Transport of Drugs Through Biological Barriers—An Asset or Risk
1. Introduction
2. An Overview of Published Articles
- (1)
- Kim, J.; Shin, S.-A.; Lee, C.S.; Chung, H.J. An Improved In Vitro Blood–Brain Barrier Model for the Evaluation of Drug Permeability Using Transwell with Shear Stress. Pharmaceutics 2024, 16, 48. https://doi.org/10.3390/pharmaceutics16010048.
- (2)
- Lin, G.C.; Friedl, H.-P.; Grabner, S.; Gerhartl, A.; Neuhaus, W. Transport of Non-Steroidal Anti-Inflammatory Drugs across an Oral Mucosa Epithelium In Vitro Model. Pharmaceutics 2024, 16, 543. https://doi.org/10.3390/pharmaceutics16040543.
- (3)
- Álvarez-Fernández, L.; Blanco-Paniagua, E.; Merino, G. ABCG2 Transports the Flukicide Nitroxynil and Affects Its Biodistribution and Secretion into Milk. Pharmaceutics 2024, 16, 558. https://doi.org/10.3390/pharmaceutics16040558.
- (4)
- Ren, C.; Ma, Y.; Wang, Y.; Luo, D.; Hong, Y.; Zhang, X.; Mei, H.; Liu, W. Palmitoylethanolamide-Incorporated Elastic Nano-Liposomes for Enhanced Transdermal Delivery and Anti-Inflammation. Pharmaceutics 2024, 16, 876. https://doi.org/10.3390/pharmaceutics16070876.
- (5)
- Arbitman, L.; Chen, S.; Kim, B.; Lee, M.; Zou, P.; Doughty, B.; Li, Y.; Zhang, T. Assessment of Infant Exposure to Antidepressants through Breastfeeding: A Literature Review of Currently Available Approaches. Pharmaceutics 2024, 16, 847. https://doi.org/10.3390/pharmaceutics16070847.
- (6)
- Alonso-Cerda, M.J.; García-Soto, M.J.; Miranda-López, A.; Segura-Velázquez, R.; Sánchez-Betancourt, J.I.; González-Ortega, O.; Rosales-Mendoza, S. Layered Double Hydroxides (LDH) as Delivery Vehicles of a Chimeric Protein Carrying Epitopes from the Porcine Reproductive and Respiratory Syndrome Virus. Pharmaceutics 2024, 16, 841. https://doi.org/10.3390/pharmaceutics16070841.
- (7)
- Basar, E.; Mead, H.; Shum, B.; Rauter, I.; Ay, C.; Skaletz-Rorowski, A.; Brockmeyer, N.H. Biological Barriers for Drug Delivery and Development of Innovative Therapeutic Approaches in HIV, Pancreatic Cancer, and Hemophilia A/B. Pharmaceutics 2024, 16, 1207. https://doi.org/10.3390/pharmaceutics16091207.
- (8)
- Wanat, K.; Michalak, K.; Brzezińska, E. Log BB Prediction Models Using TLC and HPLC Retention Values as Protein Affinity Data. Pharmaceutics 2024, 16, 1534. https://doi.org/10.3390/pharmaceutics16121534.
- (9)
- Sobańska, A.W.; Sobański, A.M.; Wanat, K. Pesticides’ Cornea Permeability—How Serious Is This Problem? Pharmaceutics 2025, 17, 156. https://doi.org/10.3390/pharmaceutics17020156.
3. Conclusions
Conflicts of Interest
References
- Yang, R.; Wei, T.; Goldberg, H.; Wang, W.; Cullion, K.; Daniel, P.; Kohane, S. Getting Drugs across Biological Barriers. Adv. Mater. 2017, 29, 1606596. [Google Scholar] [CrossRef]
- Stillwell, W. Chapter 14-Membrane Transport. In An Introduction to Biological Membranes; Elsevier: Amsterdam, The Netherlands, 2013; pp. 305–337. ISBN 9789896540821. [Google Scholar]
- Pardridge, W.M. The Blood-Brain Barrier: Bottleneck in Brain Drug Development. NeuroRx 2005, 2, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, V.; Bulotta, S.; Cosco, D. Bypassing the Biological Barriers by Means of Biocompatible Drug Delivery Systems. Front. Pharmacol. 2021, 12, 801383. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, A.; Morrison, G.C. Exposure to Oxybenzone from Sunscreens: Daily Transdermal Uptake Estimation. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Muehlbacher, M.; Spitzer, G.M.; Liedl, K.R.; Kornhuber, J. Qualitative Prediction of Blood–Brain Barrier Permeability on a Large and Refined Dataset. J. Comput. Aided Mol. Des. 2011, 25, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Chedik, L.; Mias-Lucquin, D.; Bruyere, A.; Fardel, O. In Silico Prediction for Intestinal Absorption and Brain Penetration of Chemical Pesticides in Humans. Int. J. Environ. Res. Public Health 2017, 14, 708. [Google Scholar] [CrossRef] [PubMed]
- Brand, R.M.; Pike, J.; Wilson, R.M.; Charron, A.R. Sunscreens Containing Physical UV Blockers Can Increase Transdermal Absorption of Pesticides. Toxicol. Ind. Health 2003, 19, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Mott, F.W. The Late Professor Edwin Goldmann’s Investigations on the Central Nervous System by Vital Staining. Br. Med. J. 1913, 2, 871–873. [Google Scholar] [CrossRef]
- Meyer, H. Zur Theorie Der Alkoholnarkose. Welche Eigenschaft Der Anasthetica Bedingt Ihre Narkotische Wirkung? Archiv. Exp. Pathol. Pharmakol. 1899, 42, 109–118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobańska, A.W. Transport of Drugs Through Biological Barriers—An Asset or Risk. Pharmaceutics 2025, 17, 465. https://doi.org/10.3390/pharmaceutics17040465
Sobańska AW. Transport of Drugs Through Biological Barriers—An Asset or Risk. Pharmaceutics. 2025; 17(4):465. https://doi.org/10.3390/pharmaceutics17040465
Chicago/Turabian StyleSobańska, Anna Weronika. 2025. "Transport of Drugs Through Biological Barriers—An Asset or Risk" Pharmaceutics 17, no. 4: 465. https://doi.org/10.3390/pharmaceutics17040465
APA StyleSobańska, A. W. (2025). Transport of Drugs Through Biological Barriers—An Asset or Risk. Pharmaceutics, 17(4), 465. https://doi.org/10.3390/pharmaceutics17040465