Aptamer-Nanoconjugates as Potential Theranostics in Major Neuro-Oncological and Neurodegenerative Disorders
Abstract
1. Introduction
2. Aptamer Properties
2.1. Aptamer Classification, Advantages and Drawbacks
Aspect | Aptamer-Based Approaches | Antibody-Drug Conjugates (ADC) | Exosome-Based Delivery Systems | Refs. |
---|---|---|---|---|
Targeting specificity | high | very high | natural (via exosome surface proteins) | [8,19,27,28,29,30,31,32,33,34] |
Size and BBB penetration | small (~15–30 kDa) excellent BBB penetration | 5–10× larger (~150 kDa) limited BBB penetration without modification | small vesicles (30–150 nm); naturally cross BBB efficiently | |
Stability in circulation | enhanced by chemical modulations | stable | stable; protects cargo from degradation | |
Immunogenicity | low | moderate-high | low | |
Cargo delivery | efficient and versatile (drugs, siRNA, miRNA etc.) | chemotherapeutics; limited nucleic acid delivery | versatile (proteins, RNA, drugs; can be engineered for enhanced loading) | |
Manufacturing cost | low, cost-effective | expensive | moderate (purification challenging) | |
Clinical progress | mostly preclinical in brain diseases; in clinical trials for cancers (e.g., Ap AS1411); Ap-conjugates in clinical trials in brain diseases | multiple FDA-approved ADCs in oncology (e.g., Brentuximab vedotin, Polatuzumab vedotin); limited trials in gliomas | several early-phase clinical trials for exosome therapeutics ongoing (not yet in neurodegenerative diseases) |
2.2. Aptamer Design and Selection
3. Aptamer-Nanoparticles (Ap-NP) Conjugates
3.1. Aptamer-Functionalized Nanoparticles: Synergical Advantages as Theranostics
3.2. Ap-NP Conjugates vs. ADC/mAb-NP vs. NP as CNS-Targeted Therapies
Property | Ap-NP Conjugates | ADCs/mAb–NP Hybrids | Aptamers | NP Alone | Ref. |
---|---|---|---|---|---|
Targeting precision & Binding specificity and affinity | High combines Ap specificity with NP multivalency; Ap can be engineered for disease-specific biomarkers | High strong affinity but rigid in design; specific Ab difficult to re-engineer | Very high modifiable for recognizing any target | Intrinsically low, no active targeting; enhanced by ligand functionalization | [2,4,6,10,11,25,27,29,30,49,53,55,56,57,58,59,60,62,63,64] |
Payload capacity & Drug versatility | High multiple drugs/small molecules, siRNA, genes, imaging agent molecules per NP | Moderate limited to ~2–4 drugs per antibody; chemotherapeutics primarily | Medium | High and broad—depends on carrier type: drugs, siRNA, contrast agents etc. | |
Delivery control | High synergistic delivery: specific targeting + loading capacity; stimuli-responsive release possible | Moderate relies on linker cleavage | High | Passive, often burst release | |
Size and biodistribution | Higher (~50–200 nm); deep tissue penetration superior biodistribution | Larger antibodies reduced tissue penetration | 12–30 kDa (30–80 nucleotides in average); fast renal clearance | 10–200 nm; size-dependent biodistribution; can exploit permeability and retention effect (EPR) | |
Stability in circulation | Moderate—increased by Ap-functionalization or surface chemical modulations (PEGylation etc.) | High IgG-based Ab have long T1/2 | Sensitivity to nucleases without chemical modulations | Variable depends on coating material (organic, nucleic acids, inorganic) | |
BBB penetration | High receptor-mediated transcytosis (e.g., TfR, Tau); dual-targeting systems (like TfR–Tau circular aptamer) | Limited for native ADCs Moderate for mAb-NPs | Customizable active BBB crossing | Low mostly passive, size-dependent | |
Immunogenicity and toxicity | Low (non-proteinaceous); Ap reduces immunotoxicity; depends on NP core | Moderate protein-based—risk of immune reactions | Low immunogenicity manageable | Low (without surface conjugation); toxicity varies on composition (liposomes/polymers safe; metals may be toxic) | |
Customization and modularity | Excellent rapid and low-cost SELEX modifications | Limited engineering is complex and costly | High chemical modulations | Requires surface modification | |
Manufacturing and scalability | High complex chemical synthesis (linker chemistry, conjugation control, purification); scalable production | Low biologics specific manufacturing | Chemically synthesized; scalable | High established NP methods; lipid NPs industrially produced | |
Limitations | Nuclease degradation, regulatory complexity | Immunogenicity, high cost; BBB remains a major barrier | Moderate drug loading capacity | Lack of targeting; off-target effects; poor CNS specificity | |
Clinical translational outlook | Promising translation but not yet approved; most preclinical—strong efficacy in gliomas and tumour brain imaging; few in ongoing clinical trials | Moderate—ADCs approved for cancer; early progress in brain disorders as BBB remains a major barrier | Limited (Pegaptanib, Avacincaptad approved); most preclinical | Several approved (e.g., Doxil, Onpattro) |
3.3. Obtaining Ap-NP Conjugates
4. Ap-Nanoconjugate Developmental Strategies
4.1. Chemical Modulation Strategies Addressing In Vivo Stability, Target Binding Affinity and Renal Clearance
Improved Properties | Applied Chemical Modulations on Structural Motif of | Ref. | ||
---|---|---|---|---|
Nitrogenous Base | Phosphodiester Backbone | Deoxyribose/Ribose Sugar | ||
Stability to nuclease degradation | hydrophobic nucleotides at 3 internal and 2 terminal positions (e.g., hydrophobic 3,5-bis(trifluoromethyl)benzoyl analogs) | phosphorothioate (PS); phosphorodithioate (PS2) replacement | 2′-deoxy-2′-fluoro-d-ara- binonucleic acid (2′-F ANA); locked nucleic acid (LNA); unlocked nucleic acid (UNA) | [10,22,38,39,40,60,69,70] |
methylphosphonate or triazole substitution | 2′-fluoro, 2′-O-methyl and 2′-amino-substitutions | |||
chiral inversion: Spiegelmers (L-enantiomeric oligonucleotide aptamers) | 2′–OCH3 and 20-O-ribose alterations (20-O-methyl/20-aminopyrimidine-/20-fluoro-/20-deoxypyrimidines) | |||
biotin-streptavidin conjugation to 3′-end | ||||
3′-end capping with inverted (deoxy-)thymidine (idT); 3′-3′ or 5′-5′ inversion | ||||
Resistance to renal clearance | - | - | PEG or cholesterol or dialkyl lipids attached to 5′-end | [7,10,38,39,60,68,71] |
- | - | biotin-streptavidin conjugation to 3′-end | ||
PEG- or N-acetylgalactosamine attached to 5′- or 3′-end | ||||
Increasing binding affinity and specificity for target | 5-(N-benzylcarboxyamide)-2-deoxyuridine, SOMAmers (Slow Off-rate Modified Aptamers) | [22,38,39,41,60,69,70] | ||
5-(N-naphtyl/-triptamino/-isobutyl-)carboxyamide-2-deoxy uridine SOMAmers | ||||
hydrophobic nucleotides at 3 internal and 2 terminal positions, such as hydrophobic 3,5-bis(trifluoromethyl)benzoyl analogs |
4.2. Investigated Strategies to Tackle Major Challenges in Ap-NP Conjugates’ Clinical Development
- Enzymatic stability, T1/2
- 2.
- BBB permeability
- 3.
- Rapid renal clearance
- 4.
- Systemic toxicity
- 5.
- Immunotoxicity
- 6.
- Long-term biocompatibility
- 7.
- Manufacturing scaling-up
- 8.
- Regulatory
4.3. Ap-NP Conjugates’ Targeted Delivery Across the BBB
4.4. Ap-NP Conjugates as Targeted Delivery Systems for Drugs/Genes
5. Preclinical Aptamers-Nanoconjugates in Glioblastoma and Other Brain Tumors
5.1. Preclinical Ap-NP as Targeted Delivery Systems Loaded with Chemotherapeutical Drugs
Ap-Nanoconjugate | Major Findings | Limitations | Ref. |
---|---|---|---|
AS1411–PGG–Paclitaxel | Enhanced PTX delivery, BBB penetration, solubility and pharmacodynamics; reduced systemic toxicity | Potential immunogenicity; need detailed PK/PD and data on efficacy variability due to NCL expression’s heterogeneity | [8,20,57] |
AS1411–DOX Nanosphere | Improved tumor uptake and growth inhibition in U87 xenografts; low systemic toxicity | Lack of biodistribution and long-term toxicity analysis | [8,22] |
AS1411–NP loaded with PTX | Preclinically advanced; improved BBB crossing and in vivo tumor growth control | Scarce data on the efficacy dependency on NCL expression’s heterogeneity | [8,22,76] |
AsTNP (AS1411 + TGN) + PEG–PCL copolymers NP loaded with DTX | Dual-targeting BBB and tumor; improved brain delivery and uptake in glioma; reduced off-target toxicity; prolonged survival in mice | Complexity of dual modification; unclear stability in circulation; no human studies | [57] |
tFNA (GS24 + AS1411) + TMZ cargo Tetrahedral DNA NP | Dual aptamers; enhanced BBB permeability and apoptosis in orthotopic glioma model; overcomes TMZ resistance; | Needs comprehensive PK/PD analysis; DNA structure stability in vivo; manufacturing complexity | [22] |
AS1411–siRNA Nanoconjugates | Modular design and potential CNS-targeted delivery | Stability of siRNA and biodistribution challenges; limited in vivo data on BBB delivery efficiency and on off-target effects; scalability problematic | [8] |
Gint4.T–Nanopolymer (PI3K/mTOR inhibitor) | High specificity to PDGFRβ; effective BBB crossing; in vivo tumor accumulation and potent tumor reduction | Requires further safety, immunogenicity and long-term efficacy studies; unclear reproducible synthesis and manufacturing scalability | [101] |
TMSN@siHDGF–Gint4.T | Specificity and therapeutic versatility; potential HDGF silencing and tumor growth inhibition | Preclinical stage only; need endosomal escape optimization; limited data on: siRNA stability, potential off-target genes’ silencing and safety | [57,100] |
Gint4.T/U2–NP conjugates | Preclinically advanced; enhanced targeting; high specificity; BBB penetration; in vivo efficacy; radiosensitization potential | Safety/toxicity unknown; scalability untested | [57] |
Gint4.T–tFNA–DOX | Specific targeting of PDGFRβ+ glioma cells; effective in vitro and BBB penetration (U87MG GBM model) | Requires long-term efficacy studies and pharmacokinetic analysis | [101] |
U2 Aptamer (EGFRvIII-targeted) | High binding affinity; increased radiosensitivity and reduced tumoral cell migration (U87-EGFRvIII GBM model) | Target specificity may limit applicability to EGFRvIII+ tumors only | [104] |
U2–AuNP | Enhanced BBB penetration; inhibited DNA damage repair; improved survival in GBM-bearing mice; selective radiosensitization | Limited systemic toxicity and PK data; Long-term biodistribution unknown; Optimization needed for targeting efficiency | [57,104] |
RBT@MRN-SSTf/Apt Mesoporous Ru-NPs | Dual targeting: AS1411 + TfR Ap + photosensitizer; deep tumor penetration and extended survival in vivo (U87MG mouse model) | Limited to laser-accessible tumors; Photodynamic therapy (PDT) safety and dosing need assessment; Ru-NPs immunogenicity risk | [33,72] |
sgc8-DNA-dendrimer | High specificity (xenograft models); High-affinity conjugation potential; Well-characterized conjugation chemistry; Self-assembled modular nanostructures | Lacks in vivo validation; target expression (PTK7) is not glioma-specific, limiting translational relevance; unknown BBB permeability | [20] |
D-siGFP (PAMAM–siRNA conjugate) | Proof of concept for GBM siRNA delivery (orthotopic GBM in CX3CR-1GFP mice); enhanced siRNA stability and T1/2; 30% in vivo tumor macrophage uptake | Limited data on PK, in vivo stability and long term toxicity | [105] |
CTLA4Apt–STAT3 siRNA | Dual targeting of immune checkpoint and STAT3 oncogene suppression; specific immune modulation | Complex delivery system; scarce glioma-specific efficacy, immunotoxicity and PK data | [59,68] |
A32–Quantum Dot (QD-Apt) | Tumor visualization in glioma-bearing mice (orthotopic U87-EGFRvIII model); fluorescence-guided surgery | Potential QD toxicity; challenges in clinical imaging translation | [106] |
5.2. Aptamer–siRNA Chimeras
5.3. Aptamer-Antibody Conjugates (Immunotherapeutical Ap, “Oligobody”)
- ➢
- ➢
- ➢
- ➢
- ➢
5.4. Ap-NP as Radiotherapy Enhancers
5.5. Comparative Insights into the Main Preclinical Studies on Ap and Ap-NP Conjugates Tested in GBM Models
6. Preclinical Aptamer-Nanoconjugates in Amyloidopathies
6.1. Description and Comparative Analysis
Ap-Nanoconjugate | Major Findings | Limitations | Ref. |
---|---|---|---|
RNA aptamers E22P-MAbD4, -MAbD31, -MAbD43 | Binds Aβ42 protofibrils; detects oligomeric aggregates in AD mouse brains (Tg2576/PS2) | No demonstrated therapeutic benefit; unknown clearance | [20] |
BI1/B1-CT (BACE1-targeting) | Reduces Aβ42 levels; improves cognition in Tg6799 mice AD model via i.c.v. (intracerebroventricular) injection | Invasive delivery; scarce data on long-term effects | [104] |
F5R1 Ap for α Synuclein in RVG tagged exosomes | Specificity for fibrillar α Syn over monomers; BBB crossing and CNS-targeted delivery; mitigated αSyn aggregation; improved motor functions outcomes in a robust synucleinopathy mouse model | Exosomes’ scaling-up production challenging (genetic engineering of the exosomes); limited data on Ap stability, release kinetics and off-target payload delivery | [63] |
Au@PDA–Apt NPs | Dual-action: inhibits Aβ1−40 aggregation and disaggregates mature Aβ1−40 fibrils in vitro; protection against Aβ-induced neuronal membrane damage; reduced cytotoxicity; multifaceted biophysical validation methods | unknown toxicity/immunogenicity; unclear BBB crossing to reach amyloid deposits in brain tissue | [26,51] |
Aβ-Apt (DNA aptamer) | Completely inhibits Aβ42 fibrillation in in vitro aggregation assays; selective oligomer binding | No in vivo data; potential degradation and poor bioavailability | [29] |
Polypeptide Based Multimodal Nanoconjugates (polyglutamate + neuroprotective agents + Angiopep 2) | In vivo efficacy in a transgenic AD APP/PS1 mice model, including functional behavioral outcomes; Increased dendritic density, reduced β amyloid aggregates; rescued memory and olfactory deficits | No Ap-based system (peptide small-molecule targeting); unaddressed long term safety, bioaccumulation and immunogenicity | [62] |
Aβ40 Aptamer–Silicon FET Sensor | In vitro sensor platform; high sensitivity (detects Aβ40 at 0.1 pg/mL without labeling) | Diagnostic only; lacks clinical validation for real-world use | [120] |
Micromotor AuNP-Aptamer Assay | Rapid (5 min) and sensitive detection (0.10 pg/mL) of Aβ42 in CSF/plasma of AD patients | complex integration into diagnostics | [116] |
6.2. Overall Critical Insights into the Main Preclinical Studies on Ap and Ap-NP Conjugates Tested in Amyloidopathies
7. Preclincal Aptamer-Nanoconjugates in Multiple Sclerosis (MS)
7.1. Description and Comparative Analysis
Ap-Nano Conjugates | Myaptavin-3064 | ApTOLL | Exo-APT (LJM-3064 Exosomes) | Ref. |
---|---|---|---|---|
Main results | BBB-permeable and increased brain uptake; selective to differentiated human oligodendroglioma cells; stimulates remyelination in chronic demyelination model; functional secondary structure in physiological conditions | Reduces inflammation and demyelination mouse models; improves remyelination; enhances motor function, oligodendrocyte generation; favorable PK, safety profiles in previous stroke and healthy volunteer trials | Promotes in vitro proliferation of OLN93 oligodendroglial cells; reduces in vivo inflammation and demyelination; improved clinical EAE scores in mice | [32,33,34,52,125,126,127] |
Strengths | In vivo remyelination efficacy: robust histological evidence of repair in a well-established MS model. Mechanistic insight: oligodendrocyte targeting. PK confirmation: CNS distribution in inflamed tissue—a key translational milestone. | In vivo functional outcomes supported by behavioral and histological metrics. Dual mechanism: immunomodulation (via TLR4 antagonism in oligodendrocyte progenitor cell OPC) + remyelination; partial insight of downstream signaling mechanism; systemic Ap with known PK; strong translational outlook (advanced safety data in humans and efficacy in multiple MS models). | Clinical score improvements and lesion reduction in EAE based on functional in vivo results. Combines targeting and delivery platform (targeting specificity + biologically active carrier) | |
Limitations | Partial mechanism (undefined downstream signaling); Translation hurdles: streptavidin-based multimerization-potential immunogenicity, regulatory complexity. Limited dosing/safety data: only single-dose studies, no longitudinal safety or off-target effects; In vivo structural variability (metastability = K⁺-mediated switching of LJM-3064 G-quadruplex) | Unknown downstream pathways promoting remyelination; Unclear dosing regimen (effective dose ranges and therapy duration in models); Comparative efficacy with Myaptavin-3064—unknown | Reproducible production and large-scale manufacturability of exosome and surface conjugation; unexplored long-term immune response profile; unknown detailed remyelination mechanism | |
Stage of development | Preclinical with PK data | Preclinical + human safety data | Preclinical only | |
Translational hurdles | Immunogenicity; multimeric scaffold | Detailed mechanism; dosing strategies | Production scaling; safety profiling |
7.2. Critical Insights on Preclinical Studies on Ap and Ap-NP Conjugates Tested in MS
8. Aptasensors Preclinically Tested in Brain Diseases
8.1. Aptasensors Preclinically Tested in Gliomas
8.2. Aptasensors Preclinically Tested in Neurodegenerative Diseases
9. Ap-NP Conjugate Clinical Translation
Clinical Trial | Phase, Design and Highlights | Key Outcomes | Ref. |
---|---|---|---|
GLORIA | Ongoing Phase I/II multicenter, open-label, multidose escalation trial investigating the safety and efficacy of the “L-RNA aptamer olaptesed pegol (NOX-A12) plus radiotherapy in newly diagnosed, unresectable glioblastoma”. Primary endpoints—safety/tolerability. Status: active; approved progression into combination therapy arms (+bevacizumab; + pembrolizumab, respectively). | Strong OS (50–83% at ~15–18 months); dose-escalation: ~50%; expected to rise to ~67% as data mature. Low immunogenicity. Expansion arm (radiotherapy + bevacizumab + NOX-A12): 83% OS at median 15 months follow-up. | [4,142,143] |
ApTOLL | Early phase trial investigating anti-TLR4 DNA aptamer designed to reduce inflammation and myelin loss in ischemic stroke and MS. Primary endpoints—safety and PK. Status: results under confirmation | Minimal immunogenicity Absence of serious adverse reactions First efficacy data in humans No NP-conjugate | [4,6,24,125,126] |
NU-0129 | Phase 0, single-arm, open-label “First in Human Study of NU 0129 (spherical nucleic acid gold nanoparticle targeting siRNA targeted to BCL2L12 gene) in recurrent glioblastoma/gliosarcoma” Primary endpoints—safety, feasibility of i.v. administration (monitored during infusion and post-surgery) Status: Phase 0 completed. Ongoing long-term follow-up up to 2 years for survival and safety | Safe single-dose i.v. administration. Intratumoral presence of NU 0129 confirmed post-surgery. Evidence of target gene expression knockdown in surgically post-resected GBM tissue. Safe delivery without ≥grade 4 toxicities. Early PK and biomarker effect confirmed in human GBM tissue. | [4,6,10,101] |
10. Conclusions and Future Perspectives
- design of aptamers based on overlapping in vivo SELEX methods with animal models, with humanized models (such as brain organoids-on-chip) and with advanced microfluidic BBB models, which could simulate more reliably and accurately the brain and BBB 3D architecture, the brain cellular diversity, or the binding dynamic to biomarkers specific to neuro-oncological and neurodegenerative pathologies [1,22,38,53,93,122];
- optimization of aptamer engineering by chemical modulations, truncated mimetic Ap and by multimerization to boost stability without compromising binding;
- comparative in vivo studies to benchmark Ap-NP conjugates against standard-of-care treatments;
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
ADC | Antibody-drug conjugate |
ADNFs | Aptamer-bound DNA nanoflowers |
Ap | Aptamers |
Ap-NP | Aptamer-nanoparticle conjugates |
ATP | Adenosine triphosphate |
Aβ | Amyloid β-protein |
BBB | Blood–brain barrier |
BDNF | Brain-derived neurotrophic factor |
chemo-PDT | Chemo-photodynamic therapy |
circRNA | circular RNA |
CPT | Camptothecin |
CSF | Cerebrospinal fluid |
CTLA-4 | Cytotoxic T-lymphocyte-associated protein 4 |
CXCL12 | Stromal cell-derived factor-1 |
CXCR4 | C-X-C Motif chemokine receptor 4 |
DOX | Doxorubicin |
DTX | Docetaxel |
EAE | Autoimmune encephalomyelitis |
EGFR | Epidermal growth factor receptor |
ELISA | Enzyme-linked immunosorbent assay |
EpCAM | Epithelial cell adhesion molecule |
EPR | Enhanced permeability and retention |
GBM | Glioblastoma multiforme |
Gd | Gadolinium |
GFP | Green fluorescent protein |
GMP | Good manufacturing practice |
gRNA | Gene-editing guide RNA |
FDA | Food and drug administration |
HAT1 | Histone acetyl transferase-1 |
HTS | High-throughput screening |
idT | inverted (deoxy-) thymidine |
LM | Leptomeningeal carcinomatosis |
i.p.; i.v.; i.c.v. | Intraperitoneal; intravenous; intracerebroventricular |
mAb | Monoclonal antibodies |
miRNA | microRNA |
MS | Multiple sclerosis |
NA | Nucleic acid |
NCL | Nucleolin |
NDs | Neurodegenerative diseases |
oAβ | Oligomeric amyloid beta |
OGN | Oligonucleotide |
OPC | oligodendrocyte progenitor cell |
OS | Overall survival |
PCR | Polymerase chain reaction |
PAMAM | Hydroxyl-terminated poly(amidoamine) dendrimer |
PK | Pharmacokinetics |
PK/PD | Pharmacokinetics/pharmacodynamics profile |
PD | Parkinson’s disease |
PD-1 | Programmed cell death 1 |
PDGFRβ | Human platelet-derived growth factor receptor |
PD-L1 | Programmed cell death ligand 1 |
PDT | Photodynamic therapy |
PEG | Polyethylene glycol |
PEG-PCL | PEG-poly(ε-caprolactone) |
PET | Positron emission tomography |
PFS | Progression free survival |
PGG-PTX | (L-γ- Glutamyl-glutamine)-paclitaxel |
PLGA-b-PEG | Poly(lactico-glycolic)-block-polyethylene glycol |
PrPC | Cellular prionic form |
PrPSc | Prionic infectious proteins (scrapie form) |
PSMA | Prostate specific membrane antigen |
QD | Quantum dot |
Ref. | References |
RES | Reticuloendothelial system |
RGD | Arginine-glycine-aspartate |
RVG | Rabies virus glycoprotein peptide |
SELEX | Systematic Evolution of ligands by exponential enrichment |
siHDGF | Small interfering RNA hepatoma-derived growth factor |
siRNA | Small interfering RNA |
αSyn | alpha-Synuclein |
ssDNA, ssRNA | Single-stranded DNA or RNA |
Tau τ | Protein Tau |
TfR | Transferrin receptor |
TGF | Transforming growth factor |
TLR4 | Toll-like receptor 4 |
TGN | a peptide of 12 amino acids TGNYKALHPHN |
TME | Tumor microenvironment |
TMZ | Temozolomide |
TrkB | Tropomyosin receptor kinase B |
UCNP | Upconversion nanoparticles |
VEGF | Vascular endothelial growth factor |
VitC | Vitamin C |
References
- Koshmanova, A.A.; Artyushenko, P.V.; Shchugoreva, I.A.; Fedotovskaya, V.D.; Luzan, N.A.; Kolovskaya, O.S.; Zamay, G.S.; Lukyanenko, K.A.; Veprintsev, D.V.; Khilazheva, E.D.; et al. Aptamer’s Structure Optimization for Better Diagnosis and Treatment of Glial Tumors. Cancers 2024, 16, 4111. [Google Scholar] [CrossRef]
- Yu, A.-M.; Tu, M.-J. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. Pharmacol. Ther. 2022, 230, 107967. [Google Scholar] [CrossRef]
- Guan, B.; Zhang, X. Aptamers as Versatile Ligands for Biomedical and Pharmaceutical Applications. Int. J. Nanomed. 2020, 15, 1059–1071. [Google Scholar] [CrossRef]
- Cesarini, V.; Appleton, S.L.; De Franciscis, V.; Catalucci, D. The recent blooming of therapeutic aptamers. Mol. Aspects Med. 2025, 102, 101350. [Google Scholar] [CrossRef]
- Suelves, A.M.; Shulman, J.P. Anti-Vascular Endothelial Growth Factor Medications in Retinopathy of Prematurity. Adv. Ophthalmol. Optom. 2017, 2, 75–86. [Google Scholar] [CrossRef]
- Bege, M.; Ghanem, K.R.; Borbás, A. The 20th Anniversary of Pegaptanib (MacugenTM), the First Approved Aptamer Medicine: History, Recent Advances and Future Prospects of Aptamers in Therapy. Pharmaceutics. 2025, 17, 394. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. FDA approves second RNA aptamer. Nat. Rev. Drug Discov. 2023, 22, 774. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Kobeissy, F.; Golpich, M.; Cai, G.; Li, X.; Abedi, R.; Haskins, W.; Tan, W.; Benner, S.A.; Wang, K.K.W. Aptamer Technologies in Neuroscience, Neuro-Diagnostics and Neuro-Medicine Development. Molecules 2024, 29, 1124. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Qi, J.; Qian, K.; Oderinde, O.; Liu, Q.; Yao, C.; Song, W.; Wang, Y. Copper (II) oxide nanozyme based electrochemical cytosensor for high sensitive detection of circulating tumor cells in breast cancer. J. Electroanal. Chem. 2018, 812, 1–9. [Google Scholar] [CrossRef]
- Doherty, C.; Wilbanks, B.; Khatua, S.; Maher, L.J. Aptamers in neuro-oncology: An emerging therapeutic modality. Neuro-Oncology 2024, 26, 38–54. [Google Scholar] [CrossRef]
- Song, B.; Wang, X.; Qin, L.; Hussain, S.; Liang, W. Brain gliomas: Diagnostic and therapeutic issues and the prospects of drug-targeted nano-delivery technology. Pharmacol. Res. 2024, 206, 107308. [Google Scholar] [CrossRef]
- Delač, M.; Motaln, H.; Ulrich, H.; Lah, T.T. Aptamer for imaging and therapeutic targeting of brain tumor glioblastoma. Cytometry A 2015, 87, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Giles, B.; Nakhjavani, M.; Wiesa, A.; Knight, T.; Shigdar, S.; Samarasinghe, R.M. Unravelling the Glioblastoma Tumour Microenvironment: Can Aptamer Targeted Delivery Become Successful in Treating Brain Cancers? Cancers 2023, 15, 4376. [Google Scholar] [CrossRef] [PubMed]
- Bellelli, F.; Angioni, D.; Arosio, B.; Vellas, B.; De Souto Barreto, P. Hallmarks of Aging and Alzheimer’s Disease Pathogenesis: Paving the Route for New Therapeutic Targets. Ageing Res. Rev. 2025, 106, 102699. [Google Scholar] [CrossRef]
- Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as Therapeutics. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Nimjee, S.M.; Sullenger, B.A. Therapeutic Aptamers: Evolving to Find their Clinical Niche. Curr. Med. Chem. 2020, 27, 4181–4193. [Google Scholar] [CrossRef]
- Sajid, M.I.; Moazzam, M.; Kato, S.; Cho, K.Y.; Tiwari, R.K. Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside. Pharmaceuticals 2020, 13, 294. [Google Scholar] [CrossRef]
- Zhou, J.; Rossi, J.J. Cell-Specific Aptamer-Mediated Targeted Drug Delivery. Oligonucleotides 2011, 21, 1–10. [Google Scholar] [CrossRef]
- Barrera-Ocampo, A. Monoclonal Antibodies and Aptamers: The Future Therapeutics for Alzheimer’s Disease. Acta Pharm. Sin. B 2024, 14, 2795–2814. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Izuo, N.; Bitan, G. Aptamers targeting amyloidogenic proteins and their emerging role in neurodegenerative diseases. J. Biol. Chem. 2022, 298, 101478. [Google Scholar] [CrossRef]
- Shraim, A.S.; Abdel Majeed, B.A.; Al-Binni, M.A.; Hunaiti, A. Therapeutic Potential of Aptamer–Protein Interactions. ACS Pharmacol. Transl. Sci. 2022, 5, 1211–1227. [Google Scholar] [CrossRef]
- Wang, B.; Pan, X.; Teng, I.; Li, X.; Kobeissy, F.; Wu, Z.; Zhu, J.; Cai, G.; Yan, H.; Yan, X.; et al. Functional Selection of Tau Oligomerization–Inhibiting Aptamers. Angew. Chem. Int. Ed. 2024, 63, e202402007. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, B.; Das, S.J.; Anand, A.; Sharma, T.K. Nanozymes and aptamer-based biosensing. Mater. Sci. Energy Technol. 2020, 3, 127–135. [Google Scholar] [CrossRef]
- Moreira, R.; Nóbrega, C.; De Almeida, L.P.; Mendonça, L. Brain-targeted drug delivery—Nanovesicles directed to specific brain cells by brain-targeting ligands. J. Nanobiotechnol. 2024, 22, 260. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Tan, K.X.; Danquah, M.K.; Guo, H.; Turgeson, A. Advancing Aptamers as Molecular Probes for Cancer Theranostic Applications-The Role of Molecular Dynamics Simulation. Biotechnol. J. 2020, 15, 1900368. [Google Scholar] [CrossRef]
- Duan, Q.; Jia, H.; Chen, W.; Qin, C.; Zhang, K.; Jia, F.; Fu, T.; Wei, Y.; Fan, M.; Wu, Q.; et al. Multivalent Aptamer-Based Lysosome-Targeting Chimeras (LYTACs) Platform for Mono or Dual Targeted Proteins Degradation on Cell Surface. Adv. Sci. 2024, 11, 2308924. [Google Scholar] [CrossRef] [PubMed]
- Sonali Viswanadh, M.K.; Singh, R.P.; Agrawal, P.; Mehata, A.K.; Pawde, D.M.; Narendra Sonkar, R.; Muthu, M.S. Nanotheranostics: Emerging Strategies for Early Diagnosis and Therapy of Brain Cancer. Nanotheranostics 2018, 2, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Sun, W.; Fu, T.; Liu, X.; Chen, P.; Qiu, L.; Qu, F.; Tan, W. Aptamer-Based Targeted Delivery of Functional Nucleic Acids. J. Am. Chem. Soc. 2023, 145, 7677–7691. [Google Scholar] [CrossRef]
- Liu, M.; Wang, L.; Lo, Y.; Shiu, S.C.-C.; Kinghorn, A.B.; Tanner, J.A. Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells 2022, 11, 159. [Google Scholar] [CrossRef]
- Kim, H.J.; Sung, H.J.; Lee, Y.M.; Choi, S.I.; Kim, Y.H.; Heo, K.; Kim, I.H. Therapeutic Application of Drug-Conjugated HER2 Oligobody (HER2-DOligobody). Int. J. Mol. Sci. 2020, 21, 3286. [Google Scholar] [CrossRef]
- Shoemaker, R.L.; Larsen, R.J.; Larsen, P.A. Single-Domain Antibodies and Aptamers Drive New Opportunities for Neurodegenerative Disease Research. Front. Immunol. 2024, 15, 1426656. [Google Scholar] [CrossRef]
- Salarpour, S.; Barani, M.; Pardakhty, A.; Khatami, M.; Pal Singh Chauhan, N. The application of exosomes and Exosome-nanoparticle in treating brain disorders. J. Mol. Liq. 2022, 350, 118549. [Google Scholar] [CrossRef]
- Liang, S.; Xu, H.; Ye, B.-C. Membrane-Decorated Exosomes for Combination Drug Delivery and Improved Glioma Therapy. Langmuir 2022, 38, 299–308. [Google Scholar] [CrossRef]
- Shamili, F.H.; Alibolandi, M.; Rafatpanah, H.; Abnous, K.; Mahmoudi, M.; Kalantari, M.; Taghdisi, S.M.; Ramezani, M. Immunomodulatory properties of MSC-derived exosomes armed with high affinity aptamer toward myelin as a platform for reducing multiple sclerosis clinical score. J. Control. Release 2019, 299, 149–164. [Google Scholar] [CrossRef]
- Kozma, G.T.; Shimizu, T.; Ishida, T.; Szebeni, J. Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 2020, 154–155, 163–175. [Google Scholar] [CrossRef]
- Rabiee, N.; Chen, S.; Ahmadi, S.; Veedu, R.N. Aptamer-engineered (nano)materials for theranostic applications. Theranostics 2023, 13, 5183–5206. [Google Scholar] [CrossRef]
- Herrera, A.; Zhou, J.; Song, M.; Rossi, J.J. Evolution of Cell-Type-Specific RNA Aptamers via Live Cell-Based SELEX. In RNA-Protein Complexes and Interactions; Lin, R.-J., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2023; pp. 317–346. [Google Scholar] [CrossRef]
- Meehan, C.; Lecocq, S.; Penner, G. A reproducible approach for the use of aptamer libraries for the identification of Aptamarkers for brain amyloid deposition based on plasma analysis. PLoS ONE 2024, 19, e0307678. [Google Scholar] [CrossRef] [PubMed]
- Didarian, R.; Ozbek, H.K.; Ozalp, V.C.; Erel, O.; Nimet Yildirim-Tirgil, N. Enhanced SELEX Platforms for Aptamer Selection with Improved Characteristics: A Review. Mol. Biotechnol. 2024, 67, 2962–2977. [Google Scholar] [CrossRef] [PubMed]
- Egli, M.; Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 2023, 51, 2529–2573. [Google Scholar] [CrossRef] [PubMed]
- Shigdar, S.; Agnello, L.; Fedele, M.; Camorani, S.; Cerchia, L. Profiling Cancer Cells by Cell-SELEX: Use of Aptamers for Discovery of Actionable Biomarkers and Therapeutic Applications Thereof. Pharmaceutics 2021, 14, 28. [Google Scholar] [CrossRef]
- Sellés Vidal, L.; Isalan, M.; Heap, J.T.; Ledesma-Amaro, R. A primer to directed evolution: Current methodologies and future directions. RSC Chem. Biol. 2023, 4, 271–291. [Google Scholar] [CrossRef]
- Rtools. Available online: http://rtools.cbrc.jp/ (accessed on 13 February 2025).
- Buglak, A.A.; Samokhvalov, A.V.; Zherdev, A.V.; Dzantiev, B.B. Methods and Applications of In Silico Aptamer Design and Modeling. Int. J. Mol. Sci. 2020, 21, 8420. [Google Scholar] [CrossRef]
- Joyce, T.; Tasci, E.; Jagasia, S.; Shephard, J.; Chappidi, S.; Zhuge, Y.; Zhang, L.; Cooley Zgela, T.; Sproull, M.; Mackey, M.; et al. Serum CD133-Associated Proteins Identified by Machine Learning Are Connected to Neural Development, Cancer Pathways, and 12-Month Survival in Glioblastoma. Cancers 2024, 16, 2740. [Google Scholar] [CrossRef]
- Dasti, A.; Cid-Samper, F.; Bechara, E.; Tartaglia, G.G. RNA-centric approaches to study RNA-protein interactions in vitro and in silico. Methods 2020, 178, 11–18. [Google Scholar] [CrossRef]
- He, S.; Du, Y.; Tao, H.; Duan, H. Advances in aptamer-mediated targeted delivery system for cancer treatment. Int. J. Biol. Macromol. 2023, 238, 124173. [Google Scholar] [CrossRef]
- Wong, K.-Y.; Wong, M.-S.; Liu, J. Aptamer-functionalized liposomes for drug delivery. Biomed. J. 2024, 47, 100685. [Google Scholar] [CrossRef]
- Furtado, D.; Björnmalm, M.; Ayton, S.; Bush, A.I.; Kempe, K.; Caruso, F. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Adv. Mater. 2018, 30, 1801362. [Google Scholar] [CrossRef]
- Amero, P.; Khatua, S.; Rodriguez-Aguayo, C.; Lopez-Berestein, G. Aptamers: Novel Therapeutics and Potential Role in Neuro-Oncology. Cancers 2020, 12, 2889. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Liu, J.; Wang, N.; Zhang, D.; Qin, C.; Shi, B.; Zheng, M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025, 318, 123138. [Google Scholar] [CrossRef] [PubMed]
- Khongkow, M.; Yata, T.; Boonrungsiman, S.; Ruktanonchai, U.R.; Graham, D.; Namdee, K. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Sci. Rep. 2019, 9, 8278. [Google Scholar] [CrossRef] [PubMed]
- Rafati, N.; Zarepour, A.; Bigham, A.; Khosravi, A.; Naderi-Manesh, H.; Iravani, S.; Zarrabi, A. Nanosystems for targeted drug Delivery: Innovations and challenges in overcoming the Blood-Brain barrier for neurodegenerative disease and cancer therapy. Int. J. Pharm. 2024, 666, 124800. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, M.; Sanadgol, N.; Abdollahi, M. A Systematic Review of Current Progresses in the Nucleic Acid-Based Therapies for Neurodegeneration with Implications for Alzheimer’s Disease. Mini Rev. Med. Chem. 2020, 20, 1499–1517. [Google Scholar] [CrossRef]
- Urmi, R.; Banerjee, P.; Singh, M.; Singh, R.; Chhillar, S.; Sharma, N.; Chandra, A.; Singh, N.; Qamar, I. Revolutionizing biomedicine: Aptamer-based nanomaterials and nanodevices for therapeutic applications. Biotechnol. Rep. 2024, 42, e00843. [Google Scholar] [CrossRef]
- Xie, S.; Du, Y.; Zhang, Y.; Wang, Z.; Zhang, D.; He, L.; Qiu, L.; Jiang, J.; Tan, W. Aptamer-based optical manipulation of protein subcellular localization in cells. Nat. Commun. 2020, 11, 1347. [Google Scholar] [CrossRef]
- Li, Y.; Liu, R.; Zhao, Z. Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis. Pharmaceutics 2025, 17, 109. [Google Scholar] [CrossRef]
- Mi, P.; Cabral, H.; Kataoka, K. Ligand-Installed Nanocarriers toward Precision Therapy. Adv. Mater. 2020, 32, 1902604. [Google Scholar] [CrossRef]
- Mahmoudian, F.; Ahmari, A.; Shabani, S.; Sadeghi, B.; Fahimirad, S.; Fattahi, F. Aptamers as an Approach to Targeted Cancer Therapy. Cancer Cell Int. 2024, 24, 108. [Google Scholar] [CrossRef]
- Ni, S.; Yao, H.; Wang, L.; Lu, J.; Jiang, F.; Lu, A.; Zhang, G. Chemical Modifications of Nucleic Acid Aptamers for Therapeutic Purposes. Int. J. Mol. Sci. 2017, 18, 1683. [Google Scholar] [CrossRef] [PubMed]
- Byun, J. Recent Progress and Opportunities for Nucleic Acid Aptamers. Life 2021, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Duro-Castano, A.; Borrás, C.; Herranz-Pérez, V.; Blanco-Gandía, M.C.; Conejos-Sánchez, I.; Armiñán, A.; Mas-Bargues, C.; Inglés, M.; Miñarro, J.; Rodríguez-Arias, M.; et al. Targeting Alzheimer’s disease with multimodal polypeptide-based nanoconjugates. Sci. Adv. 2021, 7, eabf9180. [Google Scholar] [CrossRef]
- Garima; Imtiyaz, K.; Pooja; Pannu, P.; Sharma, A.; Raina, S.; Kumar, S.; Anwer, S.T.; Alam Rizvi, M.; Sinha, S.K.; et al. Theranostic Application of Nanomedicine in Neurodegenerative Diseases: Current and Future Perspectives. In Nanotheranostics for Diagnosis and Therapy; Barkat, M.A., Ahmad, F.J., Rahman, M.A., Ansari, M.A., Eds.; Springer Nature: Singapore, 2024; pp. 221–247. [Google Scholar] [CrossRef]
- Aggarwal, N.; Choudhury, S.; Chibh, S.; Panda, J.J. Aptamer-nanoconjugates as emerging theranostic systems in neurodegenerative disorders. Colloid. Interface Sci. Commun. 2022, 46, 100554. [Google Scholar] [CrossRef]
- Zhong, C.; Shi, Z.; Binzel, D.W.; Jin, K.; Li, X.; Guo, P.; Li, S.K. Posterior eye delivery of angiogenesis-inhibiting RNA nanoparticles via subconjunctival injection. Int. J. Pharm. 2024, 657, 124151. [Google Scholar] [CrossRef]
- Ebenezer, O.; Comoglio, P.; Wong, G.K.-S.; Tuszynski, J.A. Development of Novel siRNA Therapeutics: A Review with a Focus on Inclisiran for the Treatment of Hypercholesterolemia. Int. J. Mol. Sci. 2023, 24, 4019. [Google Scholar] [CrossRef]
- Janssen, M.; Stenmark, H.; Carlson, A. Divalent ligand-monovalent molecule binding. Soft Matter 2021, 17, 5375–5383. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, H.; Sun, Y.; Wang, C.; Geng, X.; Wang, R.; Tang, L.; Han, D.; Liu, J.; Tan, W. Programmable manipulation of oligonucleotide-albumin interaction for elongated circulation time. Nucleic Acids Res. 2022, 50, 3083–3095. [Google Scholar] [CrossRef]
- Di Mauro, V.; Lauta, F.C.; Modica, J.; Appleton, S.L.; De Franciscis, V.; Catalucci, D. Diagnostic and Therapeutic Aptamers. JACC Basic. Transl. Sci. 2024, 9, 260–277. [Google Scholar] [CrossRef] [PubMed]
- Al Mazid, M.F.; Shkel, O.; Ryu, E.; Kim, J.; Shin, K.H.; Kim, Y.K.; Lim, H.S.; Lee, J.-S. Aptamer and N-Degron Ensemble (AptaGron) as a Target Protein Degradation Strategy. ACS Chem. Biol. 2024, 19, 2462–2468. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-M.; Cheng, T.-L.; Roffler, S.R. Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS Nano 2021, 15, 14022–14048. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Y.; Cao, Z.; Zhang, X.J.; Sun, R.; Yu, C.S.; Yang, X. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers. Theranostics 2018, 8, 2939–2953. [Google Scholar] [CrossRef]
- Driscoll, J.; Gondaliya, P.; Zinn, D.A.; Jain, R.; Yan, I.K.; Dong, H.; Patel, T. Using aptamers for targeted delivery of RNA therapies. Mol. Ther. 2025, 33, 1525–1537. [Google Scholar] [CrossRef]
- Pérez-López, A.; Torres-Suárez, A.I.; Martín-Sabroso, C.; Aparicio-Blanco, J. An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines. Adv. Drug Deliv. Rev. 2023, 196, 114816. [Google Scholar] [CrossRef]
- Culkins, C.; Adomanis, R.; Phan, N.; Robinson, B.; Slaton, E.; Lothrop, E.; Chen, Y.; Kimmel, B.R. Unlocking the Gates: Therapeutic Agents for Noninvasive Drug Delivery Across the Blood-Brain Barrier. Mol. Pharm. 2024, 21, 5430–5454. [Google Scholar] [CrossRef]
- Dume, B.; Licarete, E.; Banciu, M. Advancing cancer treatments: The role of oligonucleotide-based therapies in driving progress. Mol. Ther. Nucleic Acids 2024, 35, 102256. [Google Scholar] [CrossRef]
- Belfiore, L.; Saunders, D.N.; Ranson, M.; Thurecht, K.J.; Storm, G.; Vine, K.L. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J. Control. Release 2018, 277, 1–13. [Google Scholar] [CrossRef]
- Stuber, A.; Nakatsuka, N. Aptamer Renaissance for Neurochemical Biosensing. ACS Nano 2024, 18, 2552–2563. [Google Scholar] [CrossRef]
- Shirmast, P.; Shahri, M.A.; Brent, A.; Idris, A.; McMillan, N.A.J. Delivering therapeutic RNA into the brain using extracellular vesicles. Mol. Ther. Nucleic Acids 2024, 35, 102373. [Google Scholar] [CrossRef]
- Choi, J.-W.; Seo, M.; Kim, K.; Kim, A.-R.; Lee, H.; Kim, H.-S.; Park, C.G.; Cho, S.W.; Kang, J.H.; Joo, J.; et al. Aptamer Nanoconstructs Crossing Human Blood-Brain Barrier Discovered via Microphysiological System-Based SELEX Technology. ACS Nano 2023, 17, 8153–8166. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, J.; Denoyer, D.; Henri, J.; Jamieson, A.; Burvenich, I.J.G.; Pouliot, N.; Shigdar, S. Bifunctional Aptamer-Doxorubicin Conjugate Crosses the Blood-Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells. Nucleic Acid. Ther. 2020, 30, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, M.; Nilsen-Hamilton, M.; Ilgu, M. Aptamer Applications in Neuroscience. Pharmaceuticals 2021, 14, 1260. [Google Scholar] [CrossRef]
- Ghasemii, K.; Darroudi, M.; Rahimmanesh, I.; Ghomi, M.; Hassanpour, M.; Sharifi, E.; Yousefiasl, S.; Ahmadi, S.; Zarrabi, A.; Borzacchiello, A.; et al. Advances in aptamer-based drug delivery vehicles for cancer therapy. Biomater. Adv. 2022, 140, 213077. [Google Scholar] [CrossRef] [PubMed]
- Brylev, V.A.; Ryabukhina, E.V.; Nazarova, E.V.; Samoylenkova, N.S.; Gulyak, E.L.; Sapozhnikova, K.A.; Dzarieva, F.M.; Ustinov, A.V.; Pronin, I.N.; Usachev, D.Y.; et al. Towards Aptamer-Targeted Drug Delivery to Brain Tumors: The Synthesis of Ramified Conjugates of an EGFR-Specific Aptamer with MMAE on a Cathepsin B-Cleavable Linker. Pharmaceutics 2024, 16, 1434. [Google Scholar] [CrossRef] [PubMed]
- Hang, Z.; Zhou, L.; Bian, X.; Liu, G.; Cui, F.; Du, H.; Wen, Y. Potential application of aptamers combined with DNA nanoflowers in neurodegenerative diseases. Ageing Res. Rev. 2024, 100, 102444. [Google Scholar] [CrossRef]
- Mishra, A.; Kumar, R.; Mishra, J.; Dutta, K.; Ahlawat, P.; Kumar, A.; Dhanasekaran, S.; Gupta, A.K.; Sinha, S.; Bishi, D.K.; et al. Strategies facilitating the permeation of nanoparticles through blood-brain barrier: An insight towards the development of brain-targeted drug delivery system. J. Drug Deliv. Sci. Technol. 2023, 86, 104694. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Monaco, I.; Camorani, S.; Colecchia, D.; Locatelli, E.; Calandro, P.; Oudin, A.; Niclou, S.; Arra, C.; Chiariello, M.; Cerchia, L.; et al. Aptamer Functionalization of Nanosystems for Glioblastoma Targeting through the Blood-Brain Barrier. J. Med. Chem. 2017, 60, 4510–4516. [Google Scholar] [CrossRef]
- Gil-Cabrerizo, P.; Simon-Yarza, T.; Garbayo, E.; Blanco-Prieto, M.J. Navigating the landscape of RNA delivery systems in cardiovascular disease therapeutics. Adv. Drug Deliv. Rev. 2024, 208, 115302. [Google Scholar] [CrossRef]
- Pastor, F.; Soldevilla, M.M.; Villanueva, H.; Kolonias, D.; Inoges, S.; De Cerio, A.L.; Kandzia, R.; Klimyuk, V.; Gleba, Y.; Gilboa, E.; et al. CD28 Aptamers as Powerful Immune Response Modulators. Mol. Ther. Nucleic Acids 2013, 2, e98. [Google Scholar] [CrossRef]
- Yadav, P.; Ambudkar, S.V.; Rajendra Prasad, N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J. Nanobiotechnol. 2022, 20, 423. [Google Scholar] [CrossRef]
- Thomas, B.J.; Guldenpfennig, C.; Guan, Y.; Winkler, C.; Beecher, M.; Beedy, M.; Berendzen, A.F.; Ma, L.; Daniels, M.A.; Burke, D.H.; et al. Targeting lung cancer with clinically relevant EGFR mutations using anti-EGFR RNA aptamer. Mol. Ther. Nucleic Acids 2023, 34, 102046. [Google Scholar] [CrossRef]
- Chowdhury, R.; Eslami, S.; Pham, C.V.; Rai, A.; Lin, J.; Hou, Y.; Greening, D.W.; Duan, W. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. Nanoscale 2024, 16, 11457–11479. [Google Scholar] [CrossRef] [PubMed]
- Booth, B.J.; Nourreddine, S.; Katrekar, D.; Savva, Y.; Bose, D.; Long, T.J.; Huss, D.J.; Mali, P. RNA editing: Expanding the potential of RNA therapeutics. Mol. Ther. 2023, 31, 1533–1549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Bahal, R.; Rasmussen, T.P.; Manautou, J.E.; Zhong, X. The growth of siRNA-based therapeutics: Updated clinical studies. Biochem. Pharmacol. 2021, 189, 114432. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Hwang, K.; Nam, K.M.; Kim, M.J.; Song, Y.-K.; Kim, C.-Y. Nucleolin-Targeting AS1411 Aptamer-Conjugated Nanospheres for Targeted Treatment of Glioblastoma. Pharmaceutics 2024, 16, 566. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Yan, Z.; Jin, K.; Pang, Q.; Jiang, T.; Lu, H.; Liu, X.; Pang, Z.; Yu, L.; Jiang, X. Precise Glioblastoma Targeting by AS1411 Aptamer-Functionalized Poly(L-γ-glutamylglutamine)-Paclitaxel Nanoconjugates. J. Colloid. Interface Sci. 2017, 490, 783–796. [Google Scholar] [CrossRef]
- Chauhan, M.; Singh, R.P.; Sonali; Yadav, B.; Shekhar, S.; Kumar, L.; Mehata, A.K.; Jhawat, V.; Dutt, R.; Garg, V.; et al. Dual-Targeted Transferrin and AS1411 Aptamer Conjugated Micelles for Improved Therapeutic Efficacy and Imaging of Brain Cancer. Colloids Surf. B Biointerfaces 2023, 231, 113544. [Google Scholar] [CrossRef]
- Chauhan, M.; Sonali; Shekhar, S.; Yadav, B.; Garg, V.; Dutt, R.; Mehata, A.K.; Goswami, P.; Koch, B.; Muthu, M.S.; et al. AS1411 Aptamer/RGD Dual Functionalized Theranostic Chitosan-PLGA Nanoparticles for Brain Cancer Treatment and Imaging. Biomater. Adv. 2024, 160, 213833. [Google Scholar] [CrossRef]
- Fei, H.; Jin, Y.; Jiang, N.; Zhou, Y.; Wei, N.; Liu, Y.; Miao, J.; Zhang, L.; Li, R.; Zhang, A.; et al. Gint4.T-siHDGF Chimera-Capped Mesoporous Silica Nanoparticles Encapsulating Temozolomide for Synergistic Glioblastoma Therapy. Biomaterials 2024, 306, 122479. [Google Scholar] [CrossRef]
- Esposito, C.L.; Nuzzo, S.; Catuogno, S.; Romano, S.; De Nigris, F.; De Franciscis, V. STAT3 Gene Silencing by Aptamer-siRNA Chimera as Selective Therapeutic for Glioblastoma. Mol. Ther. Nucleic Acids 2018, 10, 398–411. [Google Scholar] [CrossRef]
- Yoon, S.; Huang, K.-W.; Andrikakou, P.; Vasconcelos, D.; Swiderski, P.; Reebye, V.; Sodergren, M.; Habib, N.; Rossi, J.J. Targeted Delivery of C/EBPα-saRNA by RNA Aptamers Shows Anti-Tumor Effects in a Mouse Model of Advanced PDAC. Mol. Ther. Nucleic Acids 2019, 18, 142–154. [Google Scholar] [CrossRef]
- Huang, B.-T.; Lai, W.-Y.; Yeh, C.-L.; Tseng, Y.-T.; Peck, K.; Yang, P.-C.; Lin, E.P.-Y. AptBCis1, an Aptamer-Cisplatin Conjugate, Is Effective in Lung Cancer Leptomeningeal Carcinomatosis. ACS Nano 2024, 18, 27905–27916. [Google Scholar] [CrossRef]
- Nuzzo, S.; Brancato, V.; Affinito, A.; Salvatore, M.; Cavaliere, C.; Condorelli, G. The Role of RNA and DNA Aptamers in Glioblastoma Diagnosis and Therapy: A Systematic Review of the Literature. Cancers 2020, 12, 2173. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, W.; Wu, T.; Kannan, S.; Kannan, R.M. Dendrimer-siRNA Conjugates for Targeted Intracellular Delivery in Glioblastoma Animal Models. ACS Appl. Mater. Interfaces. 2022, 14, 46290–46303. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Huang, N.; Zhang, X.; Zhou, T.; Tan, Y.; Pi, J.; Pi, L.; Cheng, S.; Zheng, H.; Cheng, Y. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int. J. Nanomed. 2017, 12, 3899–3911. [Google Scholar] [CrossRef]
- Wei, J.; Song, R.; Sabbagh, A.; Marisetty, A.; Shukla, N.; Fang, D.; Najem, H.; Ott, M.; Long, J.; Zhai, L.; et al. Cell-Directed Aptamer Therapeutic Targeting for Cancers Including Those within the Central Nervous System. OncoImmunology 2022, 11, 2062827. [Google Scholar] [CrossRef]
- Bar-Zeev, M.; Livney, Y.D.; Assaraf, Y.G. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist. Updat. 2017, 31, 15–30. [Google Scholar] [CrossRef]
- Xu, T.; Wang, H.; Huang, X.; Li, W.; Huang, Q.; Yan, Y.; Chen, J. Gene Fusion in Malignant Glioma: An Emerging Target for Next-Generation Personalized Treatment. Transl. Oncol. 2018, 11, 609–618. [Google Scholar] [CrossRef]
- Jain, N.; Zhu, H.; Khashab, T.; Ye, Q.; George, B.; Mathur, R.; Singh, R.K.; Berkova, Z.; Wise, J.F.; Braun, F.K.; et al. Targeting Nucleolin for Better Survival in Diffuse Large B-Cell Lymphoma. Leukemia 2018, 32, 663–674. [Google Scholar] [CrossRef]
- Pavlova, S.; Fab, L.; Dzarieva, F.; Ryabova, A.; Revishchin, A.; Panteleev, D.; Antipova, O.; Usachev, D.; Kopylov, A.; Pavlova, G. Unite and Conquer: Association of Two G-Quadruplex Aptamers Provides Antiproliferative and Antimigration Activity for Cells from High-Grade Glioma Patients. Pharmaceuticals 2024, 17, 1435. [Google Scholar] [CrossRef]
- Ausejo-Mauleon, I.; Martinez-Velez, N.; Lacalle, A.; De La Nava, D.; Cebollero, J.; Villanueva, H.; Casares, N.; Marco-Sanz, J.; Laspidea, V.; Becher, O.; et al. Combination of Locoregional Radio-Therapy with a TIM-3 Aptamer Improves Survival in Diffuse Midline Glioma Models. JCI Insight 2024, 9, e175257. [Google Scholar] [CrossRef]
- Maimaitiyiming, Y.; Hong, F.; Yang, C.; Naranmandura, H. Novel insights into the role of aptamers in the fight against cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.Y.; Choi, K.-J.; Lee, C.H.; Kim, S. A multimodal nanoparticle-based cancer imaging probe simultaneously targeting nucleolin, integrin αvβ3 and tenascin-C proteins. Biomaterials 2011, 32, 1130–1138. [Google Scholar] [CrossRef]
- Hwang, D.W.; Ko, H.Y.; Lee, J.H.; Kang, H.; Ryu, S.H.; Song, I.C.; Lee, D.S.; Kim, S. A Nucleolin-Targeted Multimodal Nanoparticle Imaging Probe for Tracking Cancer Cells Using an Aptamer. J. Nucl. Med. 2010, 51, 98–105. [Google Scholar] [CrossRef]
- Ju, I.G.; Lee, J.H.; Lee, J.-M.; Im, H.; Eo, H.; Moon, M.; Song, M.K.; Kim, Y.-S.; Oh, M.S.; Kim, Y.-J. NXP031 Restores Memory Function by Dual Effects Degrading Aβ Accumulation and Facilitating Antioxidant Pathway in Alzheimer’s Disease Models. Free Radic. Biol. Med. 2025, 226, 158–170. [Google Scholar] [CrossRef]
- Kan, X.; Ma, J.; Ma, J.; Li, D.; Li, F.; Cao, Y.; Huang, C.; Li, Y.; Liu, P. Dual-Targeted TfRA4-DNA1-Ag@AuNPs: An Innovative Radiosensitizer for Enhancing Radiotherapy in Glioblastoma Multiforme. Colloids Surf. B Biointerfaces 2025, 245, 114328. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhao, J.; Ma, J.; Yang, H.; Zhang, X.; Cao, Y.; Liu, P. GMT8 Aptamer Conjugated PEGylated Ag@Au Core-Shell Nanoparticles as a Novel Radiosensitizer for Targeted Radiotherapy of Glioma. Colloids Surf. B Biointerfaces 2022, 211, 112330. [Google Scholar] [CrossRef] [PubMed]
- Teng, I.-T.; Li, X.; Yadikar, H.A.; Yang, Z.; Li, L.; Lyu, Y.; Pan, X.; Wang, K.K.; Tan, W. Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J. Am. Chem. Soc. 2018, 140, 14314–14323. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Maghaydah, Y.; Zdanys, K.; Kuchel, G.A.; Diniz, B.S.; Liu, C. CRISPR-Powered Aptasensor for Diagnostics of Alzheimer’s Disease. ACS Sens. 2024, 9, 398–405. [Google Scholar] [CrossRef]
- Dar, K.B.; Bhat, A.H.; Amin, S.; Reshi, B.A.; Zargar, M.A.; Masood, A.; Ganie, S.A. Elucidating Critical Proteinopathic Mechanisms and Potential Drug Targets in Neurodegeneration. Cell. Mol. Neurobiol. 2020, 40, 313–345. [Google Scholar] [CrossRef]
- McConnell, E.M.; Chan, D.; Ventura, K.; Callahan, J.P.; Harris, K.; Hunt, V.H.; Boisjoli, S.; Knight, D.; Monk, E.T.; Holahan, M.R.; et al. Selection of DNA Aptamers That Prevent the Fibrillization of α-Synuclein Protein in Cellular and Mouse Models. Mol. Ther. Nucleic Acids 2024, 35, 102251. [Google Scholar] [CrossRef]
- Sensi, S.L.; Russo, M.; Tiraboschi, P. Biomarkers of diagnosis, prognosis, pathogenesis, response to therapy: Convergence or divergence? Lessons from Alzheimer’s disease and synucleinopathies. Handb. Clin. Neurol. 2023, 192, 187–218. [Google Scholar] [CrossRef]
- Pichla, M.; Bartosz, G.; Sadowska-Bartosz, I. The Antiaggregative and Antiamyloidogenic Properties of Nanoparticles: A Promising Tool for the Treatment and Diagnostics of Neurodegenerative Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 3534570. [Google Scholar] [CrossRef]
- Fernández-Gómez, B.; Marchena, M.A.; Piñeiro, D.; Gómez-Martín, P.; Sánchez, E.; Laó, Y.; Valencia, G.; Nocera, S.; Benítez-Fernández, R.; Castaño-León, A.M.; et al. ApTOLL: A new therapeutic aptamer for cytoprotection and (re)myelination after multiple sclerosis. Br. J. Pharmacol. 2024, 181, 3263–3281. [Google Scholar] [CrossRef] [PubMed]
- Aliena-Valero, A.; Hernández-Jiménez, M.; López-Morales, M.A.; Tamayo-Torres, E.; Castelló-Ruiz, M.; Piñeiro, D.; Ribó, M.; Salom, J.B. Cerebroprotective Effects of the TLR4-Binding DNA Aptamer ApTOLL in a Rat Model of Ischemic Stroke and Thrombectomy Recanalization. Pharmaceutics 2024, 16, 741. [Google Scholar] [CrossRef]
- Gote, V.; Nookala, A.R.; Bolla, P.K.; Pal, D. Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int. J. Mol. Sci. 2021, 22, 4673. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Collins, J.M.; Gell, D.A.; Perry, S.; Breadmore, M.C.; Shigdar, S.; King, A.E. Isolation and Identification of the High-Affinity DNA Aptamer Target to the Brain-Derived Neurotrophic Factor (BDNF). ACS Chem. Neurosci. 2024, 15, 346–356. [Google Scholar] [CrossRef]
- Shan, L. Indotricarbocyanine-loaded AS1411 DNA aptamer- and TGN peptide-modified poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles. In Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda, MD, USA, 2022. [Google Scholar] [PubMed]
- Fechter, P.; Da Silva, E.C.; Mercier, M.-C.; Noulet, F.; Etienne-Seloum, N.; Guenot, D.; Lehmann, M.; Vauchelles, R.; Martin, S.; Lelong-Rebel, I.; et al. RNA Aptamers Targeting Integrin α5β1 as Probes for Cyto- and Histofluorescence in Glioblastoma. Mol. Ther. Nucleic Acids 2019, 17, 63–77. [Google Scholar] [CrossRef]
- Banik, M.; Ledray, A.P.; Wu, Y.; Lu, Y. Delivering DNA Aptamers Across the Blood-Brain Barrier Reveals Heterogeneous Decreased ATP in Different Brain Regions of Alzheimer’s Disease Mouse Models. ACS Cent. Sci. 2024, 10, 1585–1593. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Wang, Z.; Zhang, Y.; Zou, J.; Qiu, L. Aptamer-Based Cancer Cell Analysis and Treatment. ChemistryOpen 2022, 11, e202200141. [Google Scholar] [CrossRef]
- Mikula, E.; Malecka-Baturo, K. An Overview of the Latest Developments in the Electrochemical Aptasensing of Neurodegenerative Diseases. Coatings 2023, 13, 235. [Google Scholar] [CrossRef]
- Walter, H.-K.; Bauer, J.; Steinmeyer, J.; Kuzuya, A.; Niemeyer, C.M.; Wagenknecht, H.-A. “DNA Origami Traffic Lights” with a Split Aptamer Sensor for a Bicolor Fluorescence Readout. Nano Lett. 2017, 17, 2467–2472. [Google Scholar] [CrossRef] [PubMed]
- Bargiela-Cuevas, S.; Marin, M.; Gabaldon-Ojeda, M.; Klett-Mingo, J.I.; Granado, P.; Sacristan, S.; Esteban-Lasso, A.; Casas, J.G.; Martin, M.E.; González, V.M.M.; et al. Histone Acetyl Transferase 1 Is Overexpressed in Poor Prognosis, High-grade Meningeal and Glial Brain Cancers: Immunohistochemical and Aptahistochemical Study. J. Histochem. Cytochem. 2024, 72, 585–599. [Google Scholar] [CrossRef]
- Iyer, A.K.; Singh, A.; Ganta, S.; Amiji, M.M. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv. Drug Deliv. Rev. 2013, 65, 1784–1802. [Google Scholar] [CrossRef]
- Salehirozveh, M.; Bonné, R.; Kumar, P.; Abazar, F.; Dehghani, P.; Mijakovic, I.; Roy, V.A.L. Enhanced Detection of Brain-Derived Neurotrophic Factor (BDNF) Using a Reduced Graphene Oxide Field-Effect Transistor Aptasensor. Nanoscale 2025, 17, 4543–4555. [Google Scholar] [CrossRef]
- Khot, V.M.; Salunkhe, A.B.; Pricl, S.; Bauer, J.; Thorat, N.D.; Townley, H. Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discov. Today 2021, 26, 724–739. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, M.; Liu, C.; Yang, G.; Shao, C.-S.; Xiong, L.; Xia, H.; Iqbal, J.; Zhan, J.; Qu, F.; Huang, Q. Early-stage Alzheimer’s disease profiling in blood achieved by multiplexing aptamer-SERS biosensors. Biosens. Bioelectron. 2025, 268, 116907. [Google Scholar] [CrossRef] [PubMed]
- Bodily, T.A.; Ramanathan, A.; Wei, S.; Karkisaval, A.; Bhatt, N.; Jerez, C.; Haque, A.; Ramil, A.; Heda, P.; Wang, Y.; et al. In pursuit of degenerative brain disease diagnosis: Dementia biomarkers detected by DNA aptamer-attached portable graphene biosensor. Proc. Natl. Acad. Sci. USA 2023, 120, e2311565120. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Tian, Y.; Kim, S.-T.; Park, C.; Kim, Y.M.; Chung, H.K.; Kim, K.M.; Jahng, G.-H. Oligomeric amyloid-β targeted contrast agent for MRI evaluation of Alzheimer’s disease mouse models. Front. Pharmacol. 2024, 15, 1392729. [Google Scholar] [CrossRef]
- Zboralski, D.; Hoehlig, K.; Eulberg, D.; Frömming, A.; Vater, A. Increasing Tumor-Infiltrating T Cells through Inhibition of CXCL12 with NOX-A12 Synergizes with PD-1 Blockade. Cancer Immunol. Res. 2017, 5, 950–956. [Google Scholar] [CrossRef]
- Giordano, F.A.; Layer, J.P.; Leonardelli, S.; Friker, L.L.; Turiello, R.; Corvino, D.; Zeyen, T.; Schaub, C.; Müller, W.; Sperk, E.; et al. L-RNA Aptamer-Based CXCL12 Inhibition Combined with Radiotherapy in Newly-Diagnosed Glioblastoma: Dose Escalation of the Phase I/II GLORIA Trial. Nat. Commun. 2024, 15, 4210. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tauser, R.-G.; Lupascu, F.-G.; Profire, B.-S.; Iacob, A.-T.; Vasincu, I.-M.; Apotrosoaei, M.; Chirliu, O.-M.; Lupascu, D.; Profire, L. Aptamer-Nanoconjugates as Potential Theranostics in Major Neuro-Oncological and Neurodegenerative Disorders. Pharmaceutics 2025, 17, 1106. https://doi.org/10.3390/pharmaceutics17091106
Tauser R-G, Lupascu F-G, Profire B-S, Iacob A-T, Vasincu I-M, Apotrosoaei M, Chirliu O-M, Lupascu D, Profire L. Aptamer-Nanoconjugates as Potential Theranostics in Major Neuro-Oncological and Neurodegenerative Disorders. Pharmaceutics. 2025; 17(9):1106. https://doi.org/10.3390/pharmaceutics17091106
Chicago/Turabian StyleTauser, Roxana-Georgiana, Florentina-Geanina Lupascu, Bianca-Stefania Profire, Andreea-Teodora Iacob, Ioana-Mirela Vasincu, Maria Apotrosoaei, Oana-Maria Chirliu, Dan Lupascu, and Lenuta Profire. 2025. "Aptamer-Nanoconjugates as Potential Theranostics in Major Neuro-Oncological and Neurodegenerative Disorders" Pharmaceutics 17, no. 9: 1106. https://doi.org/10.3390/pharmaceutics17091106
APA StyleTauser, R.-G., Lupascu, F.-G., Profire, B.-S., Iacob, A.-T., Vasincu, I.-M., Apotrosoaei, M., Chirliu, O.-M., Lupascu, D., & Profire, L. (2025). Aptamer-Nanoconjugates as Potential Theranostics in Major Neuro-Oncological and Neurodegenerative Disorders. Pharmaceutics, 17(9), 1106. https://doi.org/10.3390/pharmaceutics17091106