Light-Responsive PLGA Microparticles for On-Demand Vancomycin Release and Enhanced Antibacterial Efficiency
Abstract
1. Introduction
2. Materials and Methodology
2.1. Materials
2.2. Cell Lines and Cell Culture
2.3. Methodology
2.3.1. Fabrication of PLGA-ICG-Van.HCl Microparticles
2.3.2. Coating of Microparticles with Chitosan
2.3.3. Dynamic Light Scattering (DLS) and Zeta Potential Analysis
2.3.4. Production Yield (PY) of the Microparticles
2.3.5. Percent Drug Content and Entrapment Efficiency
2.3.6. Characterization of Fabricated Microparticles
2.3.7. Bond Detection by Fourier-Transform Infrared Spectroscopy (FTIR)
2.3.8. Wettability Test
2.3.9. Drug Release Assay
2.3.10. Antibacterial Tests
2.3.11. alamarBlue Biocompatibility Assay
2.3.12. Zebrafish Embryo Toxicity (ZET) Model
2.3.13. Statistical Analysis
3. Results and Discussion
3.1. Dynamic Light Scattering (DLS) and Zeta Potential Analysis
3.2. Production Yield of Microparticles
3.3. Percent Drug Content and Encapsulation Efficiency
3.4. Characterization of Fabricated Microparticles
3.5. FTIR Spectra of Chitosan-PLGA Particles to Confirm Chemical Conjugation of Chitosan to PLGA
3.6. Wettability Test
3.7. In Vitro Drug Release Assay
3.8. Antibacterial Tests
3.9. Biocompatibilty Studies of Microparticles
4. Conclusions and Future Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PLGA | Poly(lactic-co-glycolic acid) |
Van.HCl | Vancomycin Hydrochloride |
ICG | Indocyanine Green |
NIR | Near Infrared |
DCM | Dichloromethane |
FBS | Fetal Bovine Serum |
SEM | Scanning Electron Microscopy |
DLS | Dynamic Light Scattering |
ZP | Zeta Potential |
DSC | Differential Scanning Calorimetry |
FTIR | Fourier Transform Infrared |
References
- Motiei, M.; Mišík, O.; Truong, T.H.; Lizal, F.; Humpolíček, P.; Sedlařík, V.; Sáha, P. Engineering of inhalable nano-in-microparticles for co-delivery of small molecules and miRNAs. Discov. Nano 2023, 18, 38. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P. Chapter 8 - Biomedical applications. In Fundamentals of Nanotoxicology; Gupta, P., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 141–164. [Google Scholar]
- Lotter, S.; Bellmann, T.; Marx, S.; Wesinger, M.; Brand, L.; Schäfer, M.; Fischer, D.; Schober, R. Microparticle-based controlled drug delivery systems: From experiments to statistical analysis and design. In Proceedings of the GLOBECOM 2023-2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1167–1172. [Google Scholar]
- Malavia, N.; Reddy, L.; Szinai, I.; Betty, N.; Pi, J.; Kanagaraj, J.; Simonian, A.; Jennings, R.; Stoller, G. Biodegradable sustained-release drug delivery systems fabricated using a dissolvable hydrogel template technology for the treatment of ocular indications. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1296. [Google Scholar]
- Sonawane, S.S.; Pingale, P.L.; Amrutkar, S.V. PLGA: A Wow Smart Biodegradable Polymer in Drug Delivery System. Indian J. Pharm. Educ. Res. 2023, 57, s189–s197. [Google Scholar] [CrossRef]
- Martinez-Borrajo, R.; Diaz-Rodriguez, P.; Landin, M. Rationalized design to explore the full potential of PLGA microspheres as drug delivery systems. Drug Deliv. 2023, 30, 2219864. [Google Scholar] [CrossRef] [PubMed]
- Vert, M.; Schwach, G.; Engel, R.; Coudane, J. Something new in the field of PLA/GA bioresorbable polymers? J. Control. Release 1998, 53, 85–92. [Google Scholar] [CrossRef]
- Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 2001, 70, 1–20. [Google Scholar] [CrossRef]
- Hans, M.; Lowman, A. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 2002, 6, 319–327. [Google Scholar] [CrossRef]
- Jang, K.W.; Seol, D.; Ding, L.; Heo, D.N.; Lee, S.J.; Martin, J.A.; Kwon, I.K. Ultrasound-triggered PLGA microparticle destruction and degradation for controlled delivery of local cytotoxicity and drug release. Int. J. Biol. Macromol. 2018, 106, 1211–1217. [Google Scholar] [CrossRef]
- Bozuyuk, U.; Yasa, O.; Yasa, I.C.; Ceylan, H.; Kizilel, S.; Sitti, M. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano 2018, 12, 9617–9625. [Google Scholar] [CrossRef]
- Wang, Y.; Kohane, D.S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2017, 2, 1–14. [Google Scholar] [CrossRef]
- Liu, J.F.; Jang, B.; Issadore, D.; Tsourkas, A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1571. [Google Scholar] [CrossRef]
- Somasundaram, V.H.; Pillai, R.; Malarvizhi, G.; Ashokan, A.; Gowd, S.; Peethambaran, R.; Palaniswamy, S.; Unni, A.; Nair, S.; Koyakutty, M. Biodegradable radiofrequency responsive nanoparticles for augmented thermal ablation combined with triggered drug release in liver tumors. ACS Biomater. Sci. Eng. 2016, 2, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Andresen, T.L.; Jensen, S.S.; Jørgensen, K. Advanced strategies in liposomal cancer therapy: Problems and prospects of active and tumor specific drug release. Prog. Lipid Res. 2005, 44, 68–97. [Google Scholar] [CrossRef] [PubMed]
- Dilek, E.; Ozay, H. Investigation of Drug Release Behavior of Cyclomatrix Polyphosphazene Microparticles Decorated with Gold and Silver Nanoparticles. ChemistrySelect 2024, 9, e202304583. [Google Scholar] [CrossRef]
- Wolska, E.; Sadowska, K. Drug Release from Lipid Microparticles—Insights into Drug Incorporation and the Influence of Physiological Factors. Pharmaceutics 2024, 16, 545. [Google Scholar] [CrossRef]
- Ma, Z.; Qi, J. Application of Supramolecular Polymer Nanoparticles in Controlled Release System of Anticancer Drugs. J. Nanomater. 2022, 2022, 2219602. [Google Scholar] [CrossRef]
- Zaman, R.U.; Gala, R.P.; Bansal, A.; Bagwe, P.; D’Souza, M.J. Preclinical evaluation of a microparticle-based transdermal vaccine patch against metastatic breast cancer. Int. J. Pharm. 2022, 627, 122249. [Google Scholar] [CrossRef]
- Rashid, M.; Kaur, V.; Hallan, S.S.; Sharma, S.; Mishra, N. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharm. J. 2016, 24, 458–472. [Google Scholar]
- Da Silva, C.; Camps, M.; Li, T.; Chan, A.; Ossendorp, F.; Cruz, L. Co-delivery of immunomodulators in biodegradable nanoparticles improves therapeutic efficacy of cancer vaccines. Biomaterials 2019, 220, 119417. [Google Scholar] [CrossRef]
- Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 8, 271–299. [Google Scholar] [CrossRef]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surfaces B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.; Mukherjee, S.; Debnath, B. The prevention of multi-drug resistance in cancers through the application of nanotechnology-based targeted delivery systems for combination therapies involving Traditional Chinese medicine. Pharmacol. Res. Mod. Chin. Med. 2024, 10, 100386. [Google Scholar] [CrossRef]
- Unnisa, A.; Greig, N.H.; Kamal, M.A. Nanotechnology: A Promising Targeted Drug Delivery System for Brain Tumours and Alzheimer’s Disease. Curr. Med. Chem. 2023, 30, 255–270. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, N.; Gautam, A.; Dhakar, N.; Kumar, S.; Sasmal, P.K. Visible and NIR light photoactivatable o-hydroxycinnamate system for efficient drug release with fluorescence monitoring. RSC Med. Chem. 2023, 14, 1088–1100. [Google Scholar] [CrossRef]
- Lin, Y.S.; Lin, K.S.; Mdlovu, N.V.; Kung, P.Y.; Jeng, U.S. Thermal-/pH-triggered hollow mesoporous carbon nanocarrier for NIR-responsive drug release. Biomater. Adv. 2023, 151, 213477. [Google Scholar] [CrossRef]
- Hu, P.; Zhao, S.; Shi, J.; Li, F.; Wang, S.; Gan, Y.; Liu, L.; Yu, S. Precisely NIR-II-activated and pH-responsive cascade catalytic nanoreactor for controlled drug release and self-enhanced synergetic therapy. Nanoscale 2022, 14, 12219–12231. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, S.; Zuo, J.; Guo, H.; Liu, M.; Zhu, H.; Sun, H. NIR-Activated Thermosensitive Liposome–Gold Nanorod Hybrids for Enhanced Drug Delivery and Stimulus Sensitivity. ACS Biomater. Sci. Eng. 2022, 9, 340–351. [Google Scholar] [CrossRef]
- Roy, B.; Mengji, R.; Roy, S.; Pal, B.; Jana, A.; Singh, N.P. NIR-responsive lysosomotropic phototrigger: An “AIE+ ESIPT” active naphthalene-based single-component photoresponsive nanocarrier with two-photon uncaging and real-time monitoring ability. ACS Appl. Mater. Interfaces 2022, 14, 4862–4870. [Google Scholar] [CrossRef]
- Kotelnikova, P.A.; Shipunova, V.O.; Deyev, S.M. Targeted PLGA–Chitosan Nanoparticles for NIR-Triggered Phototherapy and Imaging of HER2-Positive Tumors. Pharmaceutics 2023, 16, 9. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Niu, C.; Yu, G.; Huang, X.; Shi, J.; Ma, D.; Lin, X.; Zhao, K. A NIR light-activated PLGA microsphere for controlled release of mono- or dual-drug. Polym. Test. 2022, 116, 107762. [Google Scholar] [CrossRef]
- Li, J.; Hu, H.; Jiang, Z.; Chen, S.; Pan, Y.; Guo, Q.; Xing, Q.; Jing, Z.; Hu, Y.; Wang, L. Near-infrared-induced IR780-loaded PLGA nanoparticles for photothermal therapy to treat breast cancer metastasis in bones. RSC Adv. 2019, 9, 35976–35983. [Google Scholar] [CrossRef]
- Takatsuka, S.; Kubota, T.; Kurashina, Y.; Onoe, H. Near Infrared Light-Triggerd on-Demand Drug Delivery From Non-Toxic Hydrogel Microbeads with Heat Transducer. In Proceedings of the 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 20–24 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1000–1003. [Google Scholar]
- Niu, C.; Xu, Y.; An, S.; Zhang, M.; Hu, Y.; Wang, L.; Peng, Q. Near-infrared induced phase-shifted ICG/Fe3O4 loaded PLGA nanoparticles for photothermal tumor ablation. Sci. Rep. 2017, 7, 5490. [Google Scholar] [CrossRef]
- Xiong, X.; Xu, Z.; Huang, H.; Wang, Y.; Zhao, J.; Guo, X.; Zhou, S. A NIR light triggered disintegratable nanoplatform for enhanced penetration and chemotherapy in deep tumor tissues. Biomaterials 2020, 245, 119840. [Google Scholar] [CrossRef]
- Cao, W.; He, Y.; Zhu, R.; He, Y.; Hao, Z.; Zhao, Q.; He, H.; Wang, S.; Li, C.; Gao, D. NIR light triggered size variable “remote-controlled cluster bomb” for deep penetration and tumor therapy. Chem. Eng. J. 2019, 375, 122080. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, L.; Li, Q.; Li, X. Near-infrared light triggered drug release from mesoporous silica nanoparticles. J. Mater. Chem. B 2018, 6, 7112–7121. [Google Scholar] [CrossRef]
- Furusawa, A.; Choyke, P.L.; Kobayashi, H. NIR-PIT: Will it become a standard cancer treatment? Front. Oncol. 2022, 12, 1008162. [Google Scholar] [CrossRef]
- Liu, H.W.; Hu, X.X.; Li, K.; Liu, Y.; Rong, Q.; Zhu, L.; Yuan, L.; Qu, F.L.; Zhang, X.B.; Tan, W. A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy. Chem. Sci. 2017, 8, 7689–7695. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, J.; Chen, B.; Ge, X.; Zhang, X.; Gao, S.; Ma, Q.; Song, J. NIR-II Fluorescent Activatable Drug Delivery Nanoplatform for Cancer-Targeted Combined Photodynamic and Chemotherapy. ACS Appl. Bio Mater. 2022, 5, 711–722. [Google Scholar] [CrossRef]
- Hussain, A.; Guo, S. NIR-triggered release of DOX from sophorolipid-coated mesoporous carbon nanoparticles with the phase-change material 1-tetradecanol to treat MCF-7/ADR cells. J. Mater. Chem. B 2019, 7, 974–985. [Google Scholar] [CrossRef] [PubMed]
- Alvi, M.; Yaqoob, A.; Rehman, K.; Shoaib, S.M.; Akash, M.S.H. PLGA-based nanoparticles for the treatment of cancer: Current strategies and perspectives. AAPS Open 2022, 8, 12. [Google Scholar] [CrossRef]
- Xi, J.; Wang, W.; Da, L.; Zhang, J.; Fan, L.; Gao, L. Au-PLGA hybrid nanoparticles with catalase-mimicking and near-infrared photothermal activities for photoacoustic imaging-guided cancer therapy. ACS Biomater. Sci. Eng. 2018, 4, 1083–1091. [Google Scholar] [CrossRef]
- Wang, X.; Shao, J.; Abd El Raouf, M.; Xie, H.; Huang, H.; Wang, H.; Chu, P.K.; Yu, X.F.; Yang, Y.; AbdEl-Aal, A.M.; et al. Near-infrared light-triggered drug delivery system based on black phosphorus for in vivo bone regeneration. Biomaterials 2018, 179, 164–174. [Google Scholar] [CrossRef]
- Gustafson, C.T.; Boakye-Agyeman, F.; Brinkman, C.L.; Reid, J.M.; Patel, R.; Bajzer, Z.; Dadsetan, M.; Yaszemski, M.J. Controlled Delivery of Vancomycin via Charged Hydrogels. PLoS ONE 2016, 11, e0146401. [Google Scholar] [CrossRef] [PubMed]
- Salem-Gervais, N.; Tatnall, A.; Murphy-Arteaga, R.S. Short- and Long-term Repercussions of Vancomycin on Immune Surveillance and the Efficacy of Antitumor Treatments. Cancer J. 2023, 29, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. Synthesis of curcumin and indocyanine green co-loaded PLLA microparticles via solution-enhanced dispersion using supercritical CO2 for chemo-photothermal therapy of osteosarcoma. J. Supercrit. Fluids 2022, 180, 105462. [Google Scholar]
- Feng, W.; Wei, Y.; Zhou, X. Stimulus-responsive tumor supramolecular nanotherapeutic system based on indocyanine green. BIO Web Conf. 2022, 61, 01003. [Google Scholar] [CrossRef]
- Haghighat Bayan, M.A.; Dias, Y.J.; Rinoldi, C.; Nakielski, P.; Rybak, D.; Truong, Y.B.; Yarin, A.L.; Pierini, F. Near-infrared light activated core-shell electrospun nanofibers decorated with photoactive plasmonic nanoparticles for on-demand smart drug delivery applications. J. Polym. Sci. 2023, 61, 521–533. [Google Scholar] [CrossRef]
- Qian, Y.; Chen, F.; Wang, M.; Sun, Q.; Shao, D.; Li, C. Near-Infrared Light Triggered Intelligent Nanoplatform for Synergistic Chemo-Photodynamic Therapy of Tumor. Adv. Opt. Mater. 2023, 11, 2202060. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, H.B.; Ma, R.; Yu, M.; Huang, Y.; Li, L.; Zhao, J. A DNA-based nanodevice for near-infrared light-controlled drug release and bioimaging. Nano Today 2023, 48, 101747. [Google Scholar] [CrossRef]
- Wu, D.; Ji, W.; Xu, S.; Li, Y.; Ji, Y.; Fu, K.; Yang, G. Near-infrared Light-Triggered Size-Shrinkable theranostic nanomicelles for effective tumor targeting and regression. Int. J. Pharm. 2024, 658, 124203. [Google Scholar] [CrossRef]
- Mohanan, S.; Guan, X.; Liang, M.; Karakoti, A.; Vinu, A. Stimuli-Responsive Silica Silanol Conjugates: Strategic Nanoarchitectonics in Targeted Drug Delivery. Small 2024, 20, 2301113. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Zhang, Y.; Huang, J.; Wang, Z.; Lv, W.; Li, X.; Wang, Y.; Huang, C.; Liu, H. Drug delivery particles for targeted imaging-guided photothermal/chemotherapy synergy cancer therapy. Heliyon 2024, 10, e33788. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Du, X.; Liu, J.; Wang, G.; Yang, J.; Wang, X.; Han, S.; Huo, Z. Novel rod-like carbon nanomaterials as near infrared-responsive drug delivery system for potential anticancer applications. Micro Nano Lett. 2024, 19, e12190. [Google Scholar] [CrossRef]
- ISO 17034:2016; International Organization for Standardization. General Requirements for the Competence of Reference Material Producers. ISO: Geneva, Switzerland, 2016.
- ISO/IEC 17025:2017; International Organization for Standardization. General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
- Si, W.; Yang, Q.; Zong, Y.; Ren, G.; Zhao, L.; Hong, M.; Xin, Z. Toward understanding the effect of solvent evaporation on the morphology of PLGA microspheres by double emulsion method. Ind. Eng. Chem. Res. 2021, 60, 9196–9205. [Google Scholar] [CrossRef]
- Chakravarthi, S.S.; Robinson, D.H. Enhanced cellular association of paclitaxel delivered in chitosan-PLGA particles. Int. J. Pharm. 2011, 409, 111–120. [Google Scholar] [CrossRef]
- Al-Nemrawi, N.K.; Alshraiedeh, N.H.; Zayed, A.L.; Altaani, B.M. Low molecular weight chitosan-coated PLGA nanoparticles for pulmonary delivery of tobramycin for cystic fibrosis. Pharmaceuticals 2018, 11, 28. [Google Scholar] [CrossRef]
- Chatzitaki, A.; Jesus, S.; Karavasili, C.; Andreadis, D.; Fatouros, D.; Borges, O. Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride. Int. J. Pharm. 2020, 589, 119776. [Google Scholar] [CrossRef]
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef]
- Allison, S.D. Effect of structural relaxation on the preparation and drug release behavior of poly (lactic-co-glycolic) acid microparticle drug delivery systems. J. Pharm. Sci. 2008, 97, 2022–2035. [Google Scholar] [CrossRef]
- Park, K.; Otte, A.; Sharifi, F.; Garner, J.; Skidmore, S.; Park, H.; Jhon, Y.K.; Qin, B.; Wang, Y. Potential roles of the glass transition temperature of PLGA microparticles in drug release kinetics. Mol. Pharm. 2020, 18, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Simón-Yarza, T.; Formiga, F.R.; Tamayo, E.; Pelacho, B.; Prosper, F.; Blanco-Prieto, M.J. PEGylated-PLGA microparticles containing VEGF for long term drug delivery. Int. J. Pharm. 2013, 440, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, H.; Siepmann, F.; Hamoudi, M.; Danede, F.; Verin, J.; Willart, J.F.; Siepmann, J. Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. Int. J. Pharm. 2016, 514, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Washington, M.A.; Balmert, S.C.; Fedorchak, M.V.; Little, S.R.; Watkins, S.C.; Meyer, T.Y. Monomer sequence in PLGA microparticles: Effects on acidic microclimates and in vivo inflammatory response. Acta Biomater. 2018, 65, 259–271. [Google Scholar] [CrossRef]
- Streck, S.; Neumann, H.; Nielsen, H.M.; Rades, T.; McDowell, A. Comparison of bulk and microfluidics methods for the formulation of poly-lactic-co-glycolic acid (PLGA) nanoparticles modified with cell-penetrating peptides of different architectures. Int. J. Pharm. X 2019, 1, 100030. [Google Scholar] [CrossRef]
- Singh, A.; Thotakura, N.; Singh, B.; Lohan, S.; Negi, P.; Chitkara, D.; Raza, K. Delivery of docetaxel to brain employing piperine-tagged PLGA-aspartic acid polymeric micelles: Improved cytotoxic and pharmacokinetic profiles. AAPS PharmSciTech 2019, 20, 1–9. [Google Scholar] [CrossRef]
- Sharma, A.; Vankayala, R.; Misra, K.P.; Bagaria, A. MoS2 nanoflower-Indocyanine green composite for enhanced optical imaging capabilities. Mater. Technol. 2024, 39, 2291935. [Google Scholar] [CrossRef]
- Chandra, D.; Molla, M.T.H.; Bashar, M.A.; Islam, M.S.; Ahsan, M.S. Chitosan-based nano-sorbents: Synthesis, surface modification, characterisation and application in Cd (II), Co (II), Cu (II) and Pb (II) ions removal from wastewater. Sci. Rep. 2023, 13, 6050. [Google Scholar] [CrossRef]
- Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011, 3, 1377–1397. [Google Scholar] [CrossRef]
- Schliecker, G.; Schmidt, C.; Fuchs, S.; Wombacher, R.; Kissel, T. Hydrolytic degradation of poly (lactide-co-glycolide) films: Effect of oligomers on degradation rate and crystallinity. Int. J. Pharm. 2003, 266, 39–49. [Google Scholar] [CrossRef]
- Yoshida, R.; Sakai, K.; Okano, T.; Sakurai, Y. A new model for zero-order drug release I. Hydrophobic drug release from hydrophilic polymeric matrices. Polym. J. 1991, 23, 1111–1121. [Google Scholar] [CrossRef]
- Faisant, N.; Siepmann, J.; Benoit, J.P. PLGA-based microparticles: Elucidation of mechanisms and a new, simple mathematical model quantifying drug release. Eur. J. Pharm. Sci. 2002, 15, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.; Lobo, J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yuan, Z.; Gaeke, S.; Kao, W.W.Y.; Li, S.K.; Miller, D.; Williams, B.; Park, Y.C. Laser-activated drug implant for controlled release to the posterior segment of the eye. ACS Appl. Bio Mater. 2021, 4, 1461–1469. [Google Scholar] [CrossRef]
- Jusu, S.M.; Obayemi, J.D.; Salifu, A.A.; Nwazojie, C.C.; Uzonwanne, V.O.; Odusanya, O.S.; Soboyejo, W.O. PLGA-CS-PEG microparticles for controlled drug delivery in the treatment of triple negative breast cancer cells. Appl. Sci. 2021, 11, 7112. [Google Scholar] [CrossRef]
- Makino, K.; Nakajima, T.; Shikamura, M.; Ito, F.; Ando, S.; Kochi, C.; Inagawa, H.; Soma, G.I.; Terada, H. Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: Effects of molecular weight and composition of PLGA on release of rifampicin. Colloids Surfaces B Biointerfaces 2004, 36, 35–42. [Google Scholar] [CrossRef]
- Mylonaki, I.; Allémann, E.; Delie, F.; Jordan, O. Imaging the porous structure in the core of degrading PLGA microparticles: The effect of molecular weight. J. Control. Release 2018, 286, 231–239. [Google Scholar] [CrossRef]
- Wu, X.S.; Wang, N. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: Biodegradation. J. Biomater. Sci. Polym. Ed. 2001, 12, 21–34. [Google Scholar] [CrossRef]
- Wan, B.; Andhariya, J.V.; Bao, Q.; Wang, Y.; Zou, Y.; Burgess, D.J. Effect of polymer source on in vitro drug release from PLGA microspheres. Int. J. Pharm. 2021, 607, 120907. [Google Scholar] [CrossRef]
- Manca, M.L.; Loy, G.; Zaru, M.; Fadda, A.M.; Antimisiaris, S.G. Release of rifampicin from chitosan, PLGA and chitosan-coated PLGA microparticles. Colloids Surfaces B Biointerfaces 2008, 67, 166–170. [Google Scholar] [CrossRef]
- de Azevedo, C.R.; von Stosch, M.; Costa, M.S.; Ramos, A.M.; Cardoso, M.M.; Danhier, F.; Préat, V.; Oliveira, R. Modeling of the burst release from PLGA micro-and nanoparticles as function of physicochemical parameters and formulation characteristics. Int. J. Pharm. 2017, 532, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.; Reist, M.; Mayer, J.; Felt, O.; Peppas, N.; Gurny, R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2004, 57, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Pillai, C.K.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Sinha, V.; Singla, A.K.; Wadhawan, S.; Kaushik, R.; Kumria, R.; Bansal, K.; Dhawan, S. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 2004, 274, 1–33. [Google Scholar] [CrossRef]
- Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Sheng, Z.; Hu, D.; Xue, M.; He, M.; Gong, P.; Cai, L. Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett. 2013, 5, 145–150. [Google Scholar] [CrossRef]
- Wang, Y.; Li, P.; Kong, L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. Aaps Pharmscitech 2013, 14, 585–592. [Google Scholar] [CrossRef]
- Sahariah, P.; Hjálmarsdóttir, M.Á.; Másson, M. Antimicrobial properties of chitosan and chitosan derivatives. In Marine Glycobiology; CRC Press: Boca Raton, FL, USA, 2016; pp. 365–388. [Google Scholar]
- Rashki, S.; Asgarpour, K.; Tarrahimofrad, H.; Hashemipour, M.; Ebrahimi, M.S.; Fathizadeh, H.; Khorshidi, A.; Khan, H.; Marzhoseyni, Z.; Salavati-Niasari, M.; et al. Chitosan-based nanoparticles against bacterial infections. Carbohydr. Polym. 2021, 251, 117108. [Google Scholar] [CrossRef]
- Delezuk, J.A.; Ramírez-Herrera, D.E.; de Ávila, B.E.F.; Wang, J. Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale 2017, 9, 2195–2200. [Google Scholar] [CrossRef]
- Liu, N.; Chen, X.G.; Park, H.J.; Liu, C.G.; Liu, C.S.; Meng, X.H.; Yu, L.J. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr. Polym. 2006, 64, 60–65. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J. 2020, 138, 109984. [Google Scholar] [CrossRef]
PVI1 | PVI2 | PVI3 | PVI4 | PVI5 | PVI6 | P7 | PI | |
---|---|---|---|---|---|---|---|---|
PLGA | 250 | 225 | 200 | 225 | 225 | 225 | 300 | 300 |
Van.HCl | 50 | 75 | 100 | 75 | 75 | 75 | 0 | 0 |
ICG (Molarity) | 500 M | 500 M | 500 M | 5 mM | 2.5 mM | 1 mM | 0 | 5.5 mM |
PVA Solution | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
DCM | 9 | 9 | 9 | 9 | 9 | 9 | 10 | 10 |
Zeta Potential (mV) | Z-Average (m) | PI | |
---|---|---|---|
PVI1 | −70.70 | 2.26 | 0.284 |
PVI2 | −55.23 | 2.44 | 0.380 |
PVI2-C | 34.83 | 5.71 | 0.454 |
PVI3 | −42.80 | 5.21 | 0.264 |
PVI4 | −56.50 | 2.34 | 0.196 |
PVI4-C | 14.47 | 7.75 | 0.755 |
PVI5 | −59.27 | 6.78 | 0.324 |
PVI5-C | 27.17 | 7.70 | 0.686 |
PVI6 | −44.67 | 3.34 | 0.293 |
Peak Observed (cm−1) | Functional Group |
---|---|
FTIR of PLGA | |
3400–3500 | OH end group |
1750 | –COOH groups |
1100–1800 | C–O stretching |
FTIR of Van.HCl | |
3400 | stretching of phenolic OH |
1650 | aromatic C=C |
1505 | C=O secondary amide function |
1390 | C–O phenolic O–H group |
FTIR of ICG | |
1400–1500 | C=O stretches |
1150 and 1390 | C–O–H bond on benzene ring |
FTIR of PVI4 | |
1750 | –COOH groups |
1400–1500 | C=O stretches |
1100–1800 | C–O stretching |
FTIR of Chitosan 3420 | OH and NH stretching |
2925 | C–H stretching |
1650–1560 | Amide I and II |
FTIR of PVI4-C | |
1750 | –COOH groups |
1089 | C–O–C stretching |
1421 | Amide I and II |
Kinetic Model | PVI4 | PVI4 N | PVI4-C | PVI4-C N | PVI5 | PVI5 N | PVI6 | PVI6 N |
---|---|---|---|---|---|---|---|---|
Zero | ||||||||
R2 | 0.97 | 0.99 | 0.99 | 0.99 | 0.99 | 0.97 | 0.99 | 0.98 |
1st | ||||||||
R2 | 0.71 | 0.24 | 0.67 | 0.27 | 0.36 | 0.2 | 0.36 | 0.27 |
2nd | ||||||||
R2 | 0.28 | 0.13 | 0.63 | 0.20 | 0.29 | 0.13 | 0.3 | 0.20 |
K-P * | ||||||||
R2 | 0.99 | 0.64 | 0.78 | 0.71 | 0.78 | 0.6 | 0.78 | 0.7 |
2.16 | 8.8 | 6.9 | 1.3 | 4.9 | 9.1 | 5 | 1.5 | |
N | 0.61 | 3.5 | 5.5 | 4.4 | 5.1 | 3.5 | 5 | 4.4 |
H-C ** | ||||||||
R2 | 0.84 | 0.79 | 0.86 | 0.71 | 0.77 | 0.69 | 0.74 | 0.7 |
0.02 | 0.026 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokharel, M.; Neron, A.; Dey, A.K.; Siddharthan, A.R.; Konara, M.; Sagar, M.M.; Ferreira, T.; Park, K. Light-Responsive PLGA Microparticles for On-Demand Vancomycin Release and Enhanced Antibacterial Efficiency. Pharmaceutics 2025, 17, 1007. https://doi.org/10.3390/pharmaceutics17081007
Pokharel M, Neron A, Dey AK, Siddharthan AR, Konara M, Sagar MM, Ferreira T, Park K. Light-Responsive PLGA Microparticles for On-Demand Vancomycin Release and Enhanced Antibacterial Efficiency. Pharmaceutics. 2025; 17(8):1007. https://doi.org/10.3390/pharmaceutics17081007
Chicago/Turabian StylePokharel, Mishal, Abid Neron, Amit Kumar Dey, Aishwarya Raksha Siddharthan, Menaka Konara, Md Mainuddin Sagar, Tracie Ferreira, and Kihan Park. 2025. "Light-Responsive PLGA Microparticles for On-Demand Vancomycin Release and Enhanced Antibacterial Efficiency" Pharmaceutics 17, no. 8: 1007. https://doi.org/10.3390/pharmaceutics17081007
APA StylePokharel, M., Neron, A., Dey, A. K., Siddharthan, A. R., Konara, M., Sagar, M. M., Ferreira, T., & Park, K. (2025). Light-Responsive PLGA Microparticles for On-Demand Vancomycin Release and Enhanced Antibacterial Efficiency. Pharmaceutics, 17(8), 1007. https://doi.org/10.3390/pharmaceutics17081007