Pharmacokinetics of Snake Antivenom Following Intravenous and Intramuscular Administration in Envenomed Large Animal Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical, Reagents, Snake Venom and Antivenom
2.2. Animals
2.3. Ethical Statement
2.4. Study Design
2.5. Surgical Procedure for Lymph Sampling
2.6. Venom and Antivenom Application
2.7. Lymph Samples
2.8. Blood Samples
2.9. Quantification of V. ammodytes Venom in Lymph and Serum Samples
2.10. Quantification of Atxs in Lymph and Serum Samples
2.11. Quantification of Antivenom in Lymph and Serum Samples
2.12. Quantification of IgGs Specific for the Antivenom’s F(ab’)2 Fragments in Serum Samples
2.13. Hemostasis and Coagulation Tests
2.14. Data Analysis
3. Results
3.1. Lymphatic System
3.1.1. Antivenom
3.1.2. Venom and Atxs
3.2. Systemic Circulation
3.2.1. Antivenom
3.2.2. Venom and Atxs
3.3. Hematological and Coagulation Parameters
3.4. Humoral Response Against Equine F(ab’)2 Fragments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warrell, D.A. Venomous Bites, Stings, and Poisoning: An Update. Infect. Dis. Clin. N. Am. 2019, 33, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite Envenoming. Nat. Rev. Dis. Prim. 2017, 3, 17063. [Google Scholar] [CrossRef] [PubMed]
- Chippaux, J.P.; Stock, R.P.; Massougbodji, A. Antivenom Safety and Tolerance for the Strategy of Snake Envenomation Management. In Snake Venoms; Springer: Dordrecht, The Netherlands, 2015; pp. 1–16. ISBN 9789400766488. [Google Scholar]
- Gutiérrez, J.M.; León, G.; Lomonte, B.; Angulo, Y. Antivenoms for Snakebite Envenomings. Inflamm. Allergy-Drug Targets 2011, 10, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Calmette, A. The Treatment of Animals Poisoned with Snake Venom by the Injection of Antivenomous Serum. Br. Med. J. 1896, 2, 399–400. [Google Scholar] [CrossRef]
- Habib, A.G.; Brown, N.I. The Snakebite Problem and Antivenom Crisis from a Health-Economic Perspective. Toxicon 2018, 150, 115–123. [Google Scholar] [CrossRef]
- Abubakar, I.S.; Abubakar, S.B.; Habib, A.G.; Nasidi, A.; Durfa, N.; Yusuf, P.O.; Larnyang, S.; Garnvwa, J.; Sokomba, E.; Salako, L.; et al. Randomised Controlled Double-Blind Non-Inferiority Trial of Two Antivenoms for Saw-Scaled or Carpet Viper (Echis Ocellatus) Envenoming in Nigeria. PLoS Negl. Trop. Dis. 2010, 4, e767. [Google Scholar] [CrossRef]
- Theakston, R.D.G.; Warrell, D.A. Crisis in Snake Antivenom Supply for Africa. Lancet 2000, 356, 2104. [Google Scholar] [CrossRef]
- Williams, D.J.; Gutiérrez, J.M.; Calvete, J.J.; Wüster, W.; Ratanabanangkoon, K.; Paiva, O.; Brown, N.I.; Casewell, N.R.; Harrison, R.A.; Rowley, P.D.; et al. Ending the Drought: New Strategies for Improving the Flow of Affordable, Effective Antivenoms in Asia and Africa. J. Proteomics 2011, 74, 1735–1767. [Google Scholar] [CrossRef]
- Kurtović, T.; Brvar, M.; Grenc, D.; Balija, M.L.; Križaj, I.; Halassy, B. A Single Dose of ViperfavTM May Be Inadequate for Vipera Ammodytes Snake Bite: A Case Report and Pharmacokinetic Evaluation. Toxins 2016, 8, 244. [Google Scholar] [CrossRef]
- Jollivet, V.; Hamel, J.F.; De Haro, L.; Labadie, M.; Sapori, J.M.; Cordier, L.; Villa, A.; Nisse, P.; Puskarczyk, E.; Berthelon, L.; et al. European Viper Envenomation Recorded by French Poison Control Centers: A Clinical Assessment and Management Study. Toxicon 2015, 108, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Lukšić, B.; Bradarić, N.; Prgomet, S. Venomous Snakebites in Southern Croatia. Coll. Antropol. 2006, 30, 191–197. [Google Scholar] [PubMed]
- World Health Organization. Snakebite Envenoming—A Strategy for Prevention and Control. Available online: https://www.who.int/publications/i/item/9789241515641 (accessed on 12 May 2023).
- Williams, D.; Gutiérrez, J.M.; Harrison, R.; Warrell, D.A.; White, J.; Winkel, K.D.; Gopalakrishnakone, P. The Global Snake Bite Initiative: An Antidote for Snake Bite. Lancet 2010, 375, 89–91. [Google Scholar] [CrossRef]
- Scherrmann, J.M. Antibody Treatment of Toxin Poisoning Recent Advances. Clin. Toxicol. 1994, 32, 363–375. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Solano, G.; Pla, D.; Herrera, M.; Segura, Á.; Vargas, M.; Villalta, M.; Sánchez, A.; Sanz, L.; Lomonte, B.; et al. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins 2017, 9, 163. [Google Scholar] [CrossRef]
- Gamulin, E.; Mateljak Lukačević, S.; Halassy, B.; Kurtović, T. Snake Antivenoms—Toward Better Understanding of the Administration Route. Toxins 2023, 15, 398. [Google Scholar] [CrossRef]
- Lamb, T.; de Haro, L.; Lonati, D.; Brvar, M.; Eddleston, M. Antivenom for European Vipera Species Envenoming. Clin. Toxicol. 2017, 55, 557–568. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for South-East Asia. In Guidelines for the Management of Snake-Bites; Warrell, D.A., Ed.; World Health Organization: Geneva, Switzerland, 2010; ISBN 978-92-9022-377-4. [Google Scholar]
- World Health Organization. Guidelines for the Clinical Management of Snake Bites in the South-East Asia Region; World Health Organization: Geneva, Switzerland, 2005.
- Pepin, S.; Lutsch, C.; Grandgeorge, M.; Scherrmann, J.M. Snake F(Ab’)2 Antivenom from Hyperimmunized Horse: Pharmacokinetics Following Intravenous and Intramuscular Administrations in Rabbits. Pharm. Res. 1995, 12, 1470–1473. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Abd-Elsalam, M.A. Serotherapy of Scorpion Envenoming: Pharmacokinetics of Antivenoms and a Critical Assessment of Their Usefulness. Toxicon 1996, 34, 147. [Google Scholar] [CrossRef]
- Pépin-Covatta, S.; Lutsch, C.; Grandgeorge, M.; Lang, J.; Scherrmann, J.M. Immunoreactivity and Pharmacokinetics of Horse Anti-Scorpion Venom F(Ab’)2-Scorpion Venom Interactions. Toxicol. Appl. Pharmacol. 1996, 141, 272–277. [Google Scholar] [CrossRef]
- Rivière, G.; Choumet, V.; Saliou, B.; Debray, M.; Bon, C. Absorption and Elimination of Viper Venom after Antivenom Administration. J. Pharmacol. Exp. Ther. 1998, 285, 490–495. [Google Scholar] [CrossRef]
- Krifi, M.N.; Amri, F.; Kharrat, H.; El Ayeb, M. Evaluation of Antivenom Therapy in Children Severely Envenomed by Androctonus Australis Garzonii (Aag) and Buthus Occitanus Tunetanus (Bot) Scorpions. Toxicon 1999, 37, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- Ghalim, N.; El-Hafny, B.; Sebti, F.; Heikel, J.; Lazar, N.; Moustanir, R.; Benslimane, A. Scorpion Envenomation and Serotherapy in Morocco. Am. J. Trop. Med. Hyg. 2000, 62, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Isbister, G.K.; O’Leary, M.; Miller, M.; Brown, S.G.A.; Ramasamy, S.; James, R.; Schneider, J.S. A Comparison of Serum Antivenom Concentrations after Intravenous and Intramuscular Administration of Redback (Widow) Spider Antivenom. Br. J. Clin. Pharmacol. 2007, 65, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; León, G.; Lomonte, B. Pharmacokinetic-Pharmacodynamic Relationships of Immunoglobulin Therapy for Envenomation. Clin. Pharmacokinet. 2003, 42, 721–741. [Google Scholar] [CrossRef] [PubMed]
- Audebert, F.; Urtizberea, M.; Sabouraud, A.; Scherrmann, J.M.; Bon, C. Pharmacokinetics of Vipera Aspis Venom after Experimental Envenomation in Rabbits. J. Pharmacol. Exp. Ther. 1994, 268, 1512–1517. [Google Scholar] [CrossRef] [PubMed]
- Rivière, G.; Choumet, V.; Audebert, F.; Sabouraud, A.; Debray, M.; Scherrmann, J.M.; Bon, C. Effect of Antivenom on Venom Pharmacokinetics in Experimentally Envenomed Rabbits: Toward an Optimization of Antivenom Therapy. J. Pharmacol. Exp. Ther. 1997, 281, 1–8. [Google Scholar] [CrossRef]
- Chippaux, J.P.; Massougbodji, A.; Stock, R.P.; Alagon, A.; Fassinou, E.; Ndamadjo, A.; Soglo, R.; Tamou, B.E.; Mama, A.B.; Nguemezi, A.; et al. Clinical Trial of an F(Ab′)2 Polyvalent Equine Antivenom for African Snake Bites in Benin. Am. J. Trop. Med. Hyg. 2007, 77, 538–546. [Google Scholar] [CrossRef]
- Boels, D.; Hamel, J.F.; Deguigne, M.B.; Harry, P. European Viper Envenomings: Assessment of ViperfavTM and Other Symptomatic Treatments. Clin. Toxicol. 2012, 50, 189–196. [Google Scholar] [CrossRef]
- Bula Com Informações Ao Paciente—Soro Antibotrópico (Pentavalente) e Antilaquético. Available online: http://www.funed.mg.gov.br/wp-content/uploads/2018/11/1.-Bula-de-soro-antibotrópico-pentavalente-e-antilaquético-para-o-Paciente.pdf (accessed on 11 May 2023).
- Bula Com Informações Ao Paciente—Soro Antielapídico (Bivalente). Available online: http://www.funed.mg.gov.br/wp-content/uploads/2018/11/1.-Bula-de-soro-antielapídico-bivalente-para-o-Paciente.pdf (accessed on 11 May 2023).
- Bula Com Informações Ao Paciente—Soro Anticrotálico. Available online: http://www.funed.mg.gov.br/wp-content/uploads/2020/04/Bula-do-soro-anticrotálico-para-o-paciente-2020.pdf (accessed on 11 May 2023).
- Viekvin—Viper Venom Antiserum (Equine). Available online: http://www.torlakinstitut.com/pdf/Viekvin-en.pdf (accessed on 11 May 2023).
- Vetal Serum—Ürünlerimiz. Available online: http://www.vetalserum.com.tr/en/urunler/polisera-snake-antiserum (accessed on 11 May 2023).
- Viper Venom Antitoxin. Available online: https://www.biodrug.sk/docs/en_viper_venom.pdf (accessed on 11 May 2023).
- Win, A. Intramuscular Antivenom Administration as an Effective First-Aid Measure in Management of Snakebites. In Proceedings of the Management of Snakebite and Research—Report and Working Papers of a Seminar Yangon, Yangon, Myanmar, 11–12 December 2001; pp. 29–33. [Google Scholar]
- Kurtović, T.; Karabuva, S.; Grenc, D.; Borak, M.D.; Križaj, I.; Lukšić, B.; Halassy, B.; Brvar, M. Intravenous Vipera Berus Venom-Specific Fab Fragments and Intramuscular Vipera Ammodytes Venom-Specific F(Ab’)2 Fragments in Vipera Ammodytes-Envenomed Patients. Toxins 2021, 13, 279. [Google Scholar] [CrossRef]
- Garkowski, A.; Czupryna, P.; Zajkowska, A.; Pancewicz, S.; Moniuszko, A.; Kondrusik, M.; Grygorczuk, S.; GoŁebicki, P.; Letmanowski, M.; Zajkowska, J. Vipera Berus Bites in Eastern Poland—A Retrospective Analysis of 15 Case Studies. Ann. Agric. Environ. Med. 2012, 19, 793–797. [Google Scholar] [PubMed]
- Iliev, Y.T.; Tufkova, S.G.; Zagorov, M.Y.; Nikolova, S.M. Snake Venom Poisoning in the Plovdiv Region from 2004 to 2012. Folia Med. 2014, 56, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Espino-Solis, G.P.; Riaño-Umbarila, L.; Becerril, B.; Possani, L.D. Antidotes against Venomous Animals: State of the Art and Prospectives. J. Proteomics 2009, 72, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Paniagua, D.; Vergara, I.; Boyer, L.; Alagón, A. Role of Lymphatic System on Snake Venom Absorption. In Snake Venoms; Gopalakrishnakone, P., Inagaki, H., Mukherjee, A.K., Rahmy, T.R., Vogel, C.-W., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 1–19. ISBN 978-94-007-6648-8. [Google Scholar]
- Paniagua, D.; Jiménez, L.; Romero, C.; Vergara, I.; Calderón, A.; Benard, M.; Bernas, M.J.; Rilo, H.; De Roodt, A.; D’Suze, G.; et al. Lymphatic Route of Transport and Pharmacokinetics of Micrurus Fulvius (Coral Snake) Venom in Sheep. Lymphology 2012, 45, 144–153. [Google Scholar] [PubMed]
- Porter, C.J.H.; Edwards, G.A.; Charman, S.A. Lymphatic Transport of Proteins after s.c. Injection: Implications of Animal Model Selection. Adv. Drug Deliv. Rev. 2001, 50, 157–171. [Google Scholar] [CrossRef]
- Ismail, M.; Abd-Elsalam, M.A.; Al-Ahaidib, M.S. Pharmacokinetics of 125I-Labelled Walterinnesia Aegyptia Venom and Its Specific Antivenins: Flash Absorption and Distribution of the Venom and Its Toxin versus Slow Absorption and Distribution of IgG, F(Ab’)2 and F(Ab) of the Antivenin. Toxicon 1998, 36, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Paniagua, D.; Vergara, I.; Román, R.; Romero, C.; Benard-Valle, M.; Calderón, A.; Jiménez, L.; Bernas, M.J.; Witte, M.H.; Boyer, L.V.; et al. Antivenom Effect on Lymphatic Absorption and Pharmacokinetics of Coral Snake Venom Using a Large Animal Model. Clin. Toxicol. 2019, 57, 727–734. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. In WHO Expert Committee on Biological Standardization: Sixty-Seventh Report; World Health Organization: Geneva, Switzerland, 2017; pp. 197–388. ISBN 978-92-4-121013-3. [Google Scholar]
- Woo, S.; Jusko, W.J. Interspecies Comparisons of Pharmacokinetics and Pharmacodynamics of Recombinant Human Erythropoietin. Drug Metab. Dispos. 2007, 35, 1672–1678. [Google Scholar] [CrossRef]
- Scheerlinck, J.P.Y.; Snibson, K.J.; Bowles, V.M.; Sutton, P. Biomedical Applications of Sheep Models: From Asthma to Vaccines. Trends Biotechnol. 2008, 26, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Ducrot, C.; Hom, B.B.; Béringue, V.; Coulon, J.; Fourichon, C.; Guérin, J.; Krebs, S.; Rainard, P.; Schwartz-cornil, I.; Torny, D. Issues and Special Features of Animal Health Research. Veaterinary Res. 2011, 42, 96. [Google Scholar] [CrossRef] [PubMed]
- Percie Du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE Guidelines 2.0: Updated Guidelines for Reporting Animal Research. BMC Vet. Res. 2020, 4, 242. [Google Scholar] [CrossRef]
- Halassy, B.; Habjanec, L.; Balija, M.L.; Kurtović, T.; Brgles, M.; Križaj, I. Ammodytoxin Content of Vipera Ammodytes Ammodytes Venom as a Prognostic Factor for Venom Immunogenicity. Comp. Biochem. Physiol.-C Toxicol. Pharmacol. 2010, 151, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An Add-in Program for Pharmacokinetic and Pharmacodynamic Data Analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.; Mora, R.; Lomonte, B.; Gutiérrez, J.M. Effects of Bothrops Asper Snake Venom on Lymphatic Vessels: Insights into a Hidden Aspect of Envenomation. PLoS Negl. Trop. Dis. 2008, 2, e318. [Google Scholar] [CrossRef] [PubMed]
- Maduwage, K.P.; Scorgie, F.E.; Lincz, L.F.; O’Leary, M.A.; Isbister, G.K. Procoagulant Snake Venoms Have Differential Effects in Animal Plasmas: Implications for Antivenom Testing in Animal Models. Thromb. Res. 2016, 137, 174–177. [Google Scholar] [CrossRef]
- Rojas, A.; Vargas, M.; Ramírez, N.; Estrada, R.; Segura, Á.; Herrera, M.; Villalta, M.; Gómez, A.; Gutiérrez, J.M.; León, G. Role of the Animal Model on the Pharmacokinetics of Equine-Derived Antivenoms. Toxicon 2013, 70, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Sanhajariya, S.; Duffull, S.B.; Isbister, G.K. Pharmacokinetics of Snake Venom. Toxins 2018, 10, 73. [Google Scholar] [CrossRef]
- Krifi, M.N.; Savin, S.; Debray, M.; Bon, C.; El Ayeb, M.; Choumet, V. Pharmacokinetic Studies of Scorpion Venom before and after Antivenom Immunotherapy. Toxicon 2005, 45, 187–198. [Google Scholar] [CrossRef]
- Salmonson, T.; Danielson, B.; Wikstrom, B. The Pharmacokinetics of Recombinant Human Erythropoietin after Intravenous and Subcutaneous Administration to Healthy Subjects. Br. J. Clin. Pharmacol. 1990, 29, 709–713. [Google Scholar] [CrossRef]
- Vázquez, H.; Chávez-Haro, A.; García-Ubbelohde, W.; Paniagua-Solís, J.; Alagón, A.; Sevcik, C. Pharmacokinetics of a F(Ab′)2 Scorpion Antivenom Administered Intramuscularly in Healthy Human Volunteers. Int. Immunopharmacol. 2010, 10, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Boyer, L.V.; Seifert, S.A.; Clark, R.F.; McNally, J.T.; Williams, S.R.; Nordt, S.P.; Walter, F.G.; Dart, R.C. Recurrent and Persistent Coagulopathy Following Pit Viper Envenomation. Arch. Intern. Med. 1999, 159, 706–710. [Google Scholar] [CrossRef]
- Hla, P.; Thein, T.; Maung, M.T.; Myint, L.; Tin, N.S. Circulating Antivenom Levels in Human Subjects Following Intramuscular Administration of Russell’s Viper Antivenom. In Proceedings of the Medical Research Congress, Yangon, Myanmar, 19–22 December 1989; Volume 116. [Google Scholar]
- Seifert, S.A.; Boyer, L.V. Recurrence Phenomena after Immunoglobulin Therapy for Snake Envenomations: Part 1. Pharmacokinetics and Pharmacodynamics of Immunoglobulin Antivenoms and Related Antibodies. Ann. Emerg. Med. 2001, 37, 189–195. [Google Scholar] [CrossRef]
- Vázquez, H.; Chávez-Haro, A.; García-Ubbelohde, W.; Mancilla-Nava, R.; Paniagua-Solís, J.; Alagón, A.; Sevcik, C. Pharmacokinetics of a F(Ab′)2 Scorpion Antivenom in Healthy Human Volunteers. Toxicon 2005, 46, 797–805. [Google Scholar] [CrossRef] [PubMed]
- León, G.; Herrera, M.; Segura, Á.; Villalta, M.; Vargas, M.; Gutiérrez, J.M. Pathogenic Mechanisms Underlying Adverse Reactions Induced by Intravenous Administration of Snake Antivenoms. Toxicon 2013, 76, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Dart, R.C.; McNally, J. Efficacy, Safety, and Use of Snake Antivenoms in the United States. Ann. Emerg. Med. 2001, 37, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Morais, V.; Berasain, P.; Ifrán, S.; Carreira, S.; Tortorella, M.N.; Negrín, A.; Massaldi, H. Humoral Immune Responses to Venom and Antivenom of Patients Bitten by Bothrops Snakes. Toxicon 2012, 59, 315–319. [Google Scholar] [CrossRef]
- Laustsen, A.H.; María Gutiérrez, J.; Knudsen, C.; Johansen, K.H.; Bermúdez-Méndez, E.; Cerni, F.A.; Jürgensen, J.A.; Ledsgaard, L.; Martos-Esteban, A.; Øhlenschlæger, M.; et al. Pros and Cons of Different Therapeutic Antibody Formats for Recombinant Antivenom Development. Toxicon 2018, 146, 151–175. [Google Scholar] [CrossRef]
- Mayers, C.N.; Veall, S.; Bedford, R.J.; Holley, J.L. Anti-Immunoglobulin Responses to IgG, F(Ab′)2, and Fab Botulinum Antitoxins in Mice. Immunopharmacol. Immunotoxicol. 2003, 25, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Lukšić, B.; Čulić, V.; Stričević, L.; Brizić, I.; Poljak, N.K.; Tadić, Z. Infant Death after Nose-Horned Viper (Vipera Ammodytes Ammodytes) Bite in Croatia: A Case Report. Toxicon 2010, 56, 1506–1509. [Google Scholar] [CrossRef] [PubMed]
- Frangides, C.Y.; Koulouras, V.; Kouni, S.N.; Tzortzatos, G.V.; Nikolaou, A.; Pneumaticos, J.; Pierrakeas, C.; Niarchos, C.; Kounis, N.G.; Koutsojannis, C.M. Snake Venom Poisoning in Greece. Experiences with 147 Cases. Eur. J. Intern. Med. 2006, 17, 14–27. [Google Scholar] [CrossRef]
- Dobaja Borak, M.; Grenc, D.; Reberšek, K.; Podgornik, H.; Leonardi, A.; Kurtović, T.; Halassy, B.; Križaj, I.; Brvar, M. Reversible and Transient Thrombocytopenia of Functional Platelets Induced by Nose-Horned Viper Venom. Thromb. Res. 2023, 229, 152–154. [Google Scholar] [CrossRef]
- Dobaja Borak, M.; Babić, Ž.; Caganova, B.; Grenc, D.; Karabuva, S.; Kolpach, Z.; Krakowiak, A.; Kolesnikova, V.; Lukšić, B.; Pap, C.; et al. Viper Envenomation in Central and Southeastern Europe: A Multicentre Study. Clin. Toxicol. 2023, 61, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Marinov, I.; Atanasov, V.N.; Stankova, E.; Duhalov, D.; Petrova, S.; Hubenova, A. Severe Coagulopathy after Vipera Ammodytes Ammodytes Snakebite in Bulgaria: A Case Report. Toxicon 2010, 56, 1066–1069. [Google Scholar] [CrossRef] [PubMed]
- Lukšić, B.; Karabuva, S.; Markić, J.; Polić, B.; Kovačević, T.; Městrović, J.; Križaj, I. Thrombocytopenic Purpura Following Envenomation by the Nose-Horned Viper (Vipera Ammodytes Ammodytes): Two Case Reports. Medicine 2018, 97, e13737. [Google Scholar] [CrossRef] [PubMed]
- Petricevich, V.L. Cytokine and Nitric Oxide Production Following Severe Envenomation. Curr. Drug Targets Inflamm. Allergy 2004, 3, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.P.; Chuang, J.F.; Hsu, Y.P.; Wang, S.Y.; Fu, C.Y.; Yuan, K.C.; Chen, C.H.; Kang, S.C.; Liao, C.H. Predictors of the Development of Post-Snakebite Compartment Syndrome. Scand. J. Trauma. Resusc. Emerg. Med. 2015, 23, 97. [Google Scholar] [CrossRef] [PubMed]
- Morris, N.M.; Blee, J.A.; Hauert, S. Developing a Computational Pharmacokinetic Model of Systemic Snakebite Envenomation and Antivenom Treatment. Toxicon 2022, 215, 77–90. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamulin, E.; Mateljak Lukačević, S.; Lang Balija, M.; Smajlović, A.; Vnuk, D.; Gulan Harcet, J.; Tomičić, M.; Hećimović, A.; Halassy, B.; Kurtović, T. Pharmacokinetics of Snake Antivenom Following Intravenous and Intramuscular Administration in Envenomed Large Animal Model. Pharmaceutics 2025, 17, 212. https://doi.org/10.3390/pharmaceutics17020212
Gamulin E, Mateljak Lukačević S, Lang Balija M, Smajlović A, Vnuk D, Gulan Harcet J, Tomičić M, Hećimović A, Halassy B, Kurtović T. Pharmacokinetics of Snake Antivenom Following Intravenous and Intramuscular Administration in Envenomed Large Animal Model. Pharmaceutics. 2025; 17(2):212. https://doi.org/10.3390/pharmaceutics17020212
Chicago/Turabian StyleGamulin, Erika, Sanja Mateljak Lukačević, Maja Lang Balija, Ana Smajlović, Dražen Vnuk, Jadranka Gulan Harcet, Maja Tomičić, Ana Hećimović, Beata Halassy, and Tihana Kurtović. 2025. "Pharmacokinetics of Snake Antivenom Following Intravenous and Intramuscular Administration in Envenomed Large Animal Model" Pharmaceutics 17, no. 2: 212. https://doi.org/10.3390/pharmaceutics17020212
APA StyleGamulin, E., Mateljak Lukačević, S., Lang Balija, M., Smajlović, A., Vnuk, D., Gulan Harcet, J., Tomičić, M., Hećimović, A., Halassy, B., & Kurtović, T. (2025). Pharmacokinetics of Snake Antivenom Following Intravenous and Intramuscular Administration in Envenomed Large Animal Model. Pharmaceutics, 17(2), 212. https://doi.org/10.3390/pharmaceutics17020212