Engineering Large Porous Mannitol-PVA Microparticles for Extended Drug Delivery via Spray Drying
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Spray Drying of Large Porous Microparticles of PVA-Mannitol-Diclofenac Sodium (MPDs)
2.3. Scanning Electron Microscope (SEM)
2.4. Particle Size Analysis
2.5. Specific Surface Area (SSA)
2.6. Powder Density and Powder Flowability
2.7. FT-IR Spectroscopy
2.8. X-Ray Diffraction (XRD)
2.9. Differential Scanning Calorimetry (DSC)
2.10. In Vitro Drug Release Testing and Drug Content Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Scanning Electron Microscope (SEM)
3.2. Particle Size Analysis
3.3. Specific Surface Area (SSA)
3.4. Powder Density and Flowability
3.5. FT-IR Spectroscopy
3.6. X-Ray Diffraction (XRD)
3.7. Differential Scanning Calorimetry (DSC)
3.8. In Vitro Drug Release Testing and Drug Content Percentage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AB | Ammonium bicarbonate |
MA | Spray-dried mannitol with AB |
MD | Co-spray-dried mannitol–diclofenac sodium |
MPDs | Co-spray-dried PVA-mannitol, diclofenac sodium, and AB |
References
- Chaurasiya, B.; Zhao, Y.-Y. Dry Powder for Pulmonary Delivery: A Comprehensive Review. Pharmaceutics 2020, 13, 31. [Google Scholar] [CrossRef]
- Healy, A.M.; Amaro, M.I.; Paluch, K.J.; Tajber, L. Dry powders for oral inhalation free of lactose carrier particles. Adv. Drug Deliv. Rev. 2014, 75, 32–52. [Google Scholar] [CrossRef]
- Gharse, S.; Fiegel, J. Large porous hollow particles: Lightweight champions of pulmonary drug delivery. Curr. Pharm. Des. 2016, 22, 2463–2469. [Google Scholar] [CrossRef] [PubMed]
- El-Sherbiny, I.M.; Villanueva, D.G.; Herrera, D.; Smyth, H.D.C. Overcoming Lung Clearance Mechanisms for Controlled Release Drug Delivery. In Controlled Pulmonary Drug Delivery; Smyth, H.D.C., Hickey, A.J., Eds.; Springer: New York, NY, USA, 2011; pp. 101–126. [Google Scholar]
- Gradon, L.; Sosnowski, T.R. Formation of particles for dry powder inhalers. Adv. Powder Technol. 2014, 25, 43–55. [Google Scholar] [CrossRef]
- Alhajj, N.; O’Reilly, N.J.; Cathcart, H. Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties. Powder Technol. 2021, 384, 313–331. [Google Scholar] [CrossRef]
- Trisopon, K.; Kittipongpatana, O.S.; Saokham, P. Optimizing large porous mannitol-leucine microparticles via spray drying technique. Adv. Powder Technol. 2024, 35, 104512. [Google Scholar] [CrossRef]
- Liang, Z.; Ni, R.; Zhou, J.; Mao, S. Recent advances in controlled pulmonary drug delivery. Drug Discov. Today. 2015, 20, 380–389. [Google Scholar] [CrossRef]
- Loira-Pastoriza, C.; Todoroff, J.; Vanbever, R. Delivery strategies for sustained drug release in the lungs. Adv. Drug Deliv. Rev. 2014, 75, 81–91. [Google Scholar] [CrossRef]
- Başargan, T.; Nasün-Saygili, G. Effect of poly(vinyl alcohol) (PVA) weight ratio on spray-dried apatite–PVA composites. Bioinspired Biomim. Nanobiomater. 2023, 12, 170–177. [Google Scholar] [CrossRef]
- Silva, D.M.; Paleco, R.; Traini, D.; Sencadas, V. Development of ciprofloxacin-loaded poly(vinyl alcohol) dry powder formulations for lung delivery. Int. J. Pharm. 2018, 547, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Ohrem, H.L.; Schornick, E.; Kalivoda, A.; Ognibene, R. Why is mannitol becoming more and more popular as a pharmaceutical excipient in solid dosage forms? Pharm. Dev. Technol. 2014, 19, 257–262. [Google Scholar] [CrossRef]
- Littringer, E.M.; Mescher, A.; Schroettner, H.; Achelis, L.; Walzel, P.; Urbanetz, N.A. Spray dried mannitol carrier particles with tailored surface properties—the influence of carrier surface roughness and shape. Eur. J. Pharm. Biopharm. 2012, 82, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Littringer, E.M.; Noisternig, M.F.; Mescher, A.; Schroettner, H.; Walzel, P.; Griesser, U.J.; Urbanetz, N.A. The morphology and various densities of spray dried mannitol. Powder Technol. 2013, 246, 193–200. [Google Scholar] [CrossRef]
- Peng, T.; Zhang, X.; Huang, Y.; Zhao, Z.; Liao, Q.; Xu, J.; Huang, Z.; Zhang, J.; Wu, C.-Y.; Pan, X.; et al. Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation. Sci. Rep. 2017, 7, 46517. [Google Scholar] [CrossRef] [PubMed]
- Onischuk, A.A.; Tolstikova, T.G.; An’kov, S.V.; Baklanov, A.M.; Valiulin, S.V.; Khvostov, M.V.; Sorokina, I.; Dultseva, G.; Zhukova, N. Ibuprofen, indomethacin and diclofenac sodium nanoaerosol: Generation, inhalation delivery and biological effects in mice and rats. J. Aerosol Sci. 2016, 100, 164–177. [Google Scholar] [CrossRef]
- Plaunt, A.J.; Nguyen, T.L.; Corboz, M.R.; Malinin, V.S.; Cipolla, D.C. Strategies to overcome biological barriers associated with pulmonary drug delivery. Pharmaceutics 2022, 14, 302. [Google Scholar] [CrossRef]
- Gallo, L.; Ramírez-Rigo, M.V.; Bucalá, V. Development of porous spray-dried inhalable particles using an organic solvent-free technique. Powder Technol. 2019, 342, 642–652. [Google Scholar] [CrossRef]
- Hassan, M.S.; Lau, R.W.M. Effect of particle shape on dry particle inhalation: Study of flowability, aerosolization, and deposition properties. AAPS PharmSciTech 2009, 10, 1252–1262. [Google Scholar] [CrossRef]
- Eedara, B.B.; Bastola, R.; Das, S.C. Dissolution and absorption of inhaled drug particles in the lungs. Pharmaceutics 2022, 14, 2667. [Google Scholar] [CrossRef]
- Vehring, R. Pharmaceutical particle engineering via spray drying. Pharm. Res. 2008, 25, 999–1022. [Google Scholar] [CrossRef]
- Salama, R.; Hoe, S.; Chan, H.K.; Traini, D.; Young, P.M. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 1: Influence of polymer concentration on physical and in vitro characteristics. Eur. J. Pharm. Biopharm. 2008, 69, 486–495. [Google Scholar] [CrossRef]
- Scherließ, R.; Bock, S.; Bungert, N.; Neustock, A.; Valentin, L. Particle engineering in dry powders for inhalation. Eur. J. Pharm. Sci. 2022, 172, 106158. [Google Scholar] [CrossRef]
- Lechanteur, A.; Evrard, B. Influence of composition and spray-drying process parameters on carrier-free DPI properties and behaviors in the lung: A review. Pharmaceutics 2020, 12, 55. [Google Scholar] [CrossRef]
- Duong, T.; López-Iglesias, C.; Szewczyk, P.K.; Stachewicz, U.; Barros, J.; Alvarez-Lorenzo, C.; Alnaief, M.; García-González, C.A. A pathway from porous particle technology toward tailoring aerogels for pulmonary drug administration. Front. Bioeng. Biotechnol. 2021, 9, 671381. [Google Scholar] [CrossRef] [PubMed]
- Ogienko, A.G.; Bogdanova, E.G.; Trofimov, N.A.; Myz, S.A.; Ogienko, A.A.; Kolesov, B.A.; Yunoshev, A.S.; Zubikov, N.V.; Manakov, A.Y.; Boldyrev, V.V.; et al. Large porous particles for respiratory drug delivery. Glycine-based formulations. Eur. J. Pharm. Sci. 2017, 110, 148–156. [Google Scholar] [CrossRef]
- Thalberg, K.; Lindholm, D.; Axelsson, A. Comparison of different flowability tests for powders for inhalation. Powder Technol. 2004, 146, 206–213. [Google Scholar] [CrossRef]
- Burger, A.; Henck, J.-O.; Hetz, S.; Rollinger, J.M.; Weissnicht, A.A.; Stöttner, H. Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. J. Pharm. Sci. 2000, 89, 457–468. [Google Scholar] [CrossRef]
- Swain, R.; Nagamani, R.; Panda, S. Formulation, in vitro characterization and stability studies of fast dispersing tablets of diclofenac sodium. J. Appl. Pharm. Sci. 2015, 5, 94–102. [Google Scholar] [CrossRef]
- Palomo, M.E.; Ballesteros, M.P.; Frutos, P. Analysis of diclofenac sodium and derivatives. J. Pharm. Biomed. Anal. 1999, 21, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Choo, K.; Ching, Y.C.; Chuah, C.H.; Julai, S.; Liou, N.S. Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 2016, 9, 644. [Google Scholar] [CrossRef] [PubMed]
- De Pauw, E.; Vervaet, C.; Vanhoorne, V. Formation of delta-mannitol by co-spray drying: Enhancing the tabletability of paracetamol/mannitol formulations. J. Drug Deliv. Sci. Technol. 2022, 77, 103907. [Google Scholar] [CrossRef]
- Vanhoorne, V.; Van Bockstal, P.-J.; Van Snick, B.; Peeters, E.; Monteyne, T.; Gomes, P.; De Beer, T.; Remon, J.; Vervaet, C. Continuous manufacturing of delta mannitol by cospray drying with PVP. Int. J. Pharm. 2016, 501, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, J.; Hu, A.; Nie, T.; Cheng, Z.; Liu, W. A critical review on engineering of d-mannitol crystals: Properties, applications, and polymorphic control. Crystals 2022, 12, 1080. [Google Scholar] [CrossRef]
- Sarıışık, M.; Arıcı, M.; Topbaş, Ö.; Karavana, S.Y.; Öztürk, C.; Ertan, G. Design of orthopedic support material containing diclofenac sodium microparticles: Preparation and characterization of microparticles and application to orthopedic support material. Text. Res. J. 2013, 83, 1030–1043. [Google Scholar] [CrossRef]
- Gupta, S.; Pramanik, A.K.; Kailath, A.; Mishra, T.; Guha, A.; Nayar, S.; Sinha, A. Composition dependent structural modulations in transparent poly(vinyl alcohol) hydrogels. Colloids Surf. B Biointerfaces 2009, 74, 186–190. [Google Scholar] [CrossRef]
- Buanz, A.; Gurung, M.; Gaisford, S. Crystallisation in printed droplets: Understanding crystallisation of d-mannitol polymorphs. Cryst. Eng. Comm. 2019, 21, 2212–2219. [Google Scholar] [CrossRef]
- Kucukturkmen, B.; Oz, U.C.; Bozkir, A. In situ hydrogel formulation for intra-articular application of diclofenac sodium-loaded polymeric nanoparticles. Turk. J. Pharm. Sci. 2017, 14, 56–64. [Google Scholar] [CrossRef]
- Remiš, T.; Bělský, P.; Kovářík, T.; Kadlec, J.; Ghafouri Azar, M.; Medlín, R.; Vavruňková, V.; Deshmukh, K.; Sadasivuni, K.K. Study on Structure, Thermal behavior and viscoelastic properties of nanodiamond-reinforced poly (vinyl alcohol) nanocomposites. Polymers 2021, 13, 1426. [Google Scholar] [CrossRef]
- Piacentini, E.; Bazzarelli, F.; Poerio, T.; Albisa, A.; Irusta, S.; Mendoza, G.; Sebastian, V.; Giorno, L. Encapsulation of water-soluble drugs in poly (vinyl alcohol) (PVA)- microparticles via membrane emulsification: Influence of process and formulation parameters on structural and functional properties. Mater. Today Commun. 2020, 24, 100967. [Google Scholar] [CrossRef]
- Bruschi, M.L. Mathematical models of Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, M.L., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 63–86. [Google Scholar]
- Thanawuth, K.; Sutthapitaksakul, L.; Konthong, S.; Suttiruengwong, S.; Huanbutta, K.; Dass, C.R.; Sriamornsak, P. Impact of drug loading method on drug release from 3D-printed tablets made from filaments fabricated by hot-melt extrusion and impregnation processes. Pharmaceutics 2021, 13, 1607. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–233. [Google Scholar] [PubMed]
- Trucillo, P. Drug carriers: A review on the most used mathematical models for drug release. Processes 2022, 10, 1094. [Google Scholar] [CrossRef]
- Cam, M.E.; Yildiz, S.; Alenezi, H.; Cesur, S.; Ozcan, G.S.; Erdemir, G.; Edirisinghe, U.; Akakin, D.; Kuruca, D.S.; Kabasakal, L.; et al. Evaluation of burst release and sustained release of pioglitazone-loaded fibrous mats on diabetic wound healing: An in vitro and in vivo comparison study. J. R. Soc. Interface 2020, 17, 20190712. [Google Scholar] [CrossRef] [PubMed]
Samples | Mannitol (%) | PVA (%) | Diclofenac Sodium (%) | Particle Size | Aerodynamic Diameter (μm) | ||||
---|---|---|---|---|---|---|---|---|---|
D10 (μm) | D50 (μm) | D90 (μm) | Average Size (μm) | Span | |||||
MA | 100 | - | - | 5.86 ± 0.25 b | 9.36 ± 0.32 b | 13.52 ± 0.52 a | 9.26 ± 0.29 a | 0.82 | 5.07 |
MD | 90 | - | 10 | 4.94 ± 0.16 a | 8.54 ± 0.29 a | 11.89 ± 0.59 a | 8.63 ± 0.24 a | 0.81 | 4.40 |
MPD-1 | 80 | 10 | 10 | 7.54 ± 0.04 c | 13.36 ± 0.09 c | 23.47 ± 0.36 b | 13.74 ± 0.10 b | 1.19 | 6.27 |
MPD-2 | 70 | 20 | 10 | 8.58 ± 0.09 d | 14.94 ± 0.14 d | 25.29 ± 0.14 b | 15.48 ± 0.35 c | 1.12 | 3.79 |
MPD-3 | 60 | 30 | 10 | 9.40 ± 0.17 e | 15.49 ± 0.32 d | 24.49 ± 0.82 b | 15.83 ± 0.19 c | 0.97 | 3.17 |
MPD-4 | 50 | 40 | 10 | 9.24 ± 0.07 e | 18.37 ± 0.15 e | 35.27 ± 0.91 c | 18.38 ± 0.13 d | 1.42 | 4.50 |
Samples | Bulk Density (g/cm3) | Tapped Density (g/cm3) | True Density (g/cm3) | Porosity (%) | SSA (m2/g) | Carr’s Index (%) |
---|---|---|---|---|---|---|
MA | 0.18 ± 0.01 d | 0.29 ± 0.01 d | 1.3849 ± 0.0144 | 87.00 | 4.356 | 39.43 ± 0.56 d |
MD | 0.22 ± 0.01 e | 0.38 ± 0.01 e | 1.4899 ± 0.0079 | 85.23 | 3.266 | 41.29 ± 1.12 de |
PMD-1 | 0.14 ± 0.00 c | 0.25 ± 0.00 c | 1.5309 ± 0.0129 | 90.85 | 4.863 | 43.94 ± 1.06 e |
PMD-2 | 0.04 ± 0.00 ab | 0.06 ± 0.00 b | 1.4459 ± 0.0236 | 97.23 | 5.823 | 36.01 ± 0.62 c |
PMD-3 | 0.03 ± 0.00 a | 0.04 ± 0.00 a | 1.3389 ± 0.0373 | 97.76 | 7.404 | 27.46 ± 1.37 b |
PMD-4 | 0.05 ± 0.00 b | 0.06 ± 0.00 ab | 1.5839 ± 0.0217 | 96.84 | 4.388 | 17.56 ± 1.55 a |
Sample | Toneset (°C) | Tpeak (°C) | Tend (°C) | Enthalpy (J/g) |
---|---|---|---|---|
Diclofenac sodium | 283.33 | 287.50 | 289.81 | 64.88 |
PVA | 208.26 | 225.00 | 229.98 | 67.84 |
Commercial mannitol | 166.02 | 170.83 | 174.60 | 278.54 |
MA | 161.67 | 177.17 | 181.38 | 274.31 |
MD | 160.67 | 167.83 | 171.83 | 231.90 |
MPD-1 | 161.33 | 165.17 | 167.72 | 213.64 |
MPD-2 | 158.73 | 164.50 | 167.07 | 108.84 |
MPD-3 | 154.98 | 160.67 | 164.80 | 81.75 |
MPD-4 | 155.33 | 160.83 | 163.87 | 54.87 |
Formulations | Drug Content (%) | ||
---|---|---|---|
MD | 91.35 ± 0.99 | ||
MPD-1 | 104.64 ± 1.30 | ||
MPD-2 | 98.91 ± 1.22 | ||
MPD-3 | 95.08 ± 0.42 | ||
MPD-4 | 97.45 ± 0.31 | ||
Formulations | Zero-order | ||
Correlation Coefficient | Residual Sum of Squares | ||
MD | 0.3521 | 1348.17 | |
MPD-1 | 0.4921 | 673.35 | |
MPD-2 | 0.5059 | 600.92 | |
MPD-3 | 0.6139 | 578.54 | |
MPD-4 | 0.7243 | 564.38 | |
Formulations | First-order | ||
Correlation Coefficient | Residual Sum of Squares | ||
MD | 0.5821 | 281.25 | |
MPD-1 | 0.8776 | 199.09 | |
MPD-2 | 0.8505 | 216.56 | |
MPD-3 | 0.9308 | 121.58 | |
MPD-4 | 0.9576 | 68.79 | |
Formulations | Higuchi | ||
Correlation Coefficient | Residual Sum of Squares | ||
MD | 0.5494 | 1291.84 | |
MPD-1 | 0.7535 | 576.95 | |
MPD-2 | 0.7638 | 508.52 | |
MPD-3 | 0.8655 | 317.25 | |
MPD-4 | 0.9428 | 169.17 | |
Formulations | Hixson–Crowell | ||
Correlation Coefficient | Residual Sum of Squares | ||
MD | 0.4861 | 478.42 | |
MPD-1 | 0.7607 | 250.63 | |
MPD-2 | 0.7462 | 268.30 | |
MPD-3 | 0.8457 | 176.07 | |
MPD-4 | 0.8985 | 813.13 | |
Formulations | Korsmeyer–Peppas | ||
Correlation Coefficient | Residual Sum of Squares | n Value | |
MD | 0.9291 | 7.47 | 0.9017 |
MPD-1 | 0.9286 | 57.20 | 0.9286 |
MPD-2 | 0.9434 | 54.71 | 0.9434 |
MPD-3 | 0.9854 | 22.16 | 0.9854 |
MPD-4 | 0.9861 | 36.21 | 0.9861 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trisopon, K.; Kittipongpatana, O.S.; Chomchoei, N.; Yaowiwat, N.; Saokham, P. Engineering Large Porous Mannitol-PVA Microparticles for Extended Drug Delivery via Spray Drying. Pharmaceutics 2025, 17, 1135. https://doi.org/10.3390/pharmaceutics17091135
Trisopon K, Kittipongpatana OS, Chomchoei N, Yaowiwat N, Saokham P. Engineering Large Porous Mannitol-PVA Microparticles for Extended Drug Delivery via Spray Drying. Pharmaceutics. 2025; 17(9):1135. https://doi.org/10.3390/pharmaceutics17091135
Chicago/Turabian StyleTrisopon, Karnkamol, Ornanong Suwannapakul Kittipongpatana, Neungreuthai Chomchoei, Nara Yaowiwat, and Phennapha Saokham. 2025. "Engineering Large Porous Mannitol-PVA Microparticles for Extended Drug Delivery via Spray Drying" Pharmaceutics 17, no. 9: 1135. https://doi.org/10.3390/pharmaceutics17091135
APA StyleTrisopon, K., Kittipongpatana, O. S., Chomchoei, N., Yaowiwat, N., & Saokham, P. (2025). Engineering Large Porous Mannitol-PVA Microparticles for Extended Drug Delivery via Spray Drying. Pharmaceutics, 17(9), 1135. https://doi.org/10.3390/pharmaceutics17091135