Cenostigma bracteosum Hydroethanolic Extract: Chemical Profile, Antibacterial Activity, Cytotoxicity, and Gel Formulation Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Hydroethanolic Extract Preparation
2.3. UHPLC-MS/MS Analysis of the C. bracteosum Hydroethanolic Extract
2.4. Cell Culture and Cytotoxicity of Cenostigma bracteosum Extract
2.5. Preparation of Carbopol-Based Gels Containing the C. bracteosum Extract
2.6. Parameters of Carbopol-Based Gels Containing the C. bracteosum Extract
2.6.1. pH and Conductivity
2.6.2. Rheology
2.6.3. Spreadability
2.7. Extract and Gel Antibacterial Activity
3. Results and Discussion
3.1. Obtainment and Characterization of C. bracteosum Leaf Extract by UHPLC-MS/MS
3.2. Cytotoxicity Assay of Cenostigma bracteosum Extract
3.3. Obtainment of the C. bracteosum Gels
3.4. Gel Characterization and Preliminary Stability
3.4.1. pH and Conductivity
3.4.2. Rheology
3.4.3. Spreadability
3.5. Antibacterial Activity of the C. bracteosum Extract and Gel
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATCC | American Type Culture Collection |
UHPLC-MS/MS | Ultra High-Performance Liquid Chromatography–Mass Spectrometry/Mass Spectrometry |
FLONA | Assu National Forest |
SisGen | Genomic Management System |
SISBIO | Authorization and Information System for Biodiversity |
DAD | Diode Array Detector |
Q-TOF | Quadrupole-Time of Flight mass spectrometer |
ESI | Electrospray Ionization |
MS | Mass Spectrum |
GNPS2 | Global Natural Products Social Molecular Networking 2 |
EDTA | Ethylenediamine Tetraacetic Acid |
PBS | Phosphate-Buffered Saline |
DMSO | Dimethyl Sulfoxide |
MRSA | Methicillin-Resistant Staphylococcus aureus |
NADH | Nicotinamide Adenine Dinucleotide reduced form |
CBG | Carbopol-Based Gel |
CEG 1% | Carbopol-Based Gel containing 1% C. bracteosum extract |
CEG 3% | Carbopol-Based Gel containing 3% C. bracteosum extract |
References
- Fonseca, L.S.D. Desempenho de Espécies Nativas e da Composição de Comunidades Plantadas ao Longo de 5 Anos de Restauração na Caatinga. Master’s Thesis, Federal University of Rio Grande do Norte, Natal, Brazil, 2022. [Google Scholar]
- Dos Santos Freire, J.; Dos Santos Fernandes, B.C.; Da Silva, J.A.C.; Da Silva Araújo, J.R.; De Almeida, P.M.; Da Costa Júnior, J.S.; Da Silva, J.N.; De Freitas, S.D.L.; Martins, F.A. Phytochemical and Antioxidant Characterization, Cytogenotoxicity and Antigenotoxicity of the Fractions of the Ethanolic Extract of in Poincianella bracteosa (Tul.) L.P. Queiroz. J. Toxicol. Environ. Health A 2020, 83, 730–747. [Google Scholar] [CrossRef] [PubMed]
- Sá Filho, G.F. Avaliação da indução da neuroplasticidade e do potencial antimicrobiano dos extratos metanólicos da Catingueira (Cenostigma bracteosum) e da Canafístula (Senna trachypus), plantas nativas da Caatinga. Ph.D. Thesis, Federal University of Rio Grande do Norte, Natal, Brazil, 2022. [Google Scholar]
- Bahia, M.V.; David, J.P.; David, J.M. Occurrence of Biflavones in Leaves of Caesalpinia Pyramidalis Specimens. Quím. Nova 2010, 33, 1297–1300. [Google Scholar] [CrossRef]
- Tasneem, R.; Khan, H.M.S.; Zaka, H.S.; Khan, P. Development and Cosmeceutical Evaluation of Topical Emulgel Containing Albizia Lebbeck Bark Extract. J. Cosmet. Dermatol. 2022, 21, 1588–1595. [Google Scholar] [CrossRef] [PubMed]
- Rajak, P.; Patra, E.; Karmakar, A.; Bhuyan, B. Xanthium strumarium L. Extract Loaded Phyto-Niosome Gel: Development and In Vitro Assessment for the Treatment of Tinea Corporis. Biointerface Res. Appl. Chem. 2022, 13, 273. [Google Scholar] [CrossRef]
- Jana, S.; Manna, S.; Nayak, A.K.; Sen, K.K.; Basu, S.K. Carbopol Gel Containing Chitosan-Egg Albumin Nanoparticles for Transdermal Aceclofenac Delivery. Colloids Surf. B Biointerfaces 2014, 114, 36–44. [Google Scholar] [CrossRef]
- Dano, M.E.L.; De Oliveira, M.C.; Dos Santos, R.S.; Caetano, W.; Bruschi, M.L. Environmentally Responsive Systems for Topical Administration of Copaiba Oil-Resin: The Effect of Carbomer 974P on the Mechanical, Rheological, Drug Release and Skin Permeation. J. Drug Deliv. Sci. Technol. 2024, 96, 105711. [Google Scholar] [CrossRef]
- Chirayath, R.B.; Viswanathan, A.; Jayakumar, R.; Biswas, R.; Vijayachandran, L.S. Development of Mangifera Indica Leaf Extract Incorporated Carbopol Hydrogel and Its Antibacterial Efficacy against Staphylococcus aureus. Colloids Surf. B Biointerfaces 2019, 178, 377–384. [Google Scholar] [CrossRef]
- Shirke, C.; Wairkar, S. Liquid Crystal Nanoparticles-Based Fluocinolone Acetonide Topical Gel for Atopic Dermatitis: In Vitro and In Vivo Study. J. Pharm. Innov. 2024, 19, 19. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- The Brazilian Pharmacopeia. Available online: https://www.gov.br/anvisa/pt-br/english/pharmacopeia (accessed on 12 June 2024).
- Andrade Neto, N.F.; Matsui, K.N.; Paskocimas, C.A.; Bomio, M.R.D.; Motta, F.V. Study of the Photocatalysis and Increase of Antimicrobial Properties of Fe3+and Pb2+ Co-Doped ZnO Nanoparticles Obtained by Microwave-Assisted Hydrothermal Method. Mater. Sci. Semicond. Process. 2019, 93, 123–133. [Google Scholar] [CrossRef]
- Moll, E.; González-Martínez, C.; Chiralt, A. Release and Antibacterial Action of Phenolic Acids Incorporated into PHBV Films. Food Packag. Shelf Life 2023, 38, 101112. [Google Scholar] [CrossRef]
- Bai, J.; Wu, Y.; Bu, Q.; Zhang, K.; Gao, H. Comparative study on antibacterial mechanism of shikimic acid and quinic acid against Staphylococcus aureus through transcriptomic and metabolomic approaches. LWT 2022, 153, 112441. [Google Scholar] [CrossRef]
- Leonte, D.; Ungureanu, D.; Zaharia, V. Flavones and Related Compounds: Synthesis and Biological Activity. Molecules 2023, 28, 6528. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, A.R.; Ema, T.I.; Siddiquee, M.F.-R.; Shahriar, A.; Ahmed, H.; Mosfeq-Ul-Hasan, M.; Rahman, N.; Islam, R.; Uddin, M.R.; Mizan, M.F.R. Natural Flavonols: Actions, Mechanisms, and Potential Therapeutic Utility for Various Diseases. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Arampatzis, A.S.; Pampori, A.; Droutsa, E.; Laskari, M.; Karakostas, P.; Tsalikis, L.; Barmpalexis, P.; Dordas, C.; Assimopoulou, A.N. Occurrence of Luteolin in the Greek Flora, Isolation of Luteolin and Its Action for the Treatment of Periodontal Diseases. Molecules 2023, 28, 7720. [Google Scholar] [CrossRef]
- Shabir, I.; Kumar Pandey, V.; Shams, R.; Dar, A.H.; Dash, K.K.; Khan, S.A.; Bashir, I.; Jeevarathinam, G.; Rusu, A.V.; Esatbeyoglu, T.; et al. Promising Bioactive Properties of Quercetin for Potential Food Applications and Health Benefits: A Review. Front. Nutr. 2022, 9, 999752. [Google Scholar] [CrossRef]
- Yu, J.S.; Kim, J.-H.; Rashan, L.; Kim, I.; Lee, W.; Kim, K.H. Potential Antimicrobial Activity of Galloyl-Flavonoid Glycosides From Woodfordia uniflora Against Methicillin-Resistant Staphylococcus aureus. Front. Microbiol. 2021, 12, 784504. [Google Scholar] [CrossRef]
- Hwang, J.H. Antibacterial Effect of Amentoflavone and Its Synergistic Effect with Antibiotics. J. Microbiol. Biotechnol. 2013, 23, 953–958. [Google Scholar] [CrossRef]
- Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics. Cell 2007, 130, 797–810. [Google Scholar] [CrossRef]
- Lopes, V.R.; Schmidtke, M.; Fernandes, M.H.; Martins, R.; Vasconcelos, V. Cytotoxicity in L929 fibroblasts and inhibition of herpes simplex virus type 1 Kupka by estuarine cyanobacteria extracts. Toxicol. In Vitro 2011, 25, 944–950. [Google Scholar] [CrossRef]
- Díaz, L.; Cely-Veloza, W.; Coy-Barrera, E. Identification of Anti-Proliferative Compounds from Genista monspessulana Seeds through Covariate-Based Integration of Chemical Fingerprints and Bioactivity Datasets. Molecules 2022, 27, 3996. [Google Scholar] [CrossRef]
- Toor, R.H.; Malik, S.; Qamar, H.; Batool, F.; Tariq, M.; Nasir, Z.; Tassaduq, R.; Lian, J.B.; Stein, J.L.; Stein, G.S.; et al. Osteogenic potential of hexane and dichloromethane fraction of Cissus quadrangularis on murine preosteoblast cell line MC3T3-E1 (subclone 4). J. Cell. Physiol. 2019, 234, 23082–23096. [Google Scholar] [CrossRef]
- Saah, S.; Siriwan, D.; Trisonthi, P. Biological activities of Boesenbergia rotunda parts and extracting solvents in promoting osteogenic differentiation of pre-osteoblasts. Food Biosci. 2021, 41, 101011. [Google Scholar] [CrossRef]
- Noval, N.; Rosyifa, R.; Annisa, A. Effect of HPMC Concentration Variation as Gelling Agent on Physical Stability of Formulation Gel Ethanol Extract Bundung Plants (Actinuscirpus grossus). In Proceedings of the First National Seminar Universitas Sari Mulia, NS-UNISM 2019, Banjarmasin, Indonesia, 23 November 2019; EAI: Banjarmasin, Indonesia, 2020. [Google Scholar]
- Souza, R.P.; Holanda, J.N.P.D.; Sousa, L.R.B.D.; Oliveira, D.D.; Souza, D.C.P.; Sousa, R.W.R.D. Desenvolvimento farmacotécnico e controle de qualidade de um gel crioterápico à base de extrato de gengibre, mentol e cafeína. Res. Soc. Dev. 2020, 9, e110963513. [Google Scholar] [CrossRef]
- Asghar, A.; Aamir, M.N.; Sheikh, F.A.; Ahmad, N.; Alotaibi, N.F.; Bukhari, S.N.A. Preparation, Characterization of Pregabalin and Withania coagulans Extract-Loaded Topical Gel and Their Comparative Effect on Burn Injury. Gels 2022, 8, 402. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.; Akhtar, N. Phytochemical Investigations and Development of Ethosomal Gel with Brassica oleraceae L. (Brassicaceae) Extract: An Innovative Nano Approach towards Cosmetic and Pharmaceutical Industry. Ind. Crops Prod. 2022, 183, 114905. [Google Scholar] [CrossRef]
- De Souza, T.V.; De Souza, P.R.S.; Pereira, M.R.; Nunes, J.S.; Fonseca, J.L.C. A Novel Approach to Thickening Characterization of an Acrylic Latex Thickener. Prog. Org. Coat. 2017, 106, 1–10. [Google Scholar] [CrossRef]
- Arnillas, E.A.P. Obtenção e Caracterização de Formulação Fitoterápica Contendo Tintura e Extrato Padronizados de Arnica montana L. e Aesculus hippocastanum L. Master’s Thesis, Federal University of Pará, Belém, Brazil, 2015. [Google Scholar]
- Chatterjee, S.; Mohanta, A.; De, A.; Mukherjee, A.; Hazra, A.; Niloy, P.P.; Tudu, M.; Chattopadhyay, K.; Samanta, A. Evaluation of Gum Odina/Carbopol Composite Mucoadhesive Hydrogel on Pharmaceutical Performance: Focusing on Potential Periodontal Treatment. Int. J. Biol. Macromol. 2025, 288, 138708. [Google Scholar] [CrossRef]
- Shafiei, M.; Balhoff, M.; Hayman, N.W. Chemical and Microstructural Controls on Viscoplasticity in Carbopol Hydrogel. Polymer 2018, 139, 44–51. [Google Scholar] [CrossRef]
- Tabboon, P.; Limpongsa, E.; Tuntiyasawasdikul, S.; Paluka, J.; Sripanidkulchai, B.; Pongjanyakul, T.; Jaipakdee, N. Characterization of Cannabidiol-Rich Hemp Extract Containing Mucoadhesive Gels: Nonaqueous versus Aqueous Based Formulations. J. Drug Deliv. Sci. Technol. 2025, 104, 106514. [Google Scholar] [CrossRef]
- Apriani, E.F.; Kornelia, N.; Amriani, A. Optimizing Gel Formulations Using Carbopol 940 and Sodium Alginate Containing Andrographis Paniculata Extract for Burn-Wound Healing. J. Farm. Dan Ilmu Kefarmasian Indones. 2023, 10, 300–311. [Google Scholar] [CrossRef]
- Hayat, M.; Nawaz, A.; Chinnam, S.; Muzammal, M.; Latif, M.S.; Yasin, M.; Ashique, S.; Zengin, G.; Farid, A. Formulation Development and Optimization of Herbo Synthetic Gel: In Vitro Biological Evaluation and in Vivo Wound Healing Studies. Process Biochem. 2023, 130, 116–126. [Google Scholar] [CrossRef]
- Kp, M.H.; K, S.H.; R, S.; Mohanta, G.P.; Nayar, C. Formulation and Evaluation of Herbal Gel of Pothos Scandens Linn. Asian Pac. J. Trop. Med. 2010, 3, 988–992. [Google Scholar] [CrossRef]
Peak | Compound | Retention Time (min) | Molecular Formula | m/z Theoretical [M + H]+ | m/z Experimental [M + H]+ | Error (ppm) | Fragments (m/z) |
---|---|---|---|---|---|---|---|
1 | 5-methylnicotinic acid | 1.81 | C7H7NO2 | 138.0550 | 138.0545 | −3.6 | 92. |
2 | Quinic acid | 1.89 | C7H12O6 | 193.0707 | 193.0711 | 2.0 | 157, 147, 139, 129, 121, 111. |
3 | Dihydroferulic acid | 2.50 | C10H12O4 | 197.0808 | 197.0797 | −5.6 | 147, 137, 119. |
4 | Xanthurenic acid | 5.30 | C10H7NO4 | 206.0448 | 206.0455 | 3.4 | 188, 178, 160, 132, 105, 77. |
5 | Chrysoeriol 7-O-glucoside | 6.98 | C22H22O11 | 463.1235 | 463.1247 | 2.6 | 301, 286. |
6 | Quercetin 3-(6″-galloylglucoside) isomer | 7.97 | C28H24O16 | 617.1137 | 617.1128 | −1.4 | 315, 303, 153. |
7 | Quercetin 3-(6″-galloylglucoside) isomer | 8.05 | C28H24O16 | 617.1137 | 617.1137 | 0 | 315, 303, 153. |
8 | Isoquercetin isomer | 8.28 | C21H20O12 | 465.1028 | 465.1028 | 0 | 303. |
9 | Isoquercetin isomer | 8.36 | C21H20O12 | 465.1028 | 465.1045 | 3.6 | 303. |
10 | Kaempferol 3-(6″-galloylglucoside) isomer | 8.43 | C28H24O15 | 601.1188 | 601.1203 | 2.5 | 315, 287, 153. |
11 | Ellagic acid | 8.59 | C14H6O8 | 303.0135 | 303.0135 | 0 | 303, 229, 201. |
12 | Kaempferol 3-(6″-galloylglucoside) isomer | 8.74 | C28H24O15 | 601.1188 | 601.1180 | −1.3 | 315, 287, 153. |
13 | Luteolin 7-O-glucoside | 8.89 | C21H20O11 | 449.1078 | 449.1083 | 1.1 | 287. |
14 | 7-O-Methyl luteolin | 9.04 | C16H12O6 | 301.0707 | 301.0708 | 0.3 | 286, 258. |
15 | Chrysoeriol | 9.12 | C16H12O6 | 301.0707 | 301.0707 | 0 | 286, 258. |
16 | Kaempferol-3-glucoside-6″-p-coumaroyl | 10.71 | C30H26O13 | 595.1446 | 595.1492 | 7.7 | 309, 287, 147. |
17 | Luteolin | 11.18 | C15H10O6 | 287.0550 | 287.0547 | −1.0 | 201, 153, 135. |
18 | Amentoflavone | 15.51 | C30H18O10 | 539.0973 | 539.0979 | 1.1 | 497, 431, 387. |
Samples (pH ± sd 1) | D0 | D7 | D15 | D30 |
---|---|---|---|---|
CBG | 7.9 ± 0.11 | 8.0 ± 0.07 | 8.0 ± 0.04 | 7.9 ± 0.03 |
CEG 1% | 6.8 ± 0.43 | 7.1 ± 0.03 | 7.1 ± 0.08 | 7.2 ± 0.12 |
CEG 3% | 6.7 ± 0.08 | 6.5 ± 0.07 | 6.4 ± 0.11 | 6.3 ± 0.14 |
Samples (µS/cm ± sd 1) | D0 | D7 | D15 | D30 |
---|---|---|---|---|
CBG | 280.4 ± 36.1 | 333.2 ± 23.0 | 351.4 ± 34.2 | 459.9 ± 71.3 |
CEG 1% | 346.9 ± 51.8 | 544.0 ± 96.8 | 660.3 ± 72.8 | 495.8 ± 28.1 |
CEG 3% | 484.5 ± 7.9 | 674.3 ± 19.6 | 733.0 ± 70.1 | 825.1 ± 79.2 |
Samples | S. aureus (mm ± sd 1) | E. coli (mm ± sd 1) |
---|---|---|
C. bracteosum extract | 15.5 ± 0.7 | 11.5 ± 0.7 |
CBG | 0.0 | 0.0 |
CEG 1% | 0.0 | 0.0 |
CEG 3% | 6.0 ± 0.0 | 0.0 |
Vancomycin (30 µg) | 20 ± 0.6 | - |
Gentamicin (10 µg) | - | 19 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, A.R.; Pinheiro, F.A.S.D.; Fideles, M.G.M.; Cunha, R.B.L.; Confessor, V.P.P.; Matsui, K.N.; Paiva, W.S.; Rocha, H.A.O.; Ganade, G.; Espindola, L.S.; et al. Cenostigma bracteosum Hydroethanolic Extract: Chemical Profile, Antibacterial Activity, Cytotoxicity, and Gel Formulation Development. Pharmaceutics 2025, 17, 780. https://doi.org/10.3390/pharmaceutics17060780
Almeida AR, Pinheiro FASD, Fideles MGM, Cunha RBL, Confessor VPP, Matsui KN, Paiva WS, Rocha HAO, Ganade G, Espindola LS, et al. Cenostigma bracteosum Hydroethanolic Extract: Chemical Profile, Antibacterial Activity, Cytotoxicity, and Gel Formulation Development. Pharmaceutics. 2025; 17(6):780. https://doi.org/10.3390/pharmaceutics17060780
Chicago/Turabian StyleAlmeida, Addison R., Francisco A. S. D. Pinheiro, Marília G. M. Fideles, Roberto B. L. Cunha, Vitor P. P. Confessor, Kátia N. Matsui, Weslley S. Paiva, Hugo A. O. Rocha, Gislene Ganade, Laila S. Espindola, and et al. 2025. "Cenostigma bracteosum Hydroethanolic Extract: Chemical Profile, Antibacterial Activity, Cytotoxicity, and Gel Formulation Development" Pharmaceutics 17, no. 6: 780. https://doi.org/10.3390/pharmaceutics17060780
APA StyleAlmeida, A. R., Pinheiro, F. A. S. D., Fideles, M. G. M., Cunha, R. B. L., Confessor, V. P. P., Matsui, K. N., Paiva, W. S., Rocha, H. A. O., Ganade, G., Espindola, L. S., Morais, W. A., & Ferreira, L. S. (2025). Cenostigma bracteosum Hydroethanolic Extract: Chemical Profile, Antibacterial Activity, Cytotoxicity, and Gel Formulation Development. Pharmaceutics, 17(6), 780. https://doi.org/10.3390/pharmaceutics17060780