip Devices. Curr. Opin. Biomed. Eng. 2025, 34, 100588. [Google Scholar] [CrossRef]
- Holzreuter, M.A.; Segerink, L.I. Innovative Electrode and Chip Designs for Transendothelial Electrical Resistance Measurements in Organs-on-Chips. Lab Chip 2024, 24, 1121–1134. [Google Scholar] [CrossRef]
- Krumpholz, L.; Polak, S.; Wiśniowska, B. Towards the Understanding of the IVPT Results Variability—Development, Verification and Validation of the PBPK Model of Caffeine in Vitro Human Skin Permeation. Eur. J. Pharm. Sci. 2025, 204, 106943. [Google Scholar] [CrossRef]
- Srinivasan, B.; Kolli, A.R.; Esch, M.B.; Abaci, H.E.; Shuler, M.L.; Hickman, J.J. TEER Measurement Techniques for In Vitro Barrier Model Systems. J. Lab Autom. 2015, 20, 107–126. [Google Scholar] [CrossRef]
- CellQart. What Do You Know About… …TEER? 2021. Available online: https://www.sterlitech.com/media/pdf_downloads/What_do_you_know_about_TEER-050621.pdf?srsltid=AfmBOoo6vqt07TdyTsQcx1C9rVwcbVFal2YR43X08qAON1rCTtzQB8lb (accessed on 4 October 2025).
- Felix, K.; Tobias, S.; Jan, H.; Nicolas, S.; Michael, M. Measurements of Transepithelial Electrical Resistance (TEER) Are Affected by Junctional Length in Immature Epithelial Monolayers. Histochem. Cell Biol. 2021, 156, 609–616. [Google Scholar] [CrossRef]
- Gelker, M.; Müller-Goymann, C.C.; Viöl, W. Plasma Permeabilization of Human Excised Full-Thickness Skin by Μs-and Ns-Pulsed DBD. Ski. Pharmacol. Physiol. 2020, 33, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, D.; Paranjape, S.; Jain, R.; Dandekar, P. Disease-Related Biomarkers as Experimental Endpoints in 3D Skin Culture Models. Cytotechnology 2023, 75, 165–193. [Google Scholar] [CrossRef]
- Michielon, E.; López González, M.; Burm, J.L.A.; Waaijman, T.; Jordanova, E.S.; de Gruijl, T.D.; Gibbs, S. Micro-Environmental Cross-Talk in an Organotypic Human Melanoma-in-Skin Model Directs M2-like Monocyte Differentiation via IL-10. Cancer Immunol. Immunother. 2020, 69, 2319–2331. [Google Scholar] [CrossRef] [PubMed]
- Sarama, R.; Matharu, P.K.; Abduldaiem, Y.; Corrêa, M.P.; Gil, C.D.; Greco, K.V. In Vitro Disease Models for Understanding Psoriasis and Atopic Dermatitis. Front. Bioeng. Biotechnol. 2022, 10, 803218. [Google Scholar] [CrossRef]
- Jang, H.J.; Lee, J.B.; Yoon, J.K. Advanced In Vitro Three-Dimensional Skin Models of Atopic Dermatitis. Tissue Eng. Regen. Med. 2023, 20, 539–552. [Google Scholar] [CrossRef]
- Cai, R.; Gimenez-Camino, N.; Xiao, M.; Bi, S.; Divito, K.A. Technological Advances in Three-Dimensional Skin Tissue Engineering. Rev. Adv. Mater. Sci. 2023, 62, 1–22. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Z.; Zhang, M.; Song, F.; Feng, C.; Liu, H. Simple and Robust 3D Bioprinting of Full-Thickness Human Skin Tissue. Bioengineered 2022, 13, 10087–10097. [Google Scholar] [CrossRef]
- Jin, R.; Cui, Y.; Chen, H.; Zhang, Z.; Weng, T.; Xia, S.; Yu, M.; Zhang, W.; Shao, J.; Yang, M.; et al. Three-Dimensional Bioprinting of a Full-Thickness Functional Skin Model Using Acellular Dermal Matrix and Gelatin Methacrylamide Bioink. Acta Biomater. 2021, 131, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Wiraja, C.; Zheng, M.; Singh, G.; Yong, K.T.; Xu, C. Recent Progress in Skin-on-a-Chip Platforms. Adv. Ther. 2022, 5, 2100138. [Google Scholar] [CrossRef]
- Mohamadali, M.; Ghiaseddin, A.; Irani, S.; Amirkhani, M.A.; Dahmardehei, M. Design and Evaluation of a Skin-on-a-Chip Pumpless Microfluidic Device. Sci. Rep. 2023, 13, 8861. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, A.M.; Gorkun, A.; Mahajan, N.; Willson, K.; Clouse, C.; Jeong, C.G.; Varkey, M.; Wu, M.; Walker, S.J.; Molnar, J.A.; et al. Multicellular Bioprinted Skin Facilitates Human-like Skin Architecture in Vivo. Sci. Transl. Med. 2023, 15, eadf7547. [Google Scholar] [CrossRef]
- Zhang, T.; Sheng, S.; Cai, W.; Yang, H.; Li, J.; Niu, L.; Chen, W.; Zhang, X.; Zhou, Q.; Gao, C.; et al. 3-D Bioprinted Human-Derived Skin Organoids Accelerate Full-Thickness Skin Defects Repair. Bioact. Mater. 2024, 42, 257–269. [Google Scholar] [CrossRef]
- Gudapati, H.; Torigoe, R.M.S.; Tahmasebifar, A.; Purushothaman, K.R.; Wyles, S. First-in-Kind 3D Bioprinted Human Skin Model Using Recombinant Human Collagen. Arch. Dermatol. Res. 2025, 317, 704. [Google Scholar] [CrossRef]
- Schimek, K.; Hsu, H.H.; Boehme, M.; Kornet, J.J.; Marx, U.; Lauster, R.; Pörtner, R.; Lindner, G. Bioengineering of a Full-Thickness Skin Equivalent in a 96-Well Insert Format for Substance Permeation Studies and Organ-on-a-Chip Applications. Bioengineering 2018, 5, 43. [Google Scholar] [CrossRef]
- Kucinska, M.; Murias, M.; Nowak-Sliwinska, P. Beyond Mouse Cancer Models: Three-Dimensional Human-Relevant in Vitro and Non-Mammalian in Vivo Models for Photodynamic Therapy. Mutat. Res. Rev. Mutat. Res. 2017, 773, 242–262. [Google Scholar] [CrossRef]
- Damiati, L.A.; Alsudir, S.A.; Mohammed, R.Y.; Majrashi, M.A.; Albrahim, S.H.; Algethami, A.; Alghamdi, F.O.; Alamari, H.A.; Alzaydi, M.M. 4D Printing in Skin Tissue Engineering: A Revolutionary Approach to Enhance Wound Healing and Combat Infections. Bioprinting 2025, 45, e00386. [Google Scholar] [CrossRef]
- Alanazi, B.N.; Ahmed, H.A.; Alharbi, N.S.; Ebrahim, N.A.A.; Soliman, S.M.A. Exploring 4D Printing of Smart Materials for Regenerative Medicine Applications. RSC Adv. 2025, 15, 32155–32171. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, D.; Liu, J.; Xu, S.; Qiu, F.; Hu, L.; Liu, Y.; Ke, C.; Ruan, C. 4D Printing Polymeric Biomaterials for Adaptive Tissue Regeneration. Bioact. Mater. 2025, 48, 370–399. [Google Scholar] [CrossRef] [PubMed]
- Katt, M.E.; Placone, A.L.; Wong, A.D.; Xu, Z.S.; Searson, P.C. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Front. Bioeng. Biotechnol. 2016, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research. 3D Bioprinting Market Size & Share Analysis Report, 2030. Available online: https://www.grandviewresearch.com/industry-analysis/3d-bioprinting-market (accessed on 20 May 2025).
- Risueño, I.; Valencia, L.; Jorcano, J.L.; Velasco, D. Skin-on-a-Chip Models: General Overview and Future Perspectives. APL Bioeng. 2021, 5, 030901. [Google Scholar] [CrossRef]
- Lee, M.; Hwang, J.H.; Lim, K.M. Alternatives to in Vivo Draize Rabbit Eye and Skin Irritation Tests with a Focus on 3D Reconstructed Human Cornea-like Epithelium and Epidermis Models. Toxicol. Res. 2017, 33, 191–203. [Google Scholar] [CrossRef]
- Jang, J.; Yi, H.G.; Cho, D.W. 3D Printed Tissue Models: Present and Future. ACS Biomater. Sci. Eng. 2016, 2, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test Guideline No 431. 2025. Available online: https://www.oecd.org/en/publications/2019/06/test-no-431-in-vitro-skin-corrosion-reconstructed-human-epidermis-rhe-test-method_g1g6ed0a.html (accessed on 6 October 2025).
- EURL. ECVAM—3D Reconstructed Human Skin Comet Assay. Available online: https://tsar.jrc.ec.europa.eu/test-method/tm2020-01 (accessed on 6 October 2025).
- OECD. Guideline No. 497 Defined Approaches on Skin Sensitisation Section 4 Health Effects. 2025. Available online: https://www.oecd.org/en/publications/2023/07/guideline-no-497-defined-approaches-on-skin-sensitisation_30b1718f.html (accessed on 3 October 2025).
- OECD. Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology: New Guidance Document on an Integrated Approach on Testing and Assessment (IATA) for Skin Corrosion and Irritation; Series on Testing and Assessment. 2014. Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2017/04/guidance-document-on-an-integrated-approach-on-testing-and-assessment-iata-for-skin-corrosion-and-irritation_g1g79138/9789264274693-en.pdf (accessed on 6 October 2025).
- OECD. Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology: Guidance Document on the Reporting of Defined Approaches and Individual Information Sources to Be Used Within Integrated Approaches to Testing and Assessment (IATA) for Skin Sensitisation; Series on Testing & Assessment No. 256. 2016. Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2017/07/guidance-document-on-the-reporting-of-defined-approaches-and-individual-information-sources-to-be-used-within-integrated-approaches-to-testing-and-assessment-iata-for-skin-sensitisation_g1g7e262/9789264279285-en.pdf (accessed on 6 October 2025).
- OECD. OECD/OCDE 428 OECD Guideline for the Testing of Chemicals. Available online: https://www.oecd.org/en/publications/2004/11/test-no-428-skin-absorption-in-vitro-method_g1gh4b52.html (accessed on 6 October 2025).
- OECD. Guidance Document on Good In Vitro Method Practices (GIVIMP); OECD Series on Testing and Assessment; OECD: Paris, France, 2018; ISBN 9789264311008. [Google Scholar]
- Duarte, A.C.; Costa, E.C.; Filipe, H.A.L.; Saraiva, S.M.; Jacinto, T.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P. Animal-Derived Products in Science and Current Alternatives. Biomater. Adv. 2023, 151, 213428. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, T.M.; Choi, I.G.; Choi, J.W. Phenolic Hydroxyl Groups in the Lignin Polymer Affect the Formation of Lignin Nanoparticles. Nanomaterials 2021, 11, 1790. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Duan, S.; Chen, L.; Xiang, H.; Dong, Y.; Wang, W. Systematic Evaluation of Sericin Protein as a Substitute for Fetal Bovine Serum in Cell Culture. Sci. Rep. 2016, 6, 31516. [Google Scholar] [CrossRef]

| Country/Region | Lead Regulatory Agency(ies) | Validation Agency or Technical Advisor | Accepted Model or Method | Year | Intended Purpose |
|---|---|---|---|---|---|
| European Union [40,41,42] | European Medicines Agency (EMA); European Chemicals Agency (ECHA); European Commission (EC) | EURL ECVAM, the European Commission’s center for the validation of alternative methods | IVRT and IVPT in local skin product equivalence dossiers and, update of harmonised lists including biological assessment standards; maintaining alignment with ISO 10993 | 2024 | Supported the demonstration of equivalence of topical formulations using in vitro release and permeation data, integrating barrier and performance assessment, and maintained the acceptance of in vitro skin irritation methods with reconstructed human epidermis via relevant harmonized standards |
| United Kingdom [45] | Health and Safety Executive (HSE); Medicines and Healthcare products Regulatory Agency (MHRA) | NC3Rs; collaboration with JaCVAM and ICCVAM | OECD TG 497, Defined approaches to skin sensitization | 2023 | Met skin sensitization requirements, including potency categorization, with integrated batteries that include in vitro testing |
| United States of America [26,43,44] | Food and Drug Administration (FDA); Environmental Protection Agency (EPA); Consumer Product Safety Commission (CPSC) | NICEATM e ICCVAM | - | 2023/ 2025 | Significant regulatory advancement for in vitro methods in topicals: The FDA published Draft Guidance for IVPT in ANDAs for topical products in June 2023, which now guides dossiers with in vitro human skin permeation studies. For skin sensitization, the use of defined approaches based on in vitro methods has been consolidated. The EPA updated its strategic vision in 2025, confirming the acceptance of ADs aligned with OECD TG 497, and NICEATM launched new versions of the DASS App in 2024 and 2025 for transparent execution of these ADs. |
| Canada [48,49] | Health Canada (HC); Environment and Climate Change Canada (ECCC) | SCC and alternative method networks | Inclusion of ISO 10993-23 in the list of recognised standards for medical devices; RHE models | 2025 | In vitro skin irritation based on reconstructed human epidermis for biological evaluation of medical devices |
| Brazil [51] | National Health Surveillance Agency (ANVISA) | CONCEA e BRACVAM | - | 2023 | prohibition of the use of animals when safety and efficacy have already been proven, especially affecting cosmetics. |
| China [67] | National Medical Products Administration (NMPA) | NIFDC | - | 2024 | The NIFDC published finalised technical guidelines for cosmetic safety assessment, including a specific guide for integrated skin sensitization testing and assessment strategies using in vitro methods. |
| India [54] | Central Drugs Standard Control Organization (CDSCO); Bureau of Indian Standards (BIS) | Collaborations with ICCVAM and academic centers | - | - | - |
| Japan [57] | Pharmaceuticals and Medical Devices Agency (PMDA); Ministry of Health, Labour and Welfare (MHLW) | JaCVAM | Regulatory utility statement of a defined approach to awareness raising | 2025 | Regulatory use of defined approach combining in vitro methods and other data for skin sensitization |
| South Korea [55] | Ministry of Food and Drug Safety (MFDS) | KoCVAM | - | - | - |
| Australia [68] | Therapeutic Goods Administration (TGA); Australian Industrial Chemicals Introduction Scheme (AICIS) | Partnerships with academia and the OECD | Updated categorization guidelines incorporating TG 497 | 2024 | Assessment of skin sensitization following chemical introduction using defined approaches based on in vitro methods |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa Gagosian, V.S.; Coronel, R.; Buss, B.C.; dos Santos, M.L.F.; Liste, I.; Anta, B.; Foti, L. In Vitro Skin Models as Non-Animal Methods for Dermal Drug Development and Safety Assessment. Pharmaceutics 2025, 17, 1342. https://doi.org/10.3390/pharmaceutics17101342
Costa Gagosian VS, Coronel R, Buss BC, dos Santos MLF, Liste I, Anta B, Foti L. In Vitro Skin Models as Non-Animal Methods for Dermal Drug Development and Safety Assessment. Pharmaceutics. 2025; 17(10):1342. https://doi.org/10.3390/pharmaceutics17101342
Chicago/Turabian StyleCosta Gagosian, Viviana Stephanie, Raquel Coronel, Bruna Caroline Buss, Maria Luiza Ferreira dos Santos, Isabel Liste, Berta Anta, and Leonardo Foti. 2025. "In Vitro Skin Models as Non-Animal Methods for Dermal Drug Development and Safety Assessment" Pharmaceutics 17, no. 10: 1342. https://doi.org/10.3390/pharmaceutics17101342
APA StyleCosta Gagosian, V. S., Coronel, R., Buss, B. C., dos Santos, M. L. F., Liste, I., Anta, B., & Foti, L. (2025). In Vitro Skin Models as Non-Animal Methods for Dermal Drug Development and Safety Assessment. Pharmaceutics, 17(10), 1342. https://doi.org/10.3390/pharmaceutics17101342

