Progress in Gene Therapy for Hereditary Tyrosinemia Type 1
Abstract
:1. Introduction
1.1. Hereditary Tyrosinemia Type 1
1.2. Current Treatment and Its Limitations
1.3. GT as a Potential Cure for HT1
1.3.1. HT1 Genetics
1.3.2. Technologies for Liver Directed GT
1.3.3. The Patient
2. Materials and Methods
3. Results
3.1. Pre-Clincal Results
3.1.1. Analysis Summary
3.1.2. Controls
3.1.3. Vector Free Systems
Transposons, Integrase and Viral Sequences
Plasmids Expressing Cas9,sgRNAs, and Repair Template
Oligonucleotides Expressing Hpd Knockout Cas9 and sgRNAs
Prime Editors
3.1.4. Lipid Nano Particles
Adenine Base Editor (ABE) Plus sgRNA
3.1.5. Retroviral Vector Studies
3.1.6. Lentiviral Vectors
Ex Vivo FAH Gene Cassettes Plus Promoters
In Vivo Delivery of FAH Gene Cassettes Plus Promoter
3.1.7. Adenovirus Vectors
FAH Gene Plus Promoter Cassette
Base Editor (BE) and Cas9 Approaches
3.1.8. AAV Vectors
AV Vector Containing cDNA of FAH Gene Under Control of Either CMV or Albumin Promoter
AAV2 or AAV8 Containing a 4.5 kb Homologous Repair Template of the FAH Gene
AAV2 or AAV8 with FAH Expression Cassette and Ribosomal DNA Homology Arms
AAV2 or AAV8 Dual Vectors, One Containing Cas9 and the Other sgRNA Plus FAH DNA as Homologous Recombination Donor
Dual AAV8 Vectors, One Containing SaCas9 Plus sgRNA Targeting the Apoa1 3′ UTR and the Other Including Apoa1 Homologous Sequence and the Human FAH Transgene
Dual AAV8 System Packaging a Split Prime Editor
All-in-One AAV8 Expressing Cas9 Orthologs Plus a sgRNA for Hpd Knockout
All-in-One AAV8 Vector Nme2Cas9 Plus sgRNA Plus a 358 bp HDR Donor Sequence Including PAM
Year | Author | Cargo | Animal | In Vivo/ Ex Vivo | Administration | Initial FAH+ Cell Estimate and Timepoint After NTBC Withdrawal | Later FAH+ Cell Estimate and Timepoint After NTBC Withdrawal | Biochemical Normalisation Achieved | Other Information |
---|---|---|---|---|---|---|---|---|---|
2022 | Nicolas et al. [58] | FAH gene and promoter | Pigs | In-vivo | Percutaneous ultrasound guided portal vein | 10% 2 months | 75% 7 months almost 100% 12 months | Normalised by 142-Days | Normal growth after NTBC cycles, normal histology at D337 |
2020 | Nicolas et al. [36] | FAH gene and promoter | Pigs | Ex-vivo | Transplantation via injection into multiple mesenteric lymph nodes | No data | 67–100% 8 months | Normalised to WT levels at 8 months | Normal growth after NTBC cycles, liver damage in Fah− regions |
2019 | Kaiser et al. [57] | FAH gene and promoter | FAH+/+ Mice | In-vivo | Tail vein injection | No data | 1–2% D106 w/out selection | DC induced liver injury parameters were slightly exacerbated by addition of LV-FAH | Tox study in FAH+/+ mice |
2019 | Hickey et al. [56] | FAH gene and promoter | Pigs | Ex-vivo | Transplantation of hepatocytes via portal vein infusion | No data | Almost 100% 1 year | Normalised to WT levels at 1 year and remained normal for follow up 3 years | Normal growth after NTBC cycles. 1 pig followed for 3 years. Complete amelioration and no tumours and able to reproduce. |
Year | Author | Vector | Cargo | Animal | Administration | Initial FAH+ Cell Estimate and Timepoint After NTBC Withdrawal | Later FAH+ Cell Estimate and Timepoint After NTBC Withdrawal | Allele Correction and Timepoint After NTBC Withdrawal | Average FAH Levels Compared to WT and Timepoint After NTBC Withdrawal | Biochemical Normalisation | Other Information |
---|---|---|---|---|---|---|---|---|---|---|---|
Adeno-associated Viral Vectors | |||||||||||
2000 | Chen et al. [61] | 1 AAV | FAH gene and promoter | Mice | Intrasplenic or direct liver lobe injection | No data | 50–90% 5 month | <0.1 per cell D0 0.5 per cell 3 months | No data | Partial rescue by 5 months. SA and ALT remained slightly high | Weight rescued. Non malignant hepatoma devloped. |
2012 | Wang et al. [63] | 1 AAV2 or 8 | FAH gene and ribosomal DNA homology arms | Mice | Tail vein injection | No data | 0.092% 3 weeks | No data | No data | No data | Normal growth after NTBC cycles |
2010 | Paulk et al. [62] | 1 AAV2 or 8 | Repair template with homology arms | Mice | Facial vein injection | No data | 50% 11 weeks | 0.1% 3weeks | No data | Partial improvement at 12 weeks | Weight rescued |
2021 | Ibraheim et al. [70] | 1 rAAV | Cas9, gRNA and repair template | Mice | Tail vein injection | 0.1% D0 (after 5 weeks on NTBC) | 4.7% 6 weeks | No data | No data | Normal LFTs by 6 weeks | Weight rescued |
2022 | Liu et al. [67] | 2xAAV8 | Prime Editor | Mice | Tail vein injection | No data | No data | 1.3% D24 | No data | No data | Weight rescued |
2021 | De Giorgi et al. [65] | 2xAAV8 | Cas9, gRNAs, FAH transgene + Apoa1 homology | Mice | Intraperitoneal injection | No data | No data | No data | 50% D40 | Reductions | Weight rescued |
2021 | Li et al. [64] | 2xAAV8 | Cas9, gRNA and repair template | Rabbits | Neonatal ear vein injection | No data | Widespread 5 months and 9 months | 1.71–4.13% HDR D7 Neonates | No data | Adults had normal LFTs and histology at 11 weeks | Weight rescued |
2022 | Mondal et al. [28] | 2xAAV-DJ | Cas9, gRNA and repair template | Mice | In-utero direct fetal intrahepatic injections | 5% D4 | 15% D28 >90% D49 | 25.1% 2 month | No data | Normalised to WT levels at 2M | Normal growth |
2021 | Zhang et al. [29] | 2xrAAV2/8 | Cas9, gRNA and repair template | Mice | Neonatal facial vein injection | 10.8% in neonates 1.6% adults D0 (after 28 days on NTBC) | 80% neonates 4W | No data | No data | No data | Normal growth |
2020 | Yang et al. [66] | 2xrAAV8 | Base Editor | Mice | Tail vein injection | No data | No data | 3.8% D0 after 7 days NTBC >11% D0 after 21 days NTBC | 60% D67 | Almost normal at D67 | Weight rescued |
Adenoviral Vectors | |||||||||||
2018 | Shao et al. [30] | 2 AdVs | Cas9, gRNA and repair template | Rat | Tail vein injection | 0.1% D0 | 60% 3 months 95% 9 months | No data | No data | Normalised to WT levels at 3 months | Fibrosis remianed at 3M but none at 9M |
1997 | Overturf et al. [59] | AdV | FAH gene and promoter | Mice | Tail or portal vein injection | No data | 43% 2–9 months | No data | 2.4–39% Peaked at 2 months | Partial rescue 2–9 months | Partial weight rescue. 9/13 HCC development. Renal disease persisted |
Lipid Nanoparticle Vectors | |||||||||||
2020 | Jiang et al. [52] | LNP | Base Editor | Mice | Tail vein injection | No data | Widespread patches D58 | 12.5% D0 after 12D NTBC and 4 doses | Majority correctly spliced D58 | No data | Weight rescued |
2020 | Song et al. [51] | LNP | Base Editor | Mice | Tail vein injection | No data | No data | 0.44% D0 after 6D NTBC | No data | No data | No data |
Lentiviral Vectors | |||||||||||
2022 | Nicolas et al. [58] | LV | FAH gene and promoter | Pigs | Percutaneous ultrasound guided portal vein | 10% 2 months | 75% 7 months almost 100% 12 months | N/A | No data | Normalised by 142D | Normal growth after NTBC cycles, normal histology at D337 |
2019 | Kaiser et al. [57] | LV | FAH gene and promoter | FAH+/+ Mice | Tail vein injection | No data | 1–2% D106 without selection | N/A | No data | DC induced liver injury parameters were exacerbated by addition of LV-FAH | Tox study in FAH+/+ mice |
Retroviral Vectors | |||||||||||
1996 | Overturf et al. [53] | RV | FAH gene and promoter | Mice | 5 injections via an intra-portal catheter | <1% 2D | >80% 12 months | 1 copy per cell 12 week | 59% 12 weeks | Normalised at 12 weeks | Normal growth. HCC development in first experiment |
Combined Vectors | |||||||||||
2016 | Yin et al. [71] | AAV and LNP | Cas9, gRNA and repair template | Mice | Intravenous injection | 6.2% D0 | Widespread D30 | 0.81% D0 | 9.5% mRNA D0 | Normalised to WT levels at 1 month | Normal growth by D30 |
3.1.9. Combined Vector Approaches
LNP Encapsulating mRNA Cas9 (4.5 kb) Plus an AAV Delivering an sgRNA and DNA Repair Template (AAV-HDR)
3.1.10. Preclinical Summary
3.2. Clinical Results
3.2.1. General
3.2.2. In Vivo Genome Editing via AAV and Zinc Finger Nucleases in Haemophilia B and Mucopolysaccharidosis (MPS) Type I/II
3.2.3. Ex Vivo GT via Retroviral Transduction of Autologous Hepatocytes and Transplantation for the Treatment of Familial Hypercholesterolaemia (FH)
3.2.4. In Vivo GT Using an LNP Vector Packaging Knockout CRISPR-Cas9 mRNA and sgRNA to Treat Transthyretin Amyloidosis or Hereditary Angioedema
NTLA-2001
NTLA-2002
3.2.5. In Vivo LNP Delivery of an Adenine Base Editor (ABE) to Treat FH, Atherosclerotic Cardiovascular Disease and Uncontrolled Hypercholesterolaemia
3.2.6. In Vivo AAV Vectors Carrying Human Enzyme Genes Plus Homology Arms for Integration into a Specific Locus
hLB-001
HMI-103: AAVHSC15 Plus Human Phenylalanine Hydroxylase Gene cDNA with Homology Arms for Integration into the PAH Locus to Treat PKU
4. Discussion
4.1. After Review of the Available HT1 Animal Model Data and Relevant Liver-Directed Clinical Information, Would a Single-Dose GT Approach Be Viable to Cure HT1 Considering the Scientific, Economic, and Ethical Landscape?
4.1.1. Scientific Factors
4.1.2. Economic Factors
4.1.3. Ethical Considerations
4.2. Which Vector and Payload Combination Would Be Most Suitable to Pursue into Clinical Development?
4.2.1. Vectors
Adeno-Associated Viral Vectors
LNPs
4.3. Summary
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
- Preclinical Search
- Data bases and search criteria
- PubMed Search:
- 64 results were found.
- Ovid-Embase Search:
- 235 results were found.
- Preclinical study exclusions:
Exclusion Criteria | Rationale | PubMed “Hits” Removed | Ovid “Hits” Removed |
---|---|---|---|
Review article, editorial, short survey, or HT1 general publications (focused on treatments, new-born screening, progress etc.) | General reviews not focused on HT1 preclinical study outcomes. Opinion/Potential bias in interpretation | 17 | 119 |
Pre-print, conference abstract or papers, letters | Not peer-reviewed. Data often available in other papers | 0 | 55 |
Duplicate PC study hits | 0 | 8 | |
Different Indication (e.g., cancer, HT3) | Does not align with focus of this dissertation | 1 | 1 |
Generation of an HT1 animal model | Not a GT study, not the focus of this dissertation | 4 | 5 |
Cell therapy study | Does not involve GT, not the focus of this dissertation | 3 | 2 |
mRNA multi-dose study | Not a single treatment cure, not the focus of this dissertation | 1 | 2 |
Other publications not focused on GT HT1 treatment (e.g., lipid or oral medication study) | Does not align with focus of this dissertation | 1 | 2 |
Liver transplant publication | Not GT, not the focus of this dissertation | 1 | 1 |
Not a peer-reviewed article | Peer review is a metric of quality | 0 | 0 |
GT method experiment but without any HT1 quantitative or phenotype data | No useful data from which to draw conclusions | 0 | 1 |
Surgical or cell culture method for ex vivo system | Supplementary information—No outcomes reported | 1 | 2 |
Total exclusions | 29 | 198 | |
Total publications included | 35 | 37 | |
Total publications in search | 64 | 235 |
- Final Search Output:
- Clinical Search:
References
- Tanguay, R.M. Foreword. In Hereditary Tyrosinemia, Pathogenesis, Screening and Management; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Morrow, G.; Tanguay, R.M. Biochemical and Clinical Aspects of Hereditary Tyrosinemia Type 1. Adv. Exp. Med. Biol. 2017, 959, 9–21. [Google Scholar] [CrossRef] [PubMed]
- González-Lamuño, D.; Sánchez-Pintos, P.; Andrade, F.; Couce, M.L.; Aldámiz-Echevarría, L. Treatment Adherence in Tyrosinemia Type 1 Patients. Orphanet J. Rare Dis. 2021, 16, 256. [Google Scholar] [CrossRef]
- van Spronsen, F.J.; Thomasse, Y.; Smit, G.P.; Leonard, J.V.; Clayton, P.T.; Fidler, V.; Berger, R.; Heymans, H.S. Hereditary Tyrosinemia Type I: A New Clinical Classification with Difference in Prognosis on Dietary Treatment. Hepatology 1994, 20, 1187–1191. [Google Scholar] [CrossRef]
- Masurel-Paulet, A.; Poggi-Bach, J.; Rolland, M.-O.; Bernard, O.; Guffon, N.; Dobbelaere, D.; Sarles, J.; De Baulny, H.O.; Touati, G. NTBC Treatment in Tyrosinaemia Type I: Long-term Outcome in French Patients. J. Inherit. Metab. Dis. 2008, 31, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Das, A.M.; Mayorandan, S.; Janzen, N. Diagnosing Hepatorenal Tyrosinaemia in Europe: Newborn Mass Screening Versus Selective Screening. Adv. Exp. Med. Biol. 2017, 959, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Introne, W.J. Nitisinone: Two Decades Treating Hereditary Tyrosinaemia Type 1. Lancet Diabetes Endocrinol. 2021, 9, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Campbell, H.; Singh, R.H.; Hall, E.; Ali, N. Caregiver Quality of Life with Tyrosinemia Type 1. J. Genet. Couns. 2018, 27, 723–731. [Google Scholar] [CrossRef]
- Schiff, M.; Broue, P.; Chabrol, B.; De Laet, C.; Habes, D.; Mention, K.; Sarles, J.; Spraul, A.; Valayannopoulos, V.; Ogier de Baulny, H.; et al. Heterogeneity of Follow-up Procedures in French and Belgian Patients with Treated Hereditary Tyrosinemia Type 1: Results of a Questionnaire and Proposed Guidelines. J. Inherit. Metab. Dis. 2012, 35, 823–829. [Google Scholar] [CrossRef]
- van Vliet, K.; van Ginkel, W.G.; Jahja, R.; Daly, A.; MacDonald, A.; De Laet, C.; Vara, R.; Rahman, Y.; Cassiman, D.; Eyskens, F.; et al. Emotional and Behavioral Problems, Quality of Life and Metabolic Control in NTBC-Treated Tyrosinemia Type 1 Patients. Orphanet J. Rare Dis. 2019, 14, 285. [Google Scholar] [CrossRef]
- Simoncelli, M.; Samson, J.; Bussières, J.-F.; Lacroix, J.; Dorais, M.; Battista, R.; Perreault, S. Cost-Consequence Analysis of Nitisinone for Treatment of Tyrosinemia Type I. Can. J. Hosp. Pharm. 2015, 68, 210–217. [Google Scholar] [CrossRef]
- Baruteau, J.; Waddington, S.N.; Alexander, I.E.; Gissen, P. Gene Therapy for Monogenic Liver Diseases: Clinical Successes, Current Challenges and Future Prospects. J. Inher Metab. Dis. 2017, 40, 497–517. [Google Scholar] [CrossRef]
- Angileri, F.; Bergeron, A.; Morrow, G.; Lettre, F.; Gray, G.; Hutchin, T.; Ball, S.; Tanguay, R.M. Geographical and Ethnic Distribution of Mutations of the Fumarylacetoacetate Hydrolase Gene in Hereditary Tyrosinemia Type 1. In JIMD Reports; Zschocke, J., Baumgartner, M., Morava, E., Patterson, M., Rahman, S., Peters, V., Eds.; JIMD Reports; Springer: Berlin/Heidelberg, Germany, 2014; Volume 19, pp. 43–58. ISBN 978-3-662-46189-1. [Google Scholar]
- Chi, H.; Gan, C.; Jiang, Y.; Chen, D.; Qiu, J.; Yang, Q.; Chen, Y.; Wang, M.; Yang, H.; Jiang, W.; et al. The Compound Heterozygous Mutations of c.607G>a and c.657delC in the FAH Gene Are Associated with Renal Damage with Hereditary Tyrosinemia Type 1 (HT1). Mol. Genet. Genomic Med. 2023, 11, e2090. [Google Scholar] [CrossRef] [PubMed]
- Maestro, S.; Weber, N.D.; Zabaleta, N.; Aldabe, R.; Gonzalez-Aseguinolaza, G. Novel Vectors and Approaches for Gene Therapy in Liver Diseases. JHEP Rep. 2021, 3, 100300. [Google Scholar] [CrossRef] [PubMed]
- Kholodenko, I.V.; Yarygin, K.N. Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases. Biomed. Res. Int. 2017, 2017, 8910821. [Google Scholar] [CrossRef] [PubMed]
- Grompe, M. Fah Knockout Animals as Models for Therapeutic Liver Repopulation. Adv. Exp. Med. Biol. 2017, 959, 215–230. [Google Scholar] [CrossRef]
- Ghasemzad, M.; Hashemi, M.; Lavasani, Z.M.; Hossein-Khannazer, N.; Bakhshandeh, H.; Gramignoli, R.; Keshavarz Alikhani, H.; Najimi, M.; Nikeghbalian, S.; Vosough, M. Novel Gene-Correction-Based Therapeutic Modalities for Monogenic Liver Disorders. Bioengineering 2022, 9, 392. [Google Scholar] [CrossRef]
- Bryson, T.E.; Anglin, C.M.; Bridges, P.H.; Cottle, R.N. Nuclease-Mediated Gene Therapies for Inherited Metabolic Diseases of the Liver. Yale J. Biol. Med. 2017, 90, 553–566. [Google Scholar]
- Nathwani, A.C.; Tuddenham, E.G.D.; Rangarajan, S.; Rosales, C.; McIntosh, J.; Linch, D.C.; Chowdary, P.; Riddell, A.; Pie, A.J.; Harrington, C.; et al. Adenovirus-Associated Virus Vector–Mediated Gene Transfer in Hemophilia B. N. Engl. J. Med. 2011, 365, 2357–2365. [Google Scholar] [CrossRef]
- Carter, S.; Doyon, Y. Gene Therapy in Tyrosinemia: Potential and Pitfalls. Adv. Exp. Med. Biol. 2017, 959, 231–243. [Google Scholar] [CrossRef]
- Khan, A.; Barber, D.L.; Huang, J.; Rupar, C.A.; Rip, J.W.; Auray-Blais, C.; Boutin, M.; O’Hoski, P.; Gargulak, K.; McKillop, W.M.; et al. Lentivirus-Mediated Gene Therapy for Fabry Disease. Nat. Commun. 2021, 12, 1178. [Google Scholar] [CrossRef]
- VanLith, C.; Guthman, R.; Nicolas, C.T.; Allen, K.; Du, Z.; Joo, D.J.; Nyberg, S.L.; Lillegard, J.B.; Hickey, R.D. Curative Ex Vivo Hepatocyte-Directed Gene Editing in a Mouse Model of Hereditary Tyrosinemia Type 1. Hum. Gene Ther. 2018, 29, 1315–1326. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Wei, T.; Jia, Y.; Farbiak, L.; Zhou, K.; Zhang, S.; Wei, Y.; Zhu, H.; Siegwart, D.J. Dendrimer-Based Lipid Nanoparticles Deliver Therapeutic FAH mRNA to Normalize Liver Function and Extend Survival in a Mouse Model of Hepatorenal Tyrosinemia Type I. Adv. Mater. 2018, 30, 1805308. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Ishihara, H. Difference in the Lipid Nanoparticle Technology Employed in Three Approved siRNA (Patisiran) and mRNA (COVID-19 Vaccine) Drugs. Drug Metab. Pharmacokinet. 2021, 41, 100424. [Google Scholar] [CrossRef]
- Milone, M.C.; O’Doherty, U. Clinical Use of Lentiviral Vectors. Leukemia 2018, 32, 1529–1541. [Google Scholar] [CrossRef]
- Xu, T.; Li, L.; Liu, Y.; Cao, W.; Chen, J.; Hu, S.; Liu, Y.; Li, L.; Zhou, H.; Meng, X.; et al. CRISPR/Cas9-Related Technologies in Liver Diseases: From Feasibility to Future Diversity. Int. J. Biol. Sci. 2020, 16, 2283–2295. [Google Scholar] [CrossRef]
- Mondal, G.; VanLith, C.J.; Nicolas, C.T.; Thompson, W.S.; Cao, W.S.; Hillin, L.; Haugo, B.J.; Brien, D.R.O.; Kocher, J.-P.; Kaiser, R.A.; et al. Activation of Homology-Directed DNA Repair Plays Key Role in CRISPR-Mediated Genome Correction. Gene Ther. 2023, 30, 386–397. [Google Scholar] [CrossRef]
- Zhang, Q.-S.; Tiyaboonchai, A.; Nygaard, S.; Baradar, K.; Major, A.; Balaji, N.; Grompe, M. Induced Liver Regeneration Enhances CRISPR/Cas9-Mediated Gene Repair in Tyrosinemia Type 1. Hum. Gene Ther. 2021, 32, 294–301. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, L.; Guo, N.; Wang, S.; Yang, L.; Li, Y.; Wang, M.; Yin, S.; Han, H.; Zeng, L.; et al. Cas9-Nickase–Mediated Genome Editing Corrects Hereditary Tyrosinemia in Rats. J. Biol. Chem. 2018, 293, 6883–6892. [Google Scholar] [CrossRef]
- Zeballos, M.A.C.; Gaj, T. Next-Generation CRISPR Technologies and Their Applications in Gene and Cell Therapy. Trends Biotechnol. 2021, 39, 692–705. [Google Scholar] [CrossRef]
- Conboy, I.; Murthy, N.; Etienne, J.; Robinson, Z. Making Gene Editing a Therapeutic Reality. F1000Res 2018, 7, 1970. [Google Scholar] [CrossRef]
- Frangoul, H.; Bobruff, Y.; Cappellini, M.D. Safety and Efficacy of CTX001 in Patients with Transfusion-Dependent β-Thalassemia and Sickle Cell Disease: Early Results from the Climb THAL-111 and Climb SCD-121 Studies of Autologous CRISPR-CAS9-Modified CD34 Hematopoietic Stem and Progenitor Cells. Blood 2020, 136, 3–4. [Google Scholar] [CrossRef]
- Frangoul, H.; Altshuler, D.; Cappellini, M.D.; Chen, Y.-S.; Domm, J.; Eustace, B.K.; Foell, J.; De La Fuente, J.; Grupp, S.; Handgretinger, R.; et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N. Engl. J. Med. 2021, 384, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N. Engl. J. Med. 2021, 385, 493–502. [Google Scholar] [CrossRef]
- Nicolas, C.T.; Kaiser, R.A.; Hickey, R.D.; Allen, K.L.; Du, Z.; VanLith, C.J.; Guthman, R.M.; Amiot, B.; Suksanpaisan, L.; Han, B.; et al. Ex Vivo Cell Therapy by Ectopic Hepatocyte Transplantation Treats the Porcine Tyrosinemia Model of Acute Liver Failure. Mol. Ther. Methods Clin. Dev. 2020, 18, 738–750. [Google Scholar] [CrossRef]
- PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 26 November 2024).
- Ovid: Welcome to Ovid. Available online: https://ovidsp.ovid.com/ (accessed on 20 November 2024).
- Montini, E.; Held, P.K.; Noll, M.; Morcinek, N.; Al-Dhalimy, M.; Finegold, M.; Yant, S.R.; Kay, M.A.; Grompe, M. In Vivo Correction of Murine Tyrosinemia Type I by DNA-Mediated Transposition. Mol. Ther. 2002, 6, 759–769. [Google Scholar] [CrossRef]
- Balciunas, D.; Wangensteen, K.J.; Wilber, A.; Bell, J.; Geurts, A.; Sivasubbu, S.; Wang, X.; Hackett, P.B.; Largaespada, D.A.; McIvor, R.S.; et al. Harnessing a High Cargo-Capacity Transposon for Genetic Applications in Vertebrates. PLoS Genet. 2006, 2, e169. [Google Scholar] [CrossRef]
- Wilber, A.; Wangensteen, K.J.; Chen, Y.; Zhuo, L.; Frandsen, J.L.; Bell, J.B.; Chen, Z.J.; Ekker, S.C.; McIvor, R.S.; Wang, X. Messenger RNA as a Source of Transposase for Sleeping Beauty Transposon–Mediated Correction of Hereditary Tyrosinemia Type I. Mol. Ther. 2007, 15, 1280–1287. [Google Scholar] [CrossRef]
- Pan, X.-J.; Ma, Z.-Z.; Zhang, Q.-J.; Fan, L.; Li, Q.-H. Sleeping Beauty Transposon System Is a Reliable Gene Delivery Tool for Hereditary Tyrosinaemia Type 1 Disease Gene Therapy: Size of the Foreign Gene Decides the Timing of Stable Integration into the Host Chromosomes. J. Int. Med. Res. 2012, 40, 1850–1859. [Google Scholar] [CrossRef]
- Held, P.K.; Olivares, E.C.; Aguilar, C.P.; Finegold, M.; Calos, M.P.; Grompe, M. In Vivo Correction of Murine Hereditary Tyrosinemia Type I by phiC31 Integrase-Mediated Gene Delivery. Mol. Ther. 2005, 11, 399–408. [Google Scholar] [CrossRef]
- Eggenhofer, E.; Doenecke, A.; Renner, P.; Slowik, P.; Piso, P.; Geissler, E.K.; Schlitt, H.J.; Dahlke, M.H.; Popp, F.C. High Volume Naked DNA Tail-Vein Injection Restores Liver Function in Fah-Knock out Mice. J. Gastroenterol. Hepatol. 2010, 25, 1002–1008. [Google Scholar] [CrossRef]
- Yin, H.; Xue, W.; Chen, S.; Bogorad, R.L.; Benedetti, E.; Grompe, M.; Koteliansky, V.; Sharp, P.A.; Jacks, T.; Anderson, D.G. Genome Editing with Cas9 in Adult Mice Corrects a Disease Mutation and Phenotype. Nat. Biotechnol. 2014, 32, 551–553. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Jung, S.; Ramakrishna, S.; Kim, H.H.; Lee, J. In Vivo Gene Correction with Targeted Sequence Substitution through Microhomology-Mediated End Joining. Biochem. Biophys. Res. Commun. 2018, 502, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Pankowicz, F.P.; Barzi, M.; Legras, X.; Hubert, L.; Mi, T.; Tomolonis, J.A.; Ravishankar, M.; Sun, Q.; Yang, D.; Borowiak, M.; et al. Reprogramming Metabolic Pathways in Vivo with CRISPR/Cas9 Genome Editing to Treat Hereditary Tyrosinaemia. Nat. Commun. 2016, 7, 12642. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.; Yang, Q.; Chen, B.; Bie, Y.-N.; Liu, W.; Tian, Y.; Luo, H.; Xu, T.; Liang, C.; Ye, X.; et al. Genetically Blocking HPD via CRISPR-Cas9 Protects against Lethal Liver Injury in a Pig Model of Tyrosinemia Type I. Mol. Ther. Methods Clin. Dev. 2021, 21, 530–547. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, X.-O.; Weng, Z.; Xue, W. Deletion and Replacement of Long Genomic Sequences Using Prime Editing. Nat. Biotechnol. 2022, 40, 227–234. [Google Scholar] [CrossRef]
- Jang, H.; Jo, D.H.; Cho, C.S.; Shin, J.H.; Seo, J.H.; Yu, G.; Gopalappa, R.; Kim, D.; Cho, S.-R.; Kim, J.H.; et al. Application of Prime Editing to the Correction of Mutations and Phenotypes in Adult Mice with Liver and Eye Diseases. Nat. Biomed. Eng. 2021, 6, 181–194. [Google Scholar] [CrossRef]
- Song, C.-Q.; Jiang, T.; Richter, M.; Rhym, L.H.; Koblan, L.W.; Zafra, M.P.; Schatoff, E.M.; Doman, J.L.; Cao, Y.; Dow, L.E.; et al. Adenine Base Editing in an Adult Mouse Model of Tyrosinaemia. Nat. Biomed. Eng. 2019, 4, 125–130. [Google Scholar] [CrossRef]
- Jiang, T.; Henderson, J.M.; Coote, K.; Cheng, Y.; Valley, H.C.; Zhang, X.-O.; Wang, Q.; Rhym, L.H.; Cao, Y.; Newby, G.A.; et al. Chemical Modifications of Adenine Base Editor mRNA and Guide RNA Expand Its Application Scope. Nat. Commun. 2020, 11, 1979. [Google Scholar] [CrossRef]
- Overturf, K.; Al-Dhalimy, M.; Tanguay, R.; Brantly, M.; Ou, C.N.; Finegold, M.; Grompe, M. Hepatocytes Corrected by Gene Therapy Are Selected in Vivo in a Murine Model of Hereditary Tyrosinaemia Type I. Nat. Genet. 1996, 12, 266–273. [Google Scholar] [CrossRef]
- Overturf, K.; Al-Dhalimy, M.; Manning, K.; Ou, C.-N.; Finegold, M.; Grompe, M. Ex Vivo Hepatic Gene Therapy of a Mouse Model of Hereditary Tyrosinemia Type I. Human. Gene Ther. 1998, 9, 295–304. [Google Scholar] [CrossRef]
- Tanguay, R.M.; Angileri, F.; Vogel, A. Molecular Pathogenesis of Liver Injury in Hereditary Tyrosinemia 1. In Hereditary Tyrosinemia; Tanguay, R.M., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2017; Volume 959, pp. 49–64. ISBN 978-3-319-55779-3. [Google Scholar]
- Hickey, R.D.; Nicolas, C.T.; Allen, K.; Mao, S.; Elgilani, F.; Glorioso, J.; Amiot, B.; VanLith, C.; Guthman, R.; Du, Z.; et al. Autologous Gene and Cell Therapy Provides Safe and Long-Term Curative Therapy in A Large Pig Model of Hereditary Tyrosinemia Type 1. Cell Transpl. 2019, 28, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, R.A.; Nicolas, C.T.; Allen, K.L.; Chilton, J.A.; Du, Z.; Hickey, R.D.; Lillegard, J.B. Hepatotoxicity and Toxicology of In Vivo Lentiviral Vector Administration in Healthy and Liver-Injury Mouse Models. Hum. Gene Ther. Clin. Dev. 2019, 30, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, C.T.; VanLith, C.J.; Hickey, R.D.; Du, Z.; Hillin, L.G.; Guthman, R.M.; Cao, W.J.; Haugo, B.; Lillegard, A.; Roy, D.; et al. In Vivo Lentiviral Vector Gene Therapy to Cure Hereditary Tyrosinemia Type 1 and Prevent Development of Precancerous and Cancerous Lesions. Nat. Commun. 2022, 13, 5012. [Google Scholar] [CrossRef]
- Overturf, K.; Al-Dhalimy, M.; Ou, C.N.; Finegold, M.; Tanguay, R.; Lieber, A.; Kay, M.; Grompe, M. Adenovirus-Mediated Gene Therapy in a Mouse Model of Hereditary Tyrosinemia Type I. Hum. Gene Ther. 1997, 8, 513–521. [Google Scholar] [CrossRef]
- Rossidis, A.C.; Stratigis, J.D.; Chadwick, A.C.; Hartman, H.A.; Ahn, N.J.; Li, H.; Singh, K.; Coons, B.E.; Li, L.; Lv, W.; et al. In Utero CRISPR-Mediated Therapeutic Editing of Metabolic Genes. Nat. Med. 2018, 24, 1513–1518. [Google Scholar] [CrossRef]
- Chen, S.J.; Tazelaar, J.; Moscioni, A.D.; Wilson, J.M. In Vivo Selection of Hepatocytes Transduced with Adeno-Associated Viral Vectors. Mol. Ther. 2000, 1, 414–422. [Google Scholar] [CrossRef]
- Paulk, N.K.; Wursthorn, K.; Wang, Z.; Finegold, M.J.; Kay, M.A.; Grompe, M. Adeno-associated Virus Gene Repair Corrects a Mouse Model of Hereditary Tyrosinemia in Vivo. Hepatology 2010, 51, 1200–1208. [Google Scholar] [CrossRef]
- Wang, Z.; Lisowski, L.; Finegold, M.J.; Nakai, H.; Kay, M.A.; Grompe, M. AAV Vectors Containing rDNA Homology Display Increased Chromosomal Integration and Transgene Persistence. Mol. Ther. 2012, 20, 1902–1911. [Google Scholar] [CrossRef]
- Li, N.; Gou, S.; Wang, J.; Zhang, Q.; Huang, X.; Xie, J.; Li, L.; Jin, Q.; Ouyang, Z.; Chen, F.; et al. CRISPR/Cas9-Mediated Gene Correction in Newborn Rabbits with Hereditary Tyrosinemia Type I. Mol. Ther. 2021, 29, 1001–1015. [Google Scholar] [CrossRef]
- De Giorgi, M.; Li, A.; Hurley, A.; Barzi, M.; Doerfler, A.M.; Cherayil, N.A.; Smith, H.E.; Brown, J.D.; Lin, C.Y.; Bissig, K.-D.; et al. Targeting the Apoa1 Locus for Liver-Directed Gene Therapy. Mol. Ther. Methods Clin. Dev. 2021, 21, 656–669. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Huo, Y.; Chen, X.; Yin, S.; Hu, Y.; Zhang, X.; Zheng, R.; Geng, H.; Han, H.; et al. Amelioration of an Inherited Metabolic Liver Disease through Creation of a De Novo Start Codon by Cytidine Base Editing. Mol. Ther. 2020, 28, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Dong, X.; Cheng, H.; Zheng, C.; Chen, Z.; Rodríguez, T.C.; Liang, S.-Q.; Xue, W.; Sontheimer, E.J. A Split Prime Editor with Untethered Reverse Transcriptase and Circular RNA Template. Nat. Biotechnol. 2022, 40, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Ibraheim, R.; Song, C.-Q.; Mir, A.; Amrani, N.; Xue, W.; Sontheimer, E.J. All-in-One Adeno-Associated Virus Delivery and Genome Editing by Neisseria Meningitidis Cas9 In Vivo. Genome Biol. 2018, 19, 137. [Google Scholar] [CrossRef] [PubMed]
- Agudelo, D.; Carter, S.; Velimirovic, M.; Duringer, A.; Rivest, J.-F.; Levesque, S.; Loehr, J.; Mouchiroud, M.; Cyr, D.; Waters, P.J.; et al. Versatile and Robust Genome Editing with Streptococcus Thermophilus CRISPR1-Cas9. Genome Res. 2020, 30, 107–117. [Google Scholar] [CrossRef]
- Ibraheim, R.; Tai, P.W.L.; Mir, A.; Javeed, N.; Wang, J.; Rodríguez, T.C.; Namkung, S.; Nelson, S.; Khokhar, E.S.; Mintzer, E.; et al. Self-Inactivating, All-in-One AAV Vectors for Precision Cas9 Genome Editing via Homology-Directed Repair In Vivo. Nat. Commun. 2021, 12, 6267. [Google Scholar] [CrossRef]
- Yin, H.; Song, C.-Q.; Dorkin, J.R.; Zhu, L.J.; Li, Y.; Wu, Q.; Park, A.; Yang, J.; Suresh, S.; Bizhanova, A.; et al. Therapeutic Genome Editing by Combined Viral and Non-Viral Delivery of CRISPR System Components In Vivo. Nat. Biotechnol. 2016, 34, 328–333. [Google Scholar] [CrossRef]
- Rangarajan, S.; Walsh, L.; Lester, W.; Perry, D.; Madan, B.; Laffan, M.; Yu, H.; Vettermann, C.; Pierce, G.F.; Wong, W.Y.; et al. AAV5–Factor VIII Gene Transfer in Severe Hemophilia A. N. Engl. J. Med. 2017, 377, 2519–2530. [Google Scholar] [CrossRef]
- Harmatz, P.; Prada, C.E.; Burton, B.K.; Lau, H.; Kessler, C.M.; Cao, L.; Falaleeva, M.; Villegas, A.G.; Zeitler, J.; Meyer, K.; et al. First-in-Human in Vivo Genome Editing via AAV-Zinc-Finger Nucleases for Mucopolysaccharidosis I/II and Hemophilia B. Mol. Ther. 2022, 30, 3587–3600. [Google Scholar] [CrossRef]
- Sangamo Programs On Genomic Medicine | Sangamo Therapeutics Inc. Available online: https://www.sangamo.com/programs/ (accessed on 20 November 2024).
- Grossman, M.; Wilson, J.M.; Raper, S.E. A Novel Approach for Introducing Hepatocytes into the Portal Circulation. J. Lab. Clin. Med. 1993, 121, 472–478. [Google Scholar]
- Grossman, M.; Raper, S.E.; Wilson, J.M. Transplantation of Genetically Modified Autologous Hepatocytes into Nonhuman Primates: Feasibility and Short-Term Toxicity. Hum. Gene Ther. 1992, 3, 501–510. [Google Scholar] [CrossRef]
- Raper, S.E.; Grossman, M.; Rader, D.J.; Thoene, J.G.; Clark, B.J.; Kolansky, D.M.; Muller, D.W.; Wilson, J.M. Safety and Feasibility of Liver-Directed Ex Vivo Gene Therapy for Homozygous Familial Hypercholesterolemia. Ann. Surg. 1996, 223, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Grossman, M.; Rader, D.J.; Muller, D.W.; Kolansky, D.M.; Kozarsky, K.; Clark, B.J.; Stein, E.A.; Lupien, P.J.; Brewer, H.B.; Raper, S.E. A Pilot Study of Ex Vivo Gene Therapy for Homozygous Familial Hypercholesterolaemia. Nat. Med. 1995, 1, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Finn, J.D.; Smith, A.R.; Patel, M.C.; Shaw, L.; Youniss, M.R.; van Heteren, J.; Dirstine, T.; Ciullo, C.; Lescarbeau, R.; Seitzer, J.; et al. A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing. Cell Rep. 2018, 22, 2227–2235. [Google Scholar] [CrossRef]
- Fontana, M.; Solomon, S.D.; Kachadourian, J.; Walsh, L.; Rocha, R.; Lebwohl, D.; Smith, D.; Täubel, J.; Gane, E.J.; Pilebro, B.; et al. CRISPR-Cas9 Gene Editing with Nexiguran Ziclumeran for ATTR Cardiomyopathy. N. Engl. J. Med. 2024, 391, 2231–2241. [Google Scholar] [CrossRef]
- Intellia Announces First Clinical Evidence from Ongoing Phase 1 Study That Nexiguran Ziclumeran (Nex-z), an In Vivo CRISPR/Cas9-Based Gene Editing Therapy, May Favorably Impact Disease Progression in Transthyretin (ATTR) Amyloidosis—Intellia Therapeutics. Available online: https://ir.intelliatx.com/news-releases/news-release-details/intellia-announces-first-clinical-evidence-ongoing-phase-1-study (accessed on 21 November 2024).
- Intellia Therapeutics. MAGNITUDE: A Phase 3 Study of NTLA-2001 in Participants with Transthyretin Amyloidosis with Cardiomyopathy (ATTR-CM). 2024. Available online: https://clinicaltrials.gov/study/NCT06128629?term=NTLA-2001&cond=Transthyretin%20Amyloidosis%20&rank=2 (accessed on 21 November 2024).
- Intellia Therapeutics. Presents New Interim Data from First-in-Human Study of NTLA-2002 for the Treatment of Hereditary Angioedema (HAE) at the American College of Allergy, Asthma & Immunology 2022 Annual Scientific Meeting—Intellia Therapeutics. Available online: https://ir.intelliatx.com/news-releases/news-release-details/intellia-therapeutics-presents-new-interim-data-first-human (accessed on 20 November 2024).
- Cohn, D.M.; Gurugama, P.; Magerl, M.; Katelaris, C.H.; Launay, D.; Bouillet, L.; Petersen, R.S.; Lindsay, K.; Aygören-Pürsün, E.; Maag, D.; et al. CRISPR-Based Therapy for Hereditary Angioedema. N. Engl. J. Med. 2024, 392, 458–467. [Google Scholar] [CrossRef]
- Intellia Therapeutics. HAELO: A Phase 3 Study to Evaluate NTLA-2002 in Participants with Hereditary Angioedema (HAE). 2024. Available online: https://clinicaltrials.gov/study/NCT06634420?cond=Hereditary%20Angioedema,%20HAE&term=NTLA-2002&rank=2 (accessed on 21 November 2024).
- Hermel, M.; Chiou, A.; Minhas, A.M.K.; Inam, M.; Waldman, C.E.; Youngblood, E.; Mehta, S.; Slipczuk, L.; Sheikh, S.; Meloche, C.; et al. Highlights of Cardiovascular Disease Prevention Studies Presented at the 2023 American Heart Association Scientific Sessions. Curr. Atheroscler. Rep. 2024, 26, 119–131. [Google Scholar] [CrossRef]
- Verve Therapeutics Announces Updates on Its PCSK9 Program | Verve Therapeutics. Available online: https://ir.vervetx.com/news-releases/news-release-details/verve-therapeutics-announces-updates-its-pcsk9-program/ (accessed on 21 November 2024).
- Verve Therapeutics Announces Dosing of First Patient in Heart-2 Phase 1b Clinical Trial Evaluating VERVE-102 | Verve Therapeutics. Available online: https://ir.vervetx.com/news-releases/news-release-details/verve-therapeutics-announces-dosing-first-patient-heart-2-phase/ (accessed on 21 November 2024).
- Chandler, R.J.; Venditti, C.P. Gene Therapy for Methylmalonic Acidemia: Past, Present, and Future. Hum. Gene Ther. 2019, 30, 1236–1244. [Google Scholar] [CrossRef]
- Zhang, S.; Bastille, A.; Gordo, S.; Ramesh, N.; Vora, J.; McCarthy, E.; Zhang, X.; Frank, D.; Ko, C.-W.; Wu, C.; et al. Novel AAV-Mediated Genome Editing Therapy Improves Health and Survival in a Mouse Model of Methylmalonic Acidemia. PLoS ONE 2022, 17, e0274774. [Google Scholar] [CrossRef]
- LogicBio Therapeutics Inc. Gene Therapy With hLB-001 in Pediatric Patients With Severe Methylmalonic Acidemia (SUNRISE). 2024. Available online: https://clinicaltrials.gov/study/NCT04581785?cond=MMUT&term=hLB-001%20&rank=2 (accessed on 21 November 2024).
- LogicBio Cleared to Continue Dosing in Pediatric MMA Trial—BioSpace. Available online: https://www.biospace.com/logicbio-gets-fda-green-light-continues-dosing-in-pediatric-mma-trial (accessed on 20 November 2024).
- Ahmed, S.S.; Rubin, H.; Wang, M.; Faulkner, D.; Sengooba, A.; Dollive, S.N.; Avila, N.; Ellsworth, J.L.; Lamppu, D.; Lobikin, M.; et al. Sustained Correction of a Murine Model of Phenylketonuria Following a Single Intravenous Administration of AAVHSC15-PAH. Mol. Ther. Methods Clin. Dev. 2020, 17, 568–580. [Google Scholar] [CrossRef]
- Homology Medicines Inc. Homology Medicines Announces Plan to Evaluate Strategic Options for the Company and Its Genetic Medicines Programs, Including HMI-103 Gene Editing Candidate for PKU. Available online: https://www.globenewswire.com/news-release/2023/07/27/2712687/0/en/Homology-Medicines-Announces-Plan-to-Evaluate-Strategic-Options-for-the-Company-and-its-Genetic-Medicines-Programs-including-HMI-103-Gene-Editing-Candidate-for-PKU.html (accessed on 20 November 2024).
- VanLith, C.J.; Guthman, R.M.; Nicolas, C.T.; Allen, K.L.; Liu, Y.; Chilton, J.A.; Tritz, Z.P.; Nyberg, S.L.; Kaiser, R.A.; Lillegard, J.B.; et al. Ex Vivo Hepatocyte Reprograming Promotes Homology-Directed DNA Repair to Correct Metabolic Disease in Mice After Transplantation. Hepatol. Commun. 2019, 3, 558–573. [Google Scholar] [CrossRef]
- Owens, C. Multimillion-Dollar Gene Therapies Offer Hope to Patients, but Huge Cost Concerns. Available online: https://www.axios.com/2022/09/26/gene-therapies-drug-prices-cures (accessed on 20 November 2024).
- Glybera | European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/glybera (accessed on 20 November 2024).
- Thielen, F.W.; Heine, R.J.S.D.; van den Berg, S.; Ham, R.M.T.T.; Groot, C.A.U. Towards Sustainability and Affordability of Expensive Cell and Gene Therapies? Applying a Cost-Based Pricing Model to Estimate Prices for Libmeldy and Zolgensma. Cytotherapy 2022, 24, 1245–1258. [Google Scholar] [CrossRef] [PubMed]
- Kerpel-Fronius, S.; Baroutsou, V.; Becker, S.; Carlesi, R.; Collia, L.; Franke-Bray, B.; Kleist, P.; Kurihara, C.; Laranjeira, L.F.; Matsuyama, K.; et al. Development and Use of Gene Therapy Orphan Drugs-Ethical Needs for a Broader Cooperation Between the Pharmaceutical Industry and Society. Front. Med. 2020, 7, 608249. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.S.; Mondal, G.; Vanlith, C.J.; Kaiser, R.A.; Lillegard, J.B. The Future of Gene-Targeted Therapy for Hereditary Tyrosinemia Type 1 as a Lead Indication among the Inborn Errors of Metabolism. Expert Opin. Orphan Drugs 2020, 8, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Bierwolf, J.; Volz, T.; Lütgehetmann, M.; Allweiss, L.; Riecken, K.; Warlich, M.; Fehse, B.; Kalff, J.C.; Dandri, M.; Pollok, J.-M. Primary Human Hepatocytes Repopulate Livers of Mice After In Vitro Culturing and Lentiviral-Mediated Gene Transfer. Tissue Eng. Part. A 2016, 22, 742–753. [Google Scholar] [CrossRef]
- Konkle, B.A.; Walsh, C.E.; Escobar, M.A.; Josephson, N.C.; Young, G.; von Drygalski, A.; McPhee, S.W.J.; Samulski, R.J.; Bilic, I.; de la Rosa, M.; et al. BAX 335 Hemophilia B Gene Therapy Clinical Trial Results: Potential Impact of CpG Sequences on Gene Expression. Blood 2021, 137, 763–774. [Google Scholar] [CrossRef]
- Klamroth, R.; Hayes, G.; Andreeva, T.; Gregg, K.; Suzuki, T.; Mitha, I.H.; Hardesty, B.; Shima, M.; Pollock, T.; Slev, P.; et al. Global Seroprevalence of Pre-Existing Immunity Against AAV5 and Other AAV Serotypes in People with Hemophilia A. Hum. Gene Ther. 2022, 33, 432–441. [Google Scholar] [CrossRef]
- Wang, M.-J.; Chen, F.; Lau, J.T.Y.; Hu, Y.-P. Hepatocyte Polyploidization and Its Association with Pathophysiological Processes. Cell Death Dis. 2017, 8, e2805. [Google Scholar] [CrossRef]
- Vinogradov, A.E.; Anatskaya, O.V.; Kudryavtsev, B.N. Relationship of Hepatocyte Ploidy Levels with Body Size and Growth Rate in Mammals. Genome 2001, 44, 350–360. [Google Scholar] [CrossRef]
- Anatskaya, O.V.; Vinogradov, A.E. Polyploidy as a Fundamental Phenomenon in Evolution, Development, Adaptation and Diseases. Int. J. Mol. Sci. 2022, 23, 3542. [Google Scholar] [CrossRef]
- Home | ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ (accessed on 20 November 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, H.; Carlisle, R.C. Progress in Gene Therapy for Hereditary Tyrosinemia Type 1. Pharmaceutics 2025, 17, 387. https://doi.org/10.3390/pharmaceutics17030387
Thomas H, Carlisle RC. Progress in Gene Therapy for Hereditary Tyrosinemia Type 1. Pharmaceutics. 2025; 17(3):387. https://doi.org/10.3390/pharmaceutics17030387
Chicago/Turabian StyleThomas, Helen, and Robert C. Carlisle. 2025. "Progress in Gene Therapy for Hereditary Tyrosinemia Type 1" Pharmaceutics 17, no. 3: 387. https://doi.org/10.3390/pharmaceutics17030387
APA StyleThomas, H., & Carlisle, R. C. (2025). Progress in Gene Therapy for Hereditary Tyrosinemia Type 1. Pharmaceutics, 17(3), 387. https://doi.org/10.3390/pharmaceutics17030387