Drug Delivery Systems for Respiratory Diseases: Insights into the Therapeutic Innovations for Pulmonary Administration
1. Introduction
2. Overview of the Published Articles
3. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3D | Three-dimensional. |
COPD | Chronic obstructive pulmonary disease. |
mRNA | Messenger ribonucleic acid. |
NSCLC | Non-small-cell lung carcinoma. |
PTX | Paclitaxel. |
List of Contributions
- Ngema, L.M.; Acter, S.; Adeyemi, S.A.; Marimuthu, T.; Govender, M.; Ngwa, W.; Choonara, Y.E. Mesoporous Polydopamine Nano-Bowls Demonstrate a High Entrapment Efficiency and pH-Responsive Release of Paclitaxel for Suppressing A549 Lung Cancer Cell Proliferation In Vitro. Pharmaceutics 2024, 16, 1536. https://doi.org/10.3390/pharmaceutics16121536.
- Aati, S.; Farouk, H.O.; Elkarmalawy, M.H.; Aati, H.Y.; Tolba, N.S.; Hassan, H.M.; Rateb, M.E.; Hamad, D.S. Intratracheal Administration of Itraconazole-Loaded Hyaluronated Glycerosomes as a Promising Nanoplatform for the Treatment of Lung Cancer: Formulation, Physiochemical, and In Vivo Distribution. Pharmaceutics 2024, 16, 1432. https://doi.org/10.3390/pharmaceutics16111432.
- Rzewińska, A.; Szlęk, J.; Dąbrowski, D.; Juszczyk, E.; Mróz, K.; Räikkönen, H.; Siven, M.; Wieczorek, M.; Dorożyński, P. Development of a Formulation and In Vitro Evaluation of a Pulmonary Drug Delivery System for a Novel Janus Kinase (JAK) Inhibitor, CPL409116. Pharmaceutics 2024, 16, 1157. https://doi.org/10.3390/pharmaceutics16091157.
- Bruneau, C.; Mercier, C.; Leclerc, L.; Pourchez, J. The Ability of Vaping Technology to Deliver an Equivalent Respirable Dose of Beclomethasone Dipropionate Compared to Nebulization. Pharmaceutics 2024, 16, 1396. https://doi.org/10.3390/pharmaceutics16111396.
- Otto, M.; Kropp, Y.; Jäger, E.; Neumaier, M.; Thiel, M.; Quintel, M.; Tsagogiorgas, C. The Use of an Inspiration-Synchronized Vibrating Mesh Nebulizer for Prolonged Inhalative Iloprost Administration in Mechanically Ventilated Patients—An In Vitro Model. Pharmaceutics 2023, 15, 2080. https://doi.org/10.3390/pharmaceutics15082080.
- Mac Giolla Eain, M.; MacLoughlin, R. In-Line Aerosol Therapy via Nasal Cannula during Adult and Paediatric Normal, Obstructive, and Restrictive Breathing. Pharmaceutics 2023, 15, 2679. https://doi.org/10.3390/pharmaceutics15122679.
- Lopez-Campos, J.L.; Reinoso-Arija, R.; Ferrer Galván, M.; Romero Falcón, A.; Alvarez-Gutiérrez, F.J.; Ortega-Ruiz, F.; Quintana-Gallego, E. Evaluation of Different Doses in Inhaled Therapy: A Comprehensive Analysis. Pharmaceutics 2023, 15, 2206. https://doi.org/10.3390/pharmaceutics15092206.
- Sosnowski, T.R. Towards More Precise Targeting of Inhaled Aerosols to Different Areas of the Respiratory System. Pharmaceutics 2024, 16, 97. https://doi.org/10.3390/pharmaceutics16010097.
References
- Ferkol, T.; Schraufnagel, D. The Global Burden of Respiratory Disease. Ann. Am. Thorac. Soc. 2014, 11, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Levine, S.M.; Marciniuk, D.D. Global Impact of Respiratory Disease: What Can We Do, Together, to Make a Difference? Chest 2022, 161, 1153–1154. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, D.R.; Ramamurthi, A. Nanotherapeutics to Modulate the Compromised Micro-Environment for Lung Cancers and Chronic Obstructive Pulmonary Disease. Front. Pharmacol. 2018, 9, 759. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez Villegas, C.; Paz-Zulueta, M.; Herrero-Montes, M.; Parás-Bravo, P.; Madrazo Pérez, M. Cost Analysis of Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review. Health Econ. Rev. 2021, 11, 31. [Google Scholar] [CrossRef]
- Ibarra-Sánchez, L.Á.; Gámez-Méndez, A.; Martínez-Ruiz, M.; Nájera-Martínez, E.F.; Morales-Flores, B.A.; Melchor-Martínez, E.M.; Sosa-Hernández, J.E.; Parra-Saldívar, R.; Iqbal, H.M.N. Nanostructures for Drug Delivery in Respiratory Diseases Therapeutics: Revision of Current Trends and Its Comparative Analysis. J. Drug Deliv. Sci. Technol. 2022, 70, 103219. [Google Scholar] [CrossRef]
- He, S.; Gui, J.; Xiong, K.; Chen, M.; Gao, H.; Fu, Y. A Roadmap to Pulmonary Delivery Strategies for the Treatment of Infectious Lung Diseases. J. Nanobiotechnol. 2022, 20, 101. [Google Scholar] [CrossRef]
- Doroudian, M.; O’Neill, A.; Mac Loughlin, R.; Prina-Mello, A.; Volkov, Y.; Donnelly, S.C. Nanotechnology in Pulmonary Medicine. Curr. Opin. Pharmacol. 2021, 56, 85–92. [Google Scholar] [CrossRef]
- Zhong, W.; Zhang, X.; Zeng, Y.; Lin, D.; Wu, J. Recent Applications and Strategies in Nanotechnology for Lung Diseases. Nano Res. 2021, 14, 2067–2089. [Google Scholar] [CrossRef]
- Ruigrok, M.J.R.; Frijlink, H.W.; Hinrichs, W.L.J. Pulmonary Administration of Small Interfering RNA: The Route to Go? J. Control. Release 2016, 235, 14–23. [Google Scholar] [CrossRef]
- Liang, Z.; Ni, R.; Zhou, J.; Mao, S. Recent Advances in Controlled Pulmonary Drug Delivery. Drug Discov. Today 2015, 20, 380–389. [Google Scholar] [CrossRef]
- Nana, S.; Govender, M.; Choonara, Y.E. Modified-Release Pulmonary Delivery Systems for Labile Bioactives: Design, Development, and Applications. Pharmaceutics 2025, 17, 470. [Google Scholar] [CrossRef]
- Plaunt, A.J.; Nguyen, T.L.; Corboz, M.R.; Malinin, V.S.; Cipolla, D.C. Strategies to Overcome Biological Barriers Associated with Pulmonary Drug Delivery. Pharmaceutics 2022, 14, 302. [Google Scholar] [CrossRef] [PubMed]
- El-Sherbiny, I.M.; El-Baz, N.M.; Yacoub, M.H. Inhaled Nano- and Microparticles for Drug Delivery. Glob. Cardiol. Sci. Pract. 2015, 2015, 2. [Google Scholar] [CrossRef] [PubMed]
- Labiris, N.R.; Dolovich, M.B. Pulmonary Drug Delivery. Part II: The Role of Inhalant Delivery Devices and Drug Formulations in Therapeutic Effectiveness of Aerosolized Medications. Br. J. Clin. Pharmacol. 2003, 56, 600–612. [Google Scholar] [CrossRef]
- Govender, M.; Indermun, S.; Kumar, P.; Choonara, Y.E.; Pillay, V. Chapter 3—Advanced Drug Delivery Systems for Respiratory Diseases. In Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems; Dua, K., Hansbro, P.M., Wadhwa, R., Haghi, M., Pont, L.G., Williams, K.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 41–55. ISBN 978-0-12-820658-4. [Google Scholar]
- Iyer, R.; Hsia, C.C.W.; Nguyen, K.T. Nano-Therapeutics for the Lung: State-of-the-Art and Future Perspectives. Curr. Pharm. Des. 2015, 21, 5233–5244. [Google Scholar] [CrossRef]
- Crintea, A.; Dutu, A.G.; Samasca, G.; Florian, I.A.; Lupan, I.; Craciun, A.M. The Nanosystems Involved in Treating Lung Cancer. Life 2021, 11, 682. [Google Scholar] [CrossRef]
- Forest, V.; Pourchez, J. Nano-Delivery to the Lung—By Inhalation or Other Routes and Why Nano When Micro Is Largely Sufficient? Adv. Drug Deliv. Rev. 2022, 183, 114173. [Google Scholar] [CrossRef]
- Patel, P.V.; Soni, T.G.; Thakkar, V.T.; Gandhi, T.R. Nanoparticle as An Emerging Tool in Pulmonary Drug Delivery System. Micro Nanosyst. 2013, 5, 288–302. [Google Scholar] [CrossRef]
- Deng, Z.; Kalin, G.T.; Shi, D.; Kalinichenko, V.V. Nanoparticle Delivery Systems with Cell-Specific Targeting for Pulmonary Diseases. Am. J. Respir. Cell Mol. Biol. 2021, 64, 292–307. [Google Scholar] [CrossRef]
- Singh, P.A.; Pandey, R.P.; Awasthi, R. Unveiling the Role of Nanoparticle-Based Therapeutic Strategies for Pulmonary Drug Delivery. J. Drug Deliv. Sci. Technol. 2025, 104, 106558. [Google Scholar] [CrossRef]
- Ari, A.; Atalay, O.T.; Harwood, R.; Sheard, M.M.; Aljamhan, E.A.; Fink, J.B. Influence of Nebulizer Type, Position, and Bias Flow on Aerosol Drug Delivery in Simulated Pediatric and Adult Lung Models during Mechanical Ventilation. Respir. Care 2010, 55, 845–851. [Google Scholar] [PubMed]
- Dhand, R.; Guntur, V.P. How Best to Deliver Aerosol Medications to Mechanically Ventilated Patients. Clin. Chest Med. 2008, 29, 277–296. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govender, M.; Choonara, Y.E. Drug Delivery Systems for Respiratory Diseases: Insights into the Therapeutic Innovations for Pulmonary Administration. Pharmaceutics 2025, 17, 539. https://doi.org/10.3390/pharmaceutics17050539
Govender M, Choonara YE. Drug Delivery Systems for Respiratory Diseases: Insights into the Therapeutic Innovations for Pulmonary Administration. Pharmaceutics. 2025; 17(5):539. https://doi.org/10.3390/pharmaceutics17050539
Chicago/Turabian StyleGovender, Mershen, and Yahya E. Choonara. 2025. "Drug Delivery Systems for Respiratory Diseases: Insights into the Therapeutic Innovations for Pulmonary Administration" Pharmaceutics 17, no. 5: 539. https://doi.org/10.3390/pharmaceutics17050539
APA StyleGovender, M., & Choonara, Y. E. (2025). Drug Delivery Systems for Respiratory Diseases: Insights into the Therapeutic Innovations for Pulmonary Administration. Pharmaceutics, 17(5), 539. https://doi.org/10.3390/pharmaceutics17050539