Personalized Therapeutic Advances in Erythropoietin Signaling: From Anemia Management to Extensive Clinical Applications
Abstract
1. Introduction
2. Erythropoiesis-Stimulating Agents
3. The Hematopoietic Role of Erythropoietin in the Era of Personalized Medicine
4. Erythropoietin Beyond Hematopoiesis: Exploring Its Non-Hematopoietic Functions
4.1. Non-Hematopoietic Roles of EPO
4.2. Clinical and Preclinical Validation of EPOs Non-Hematopoietic Effects
4.3. Bridging EPO Functions and Gene Expression
5. Modulation of Erythropoietin Gene Expression
6. Recombinant Erythropoietin in the Context of Gene Doping
7. Effect of EPO on Glucose Metabolism
7.1. Mechanisms of EPO Action on Glucose Homeostasis
7.2. Tissue-Specific Effects of EPO
7.3. Metabolic Effects of EPO in Mouse Models
7.4. Clinical Implications
8. EPO as a Regulator of Metabolic Energy Pathways
8.1. Molecular Mechanisms of EPO in Energy Regulation
8.2. Tissue-Specific Effects of EPO on Energy Metabolism
8.3. Experimental and Clinical Evidence
8.4. Therapeutic Implications
9. Pharmacological Insights into Blood Doping and Its Physiological Implications
10. The Athlete’s Biological Passport
11. Regulatory Role of Erythropoietin in Iron Metabolism and Homeostasis
12. Cutting-Edge Perspectives on Erythropoietin Mechanisms and Use
13. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Suresh, S.; Rajvanshi, P.K.; Noguchi, C.T. The Many Facets of Erythropoietin Physiologic and Metabolic Response. Front. Physiol. 2020, 10, 1534. [Google Scholar] [CrossRef]
- Malik, J.; Kim, A.R.; Tyre, K.A.; Cherukuri, A.R.; Palis, J. Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts. Haematologica 2013, 98, 1778–1779. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Hirano, I.; Pan, X.; Minegishi, N.; Yamamoto, M. Erythropoietin production in neuroepithelial and neural crest cells during primitive erythropoiesis. Nat. Commun. 2013, 4, 2902. [Google Scholar] [CrossRef]
- Tsiftsoglou, A. Erythropoietin (EPO) as a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial Transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine. Cells 2021, 10, 2140. [Google Scholar] [CrossRef]
- Thevis, M.; Görgens, C.; Guddat, S.; Thomas, A.; Geyer, G. Mass spectrometry in sports drug testing-Analytical approaches and the athletes’ exposome. Scand. J. Med. Sci. Sports 2022, 34, 14228. [Google Scholar] [CrossRef]
- Thevis, M.; Kuuranne, T.; Geyer, H. Annual banned-substance review: Analytical approaches in human sports drug testing 2019/2020. Drug Test. Anal. 2021, 13, 8–35. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Izumi, Y.; Sands, J.M.; Kawahara, K.; Nonoguchi, H. Progress in the Detection of Erythropoietin in Blood, Urine, and Tissue. Molecules 2023, 28, 4446. [Google Scholar] [CrossRef]
- Pan, S.; Zhao, D.L.; Li, P.; Sun, X.F.; Zhou, J.H.; Song, K.K.; Wang, Y.; Miao, L.N.; Ni, Z.H.; Lin, H.L.; et al. Relationships among the Dosage of Erythropoiesis-Stimulating Agents, Erythropoietin Resistance Index, and Mortality in Maintenance Hemodialysis Patients. Blood Purif. 2022, 51, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.Y.; Palmer, S.C.; Saglimbene, V.M.; Craig, J.C.; Tonelli, M.; Strippoli, G.F. Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: A network meta-analysis. Cochrane Database Syst. Rev. 2023, 2, CD010590. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, K.K.; Agents, H.O.E.-S. the Development of Biosimilars, and the Future of Anemia Treatment in Nephrology. Am. J. Nephrol. 2017, 45, 235–247. [Google Scholar] [CrossRef]
- Desai, R.; Unigwe, I.; Riaz, M.; Smith, S.M.; Shukla, A.M.; Mohandas, R.; Jeon, N.; Park, H. Comparative Safety of Long-Acting vs. Short-Acting Erythropoiesis-Stimulating Agents Among Patients Undergoing Hemodialysis. Clin. Pharmacol. Ther. 2024, 116, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Schoener, B.; Borger, I. Erythropoietin Stimulating Agents. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK536997/ (accessed on 24 September 2024).
- Tong, Z.; Xu, Z.; Duan, Y.; Sun, X.; Qi, B. The effect of erythropoiesis-stimulating agents on lung cancer patients: A meta-analysis. Clin. Exp. Med. 2024, 24, 150. [Google Scholar] [CrossRef] [PubMed]
- Țichil, I.; Mitre, I.; Zdrenghea, M.T.; Bojan, A.S.; Tomuleasa, C.I.; Cenariu, D. A Review of Key Regulators of Steady-State and Ineffective Erythropoiesis. J. Clin. Med. 2024, 13, 2585. [Google Scholar] [CrossRef]
- Bhoopalan, S.V.; Huang, L.J.S.; Weiss, M. Erythropoietin regulation of red blood cell production: From bench to bedside and back. F1000Research 2020, 9, 1153. [Google Scholar] [CrossRef] [PubMed]
- Calvanese, V.; Mikkola, H.K.A. The genesis of human hematopoietic stem cells. Blood 2023, 142, 519–532. [Google Scholar] [CrossRef]
- Orelio, C.; Dzierzak, E. Bcl-2 expression and apoptosis in the regulation of hematopoietic stem cells. Leuk. Lymphoma 2007, 48, 16–24. [Google Scholar] [CrossRef]
- Azzoni, E.; Frontera, V.; McGrath, K.E.; Harman, J.; Carrelha, J.; Nerlov, C.; Palis, J.; Jacobsen, S.E.W.; de Bruijn, M.F. Kit ligand has a critical role in mouse yolk sac and aorta-gonad-mesonephros hematopoiesis. EMBO Rep. 2018, 19, e45477. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Biosimilar Medicines: Overview; EMA. 2024. Available online: https://www.ema.europa.eu/en/human-regulatory-overview/marketing-authorisation/biosimilar-medicines-marketing-authorisation (accessed on 22 February 2024).
- Inzoli, E.; Crisà, E.; Pugliese, N.; Civettini, I.; Lanzarone, G.; Castelli, A.; Martinelli, V.; Montelisciani, L.; Antolini, L.; Gambacorti-Passerini, C.; et al. Biosimilar erythropoiesis-stimulating agents are an effective and safe option for the management of myelofibrosis-related anemia. Eur. J. Haematol. 2023, 110, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Are There Any Biosimilars Available for Erythropoietin? Synapse. 8 March 2025. Available online: https://synapse.patsnap.com/article/are-there-any-biosimilars-available-for-erythropoietin (accessed on 1 September 2025).
- Wang, L.; Di, L.; Noguchi, C.T. Erythropoietin, A Novel Versatile Player Regulating Energy Metabolism beyond the Erythroid System. Int. J. Biol. Sci. 2014, 10, 921–939. [Google Scholar] [CrossRef]
- Gettrick, A.F.M.; O’Neill, L.A.J. The Role of HIF in Immunity and Inflammation. Cell. Matab. 2020, 32, 524–536. [Google Scholar] [CrossRef]
- Li, Q.; Kang, C. Erythropoietin Receptor Structural Domains. Vitam. Horm. 2017, 105, 1–17. [Google Scholar] [CrossRef]
- Weir, M. Managing Anemia across the Stages of Kidney Disease in Those Hyporesponsive to Erythropoiesis-Stimulating Agents. Am. J. Nephrol. 2021, 52, 450–466. [Google Scholar] [CrossRef]
- Dey, S.; Noguchi, C.T. Chapter Six—Erythropoietin and Hypothalamic–Pituitary Axis. Vitam. Horm. 2017, 105, 101–120. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Dey, S.; Rajvanshi, P.K.; Merling, R.K.; Teng, R.; Rogers, H.M.; Noguchi, C.T. Neuronal nitric oxide synthase is required for erythropoietin stimulated erythropoiesis in mice. Front. Cell Dev. Biol. 2023, 11, 1144110. [Google Scholar] [CrossRef] [PubMed]
- Nicolae, A.-C.; Arsene, A.L.; Vuță, V.; Popa, D.E.; Sîrbu, C.A.; Dragomiroiu, G.T.A.B.; Dumitrescu, I.-B.; Velescu, B.Ș.; Gofiță, E.; Drăgoi, C.M. In vitro P-gp expression after administration of CNS active drugs. Farmacia 2016, 64, 844–850. [Google Scholar]
- Jelkmann, W. Erythropoietin: Structure, control of production, and function. Physiol. Rev. 1992, 72, 449–489. [Google Scholar] [CrossRef]
- Khabour, O.F.; Bani-Ahmad, M.A.; Hammash, N.M. Association between polymorphisms in erythropoietin gene and upper limit haematocrit levels among regular blood donors. Transfus. Clin. Biol. 2012, 19, 353–357. [Google Scholar] [CrossRef]
- Koury, M.J.; Haase, V.H. Anaemia in kidney disease: Harnessing hypoxia responses for therapy. Nat. Rev. Nephrol. 2015, 11, 394–410. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. Hepcidin and iron homeostasis. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2012, 1823, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Besarab, A.; Yee, J. Candidate biomarkers for erythropoietin response in end-stage renal disease. Kidney Int. 2011, 79, 488–490. [Google Scholar] [CrossRef]
- Brines, M.; Cerami, A. Emerging biological roles for erythropoietin in the nervous system. Nat. Rev. Neurosci. 2005, 6, 484–494. [Google Scholar] [CrossRef]
- Calvillo, L.; Latini, R.; Kajstura, J.; Leri, A.; Anversa, P.; Ghezzi, P.; Salio, M.; Cerami, A.; Brines, M. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc. Natl. Acad. Sci. USA 2003, 100, 4802–4806. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sakanaka, M.; Wen, T.C.; Matsuda, S.; Masuda, S.; Morishita, E.; Nagao, M.; Sasaki, R. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc. Natl. Acad. Sci. USA 1998, 95, 4635–4640. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roger, S.D. Biosimilars: How similar or dissimilar are they? Nephrology 2006, 11, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Hao, C.; Peng, X.; Lin, H.; Yin, A.; Hao, L.; Tao, Y.; Liang, X.; Liu, Z.; Xing, C.; et al. Roxadustat for Anemia in Patients with Kidney Disease Not Receiving Dialysis. N. Engl. J. Med. 2019, 381, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Butt, H.; Mandava, M.; Jacobsohn, D. Advances in Gene Therapy for Sickle Cell Disease: From Preclinical Innovations to Clinical Implementation and Access Challenges. CRISPR J. 2025, 8, 174–188. [Google Scholar] [CrossRef]
- Singh, A.K.; Szczech, L.; Tang, K.L.; Barnhart, H.; Sapp, S.; Wolfson, M.; Reddan, D.; CHOIR Investigators. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 2006, 355, 2085–2098. [Google Scholar] [CrossRef] [PubMed]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef] [PubMed]
- Monika, F.Z.; Bian, K.; Murad, F. The Endothelium-Dependent Nitric Oxide-cGMP Pathway. Adv. Pharmacol. 2016, 77, 1–27. [Google Scholar] [CrossRef]
- Susantad, T.; Fuangthong, M.; Tharakaraman, K.; Titoon, P.; Ruchirawat, M.; Sasisekharan, R. Modified recombinant human erythropoietin with potentially reduced immunogenicity. Sci. Rep. 2021, 11, 1491. [Google Scholar] [CrossRef]
- Arias, C.F.; Leal, N.V.; Bertocchini, F.; Marques, S.; Acosta, F.J.; Fernandez-Arias, C. A new role for erythropoietin in the homeostasis of red blood cells. Commun. Biol. 2024, 7, 58. [Google Scholar] [CrossRef]
- Teng, R.; Calvert, J.W.; Sibmooh, N.; Piknova, B.; Suzuki, N.; Sun, J.; Martinez, K.; Yamamoto, M.; Schechter, A.N.; Lefer, D.J.; et al. Acute erythropoietin cardioprotection is mediated by endothelial response. Basic Res. Cardio. 2011, 106, 343–354. [Google Scholar] [CrossRef]
- Vélez, D.E.; Cordero, V.E.; Hermann, R.; Pazos, M.D.; Reznik, F.J.; Sánchez, L.; Prendes, M.G. Erythropoietin-mediated cardioprotection in hearts subjected to ischemia reperfusion. J. Mol. Endocrinol. 2023, 71, e230076. [Google Scholar] [CrossRef]
- Hernández, C.C.; Burgos, C.F.; Gajardo, A.H.; Silva-Grecchi, T.; Gavilan, J.; Toledo, J.R.; Fuentealba, J. Neuroprotective effects of erythropoietin on neurodegenerative and ischemic brain diseases: The role of erythropoietin receptor. Neural Regen. Res. 2017, 12, 1381–1382. [Google Scholar] [CrossRef] [PubMed]
- Chiu, P.C.; Liou, H.C.; Ling, T.Y.; Shen, L.J. Development of a Neuroprotective Erythropoiein Modified with a Novel Carrier for Blood-Brain Barrier. Neurotherapeutics 2020, 17, 1184–1196. [Google Scholar] [CrossRef]
- Fischer, H.S.; Reibel, N.J.; Bührer, C.; Dame, C. Prophylactic Erythropoietin for Neuroprotection in Very Preterm Infants: A Meta-Analysis Update. Front. Pediatr. 2021, 9, 657228. [Google Scholar] [CrossRef]
- Jarero-Basulto, J.J.; Rivera-Cervantes, M.C.; Gasca-Martínez, D.; García-Sierra, F.; Gasca-Martínez, Y.; Beas-Zárate, C. Current Evidence on the Protective Effects of Recombinant Human Erythropoietin and Its Molecular Variants against Pathological Hallmarks of Alzheimer′s Disease. Pharmaceuticals 2020, 13, 424. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vittori, D.C.; Chamorro, M.E.; Hernandez, Y.V.; Maltaneri, R.E.; Nesse, A.B. Erythropoietin and derivatives: Potential beneficial effects on the brain. J. Neurochem. 2021, 158, 1032–1057. [Google Scholar] [CrossRef] [PubMed]
- Byts, N.; Sirén, A.-L. Erythropoietin: A multimodal neuroprotective agent. Exp. Transl. Stoke Med. 2009, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Rey, F.; Balsari, A.; Giallongo, T.; Ottolenghi, S.; Di Giulio, A.M.; Samaja, M.; Carelli, S. Erythropoietin as a Neuroprotective Molecule: An Overview of Its Therapeutic Potential in Neurodegenerative Diseases. ASN Neuro 2019, 11, 1759091419871420. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nijholt, K.T.; Meems, L.M.G.; Ruifrok, W.P.T.; Maass, A.H.; Yurista, S.R.; Pavez-Giani, M.G.; Mahmoud, B.; Wolters, A.H.G.; van Veldhuisen, D.J.; van Gilst, W.H.; et al. The erythropoietin receptor expressed in skeletal muscle is essential for mitochondrial biogenesis and physiological exercise. PPflügers Arch. 2021, 473, 1301–1313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alnaeeli, M.; Noguchi, C.T. Erythropoietin and obesity-induced white adipose tissue inflammation: Redefining the boundaries of the immunometabolism territory. Adipocyte 2015, 4, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, M.A.; Mitrea, N.; Nicolae, A.-C.; Constantinescu, M.-Z.; Drăgoi, C.M.; Arsene, A.-L.; Barbu, C.G. The dynamics of adiponectin and leptin on metabolic syndrome patients and age matched healthy subjects. Farmacia 2014, 62, 532–545. [Google Scholar]
- Dey, S.; Lee, J.; Noguchi, C.T. Erythropoietin Non-hematopoietic Tissue Response and Regulation of Metabolism During Diet Induced Obesity. Front. Pharmacol. 2021, 12, 725734. [Google Scholar] [CrossRef]
- Yin, W.; Rajvanshi, P.K.; Rogers, H.M.; Yoshida, T.; Kopp, J.B.; An, X.; Gassmann, M.; Noguchi, C.T. Erythropoietin regulates energy metabolism through EPO-EpoR-RUNX1 axis. Nat. Comm. 2024, 15, 8114. [Google Scholar] [CrossRef]
- Suresh, S.; Lee, J.; Noguchi, C.T. Effects of Erythropoietin in White Adipose Tissue and Bone Microenvironment. Front. Cell Dev. Biol. 2020, 8, 584696. [Google Scholar] [CrossRef]
- Kodo, K.; Sugimoto, S.; Nakajima, H.; Mori, J.; Itoh, I.; Fukuhara, S.; Shigehara, K.; Nishikawa, T.; Kosaka, K.; Hosoi, H. Erythropoietin (EPO) ameliorates obesity and glucose homeostasis by promoting thermogenesis and endocrine function of classical brown adipose tissue (BAT) in diet-induced obese mice. PLoS ONE 2017, 12, e0173661. [Google Scholar] [CrossRef]
- Serra, M.; Blanc, L. Metabolic gatekeeping in murine stress erythropoiesis. Blood Red. Cells Iron 2025, 1, 100002. [Google Scholar] [CrossRef]
- Ruan, B.; Paulson, R.F. Metabolic regulation of stress erythropoiesis, outstanding questions, and possible paradigms. Front. Physiol. 2023, 13, 1063294. [Google Scholar] [CrossRef] [PubMed]
- Nicolae, A.-C.; Mitrea, N.; Drăgoi, C.M.; Constantinescu, M.Z.; Ciofrângeanu, C.; Bărboi, G.; Arsene, A.L. Murine studies regarding the variation of oxidative status in serum, hepatic and brain samples, after administration of some CNS active drugs. Farmacia 2013, 61, 658–669. [Google Scholar]
- Awida, Z.; Bab, S.H.; Bachar, A.; Saed, H.; Zyc, D.; Gorodov, A.; Ben-Califa, N.; Omari, S.; Omar, J.; Younis, L.; et al. Erythropoietin Receptor (EPOR) Signaling in the Osteoclast Lineage Contributes to EPO-Induced Bone Loss in Mice. Int. J. Mol. Sci. 2022, 23, 12051. [Google Scholar] [CrossRef]
- Rauner, M.; Murray, M.; Thiele, S.; Watts, D.; Neumann, D.; Gabet, Y.; Hofbauer, L.C.; Wielockx, B. Epo/EpoR signaling in osteoprogenitor cells is essential for bone homeostasis and Epo-induced bone loss. Bone Res. 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Chunchai, T.; Apaijai, N.; Benjanuwattra, J.; Pintana, H.; Singhanat, K.; Arunsak, B.; Chattipakorn, N.; Chattipakorn, S. Erythropoietin administration exerted neuroprotective effects against cardiac ischemia/reperfusion injury. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100124. [Google Scholar] [CrossRef]
- Tsai, T.; Lu, C.; Wallace, C.; Chang, W.; Chen, S.; Huang, C.; Tsai, N.; Lan, M.; Sung, P.; Liu, C.; et al. Erythropoietin improves long-term neurological outcome in acute ischemic stroke patients: A randomized, prospective, placebo-controlled clinical trial. Crit. Care 2015, 19, 49. [Google Scholar] [CrossRef]
- Yin, W.; Noguchi, C.T. The Role of Erythropoietin in Metabolic Regulation. Cells 2025, 14, 280. [Google Scholar] [CrossRef]
- Haase, V.H. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 2013, 27, 41–53. [Google Scholar] [CrossRef]
- Wenger, R.H.; Stiehl, D.P.; Camenisch, G. Integration of oxygen signaling at the consensus HRE. Sci. STKE 2005, 306, re12. [Google Scholar] [CrossRef]
- Nicolae, A.-C.; Mitrea, N.; Arsene, A.L.; Constantinescu, M.Z.; Vuță, V.; Drăgoi, C.M. In vitro P-glycoprotein inhibition assay on N2a murine cell line. Farmacia 2013, 61, 481–491. [Google Scholar]
- Maxwell, P.H.; Wiesener, M.S.; Chang, G.W.; Clifford, S.C.; Vaux, E.C.; Cockman, M.E.; Wykoff, C.C.; Pugh, C.W.; Maher, E.R.; Ratcliffe, P.J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999, 399, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Pichon, A.; Jeton, F.; El Hasnaoui-Saadani, R.; Hagström, L.; Launay, T.; Beaudry, M.; Marchant, D.; Quidu, P.; Macarlupu, J.L.; Favret, F.; et al. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice. Hypoxia 2016, 4, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Rankin, E.B.; Giaccia, A.J. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008, 15, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N. Erythropoietin gene expression: Developmental-stage specificity, cell-type specificity, and hypoxia inducibility. Tohoku J. Exp. Med. 2015, 235, 233–240. [Google Scholar] [CrossRef]
- Li, R.; Su, P.; Shi, Y.; Shi, H.; Ding, S.; Su, X.; Chen, P.; Wu, D. Gene doping detection in the era of genomics. Drug Test. Anal. 2024, 16, 1468–1478. [Google Scholar] [CrossRef]
- Dwitanto, K.; Angginy, N.; Sutandar, W. Comparative Study of Recombinant Human Erythropoietin (rhEPO) Products on CKD (Chroni Kidney Disease) Patients. Drug Res. 2023, 73, 271–278. [Google Scholar] [CrossRef]
- Thevis, M.; Kuuranne, T.; Geyer, H. Annual banned-substance review: Analytical approaches in human sports drug testing 2020/2021. Drug Test. Anal. 2022, 14, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Donato, H.; Ferro, H. Human recombinant erythropoietin therapy. Medicina 2006, 66, 51–69. [Google Scholar] [PubMed]
- Liu, J.F.; Mou, L.J. Treatment of Erythropoietin-Induced Pure Red Cell Aplastic Anemia, Treatment of Refractory Renal Anemia; Open Access Book; Springer: Berlin/Heidelberg, Germany, 2025; Volume 17, pp. 103–108. [Google Scholar] [CrossRef]
- Elliott, S.; Pham, E.; Macdougall, I.C. Erythropoietins: A common mechanism of action. Exp. Hematol. 2008, 36, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- NeoRecormon. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/neorecormon (accessed on 2 February 2025).
- Aranesp. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/aranesp (accessed on 2 February 2025).
- Mircera. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/mircera (accessed on 2 February 2025).
- Epoetin Alfa Hexal. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/epoetin-alfa-hexal (accessed on 2 February 2025).
- Binocrit. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/binocrit (accessed on 2 February 2025).
- Retacrit. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/retacrit (accessed on 2 February 2025).
- Eporatio. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/eporatio (accessed on 2 February 2025).
- Ren, T.J.; Zhang, X.X.; Li, X.; Chen, H.X. Isoforms analysis of recombinant human erythropoietin by polarity-reversed capillary isoelectric focusing. Electrophoresis 2020, 41, 2055–2057. [Google Scholar] [CrossRef]
- Reichel, C.; Gmeiner, G.; Reihlen, P.; Thevis, M.; Schanzer, W. SARCOSYL-PAGE: Optimized Protocols for the Separation and Immunological Detection of PEGylated Proteins. Meth. Mol. Biol. 2019, 1855, 131–133. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, B.; Shi, R.; Wang, J.; Liu, Z.; Liu, W.; Wang, S.; Zhang, Z. Nonerythropoietic Erythropoietin-Derived Peptide Suppresses Adipogenesis, Inflammation, Obesity and Insulin Resistance. Sci. Rep. 2015, 5, 15134. [Google Scholar] [CrossRef]
- Noguchi, C.T. Erythropoietin regulates metabolic response in mice via receptor expression in adipose tissue, brain, and bone. Exp. Hematol. 2020, 92, 32–42. [Google Scholar] [CrossRef]
- Grădinaru, D.; Mitrea, N.; Margină, D.; Arsene, A.L.; Gruia, V.; Drăgoi, C.; Nicolae, A.; Borşa, C.; Gherasim, P. Evaluation of serum osteocalcin in eldery patients with type-2 diabetes mellitus. Farmacia 2009, 57, 331–338. [Google Scholar]
- Vlăsceanu, A.M.; Petraru, C.; Baconi, D.; Ghica, M.; Arsene, A.; Popa, L.; Nicolae, A.; Drăgoi, C.; Pavalache, G. Quantitative relationships of urinary cotinine levels in smoking diabetic patients. Farmacia 2015, 63, 349–356. [Google Scholar]
- Alnaeeli, M.; Raaka, B.M.; Gavrilova, O.; Teng, R.; Chanturiya, T.; Noguchi, C.T. Erythropoietin signaling: A novel regulator of white adipose tissue inflammation during diet-induced obesity. Diabetes 2014, 63, 2415–2431. [Google Scholar] [CrossRef]
- Trinh, K.V.; Diep, D.; Chen, K.J.Q.; Huang, L.; Gulenko, O. Effect of erythropoietin on athletic performance: A systematic review and meta-analysis. BMJ Open Sport Exerc. Med. 2020, 6, e000716. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fukuta, H.; Goto, T.; Kamiya, T. Effects of hypoxia-inducible factor prolyl hydroxylase inhibitors on hemoglobin, B-type natriuretic peptide, and renal function in anemic heart failure patients: A systematic review and meta-analysis. Int. J. Cardiol. Heart Vasc. 2025, 58, 101653. [Google Scholar] [CrossRef]
- Zuolin, L.; Lan, S.; Yan, T.; Shun, L.; Bicheng, L. Hypoxia-inducible factor-prolyl hydroxylase inhibitors in treatment of anemia with chronic disease. Chin. Med. J. 2025, 138, 1424–1432. [Google Scholar] [CrossRef]
- Andersen, A.B.; Nordsborg, N.B.; Bonne, T.C.; Bejder, J. Contemporary blood doping-Performance, mechanism and detection. Scand. J. Med. Sci. Sports 2024, 34, e14243. [Google Scholar] [CrossRef]
- Alberdi-Garciandia, A.; Concejero, J.S. Recombinant Human Erythropoietin Effects on Well-Trained Athletes’ Endurance Performance: A Systematic Review. Sports 2025, 13, 78. [Google Scholar] [CrossRef]
- Sugasawa, T.; Kanki, Y.; Komine, R.; Watanabe, K.; Takekoshi, K. Identification of RNA Markers in Red Blood Cells for Doping Control in Autologous Blood Transfusion. Genes 2022, 13, 1255. [Google Scholar] [CrossRef] [PubMed]
- Heiland, C.E.; Ericsson, M.; Pohanka, A.; Ekström, L.; Marchand, A. Optimizing detection of erythropoietin receptor agonists from dried blood spots for anti-doping application. Drug Test. Anal. 2022, 14, 1377–1386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Atkinson, T.S.; Khan, M.J. Blood doping: Then and now. A narrative review of the history, science and efficacy of blood doping in elite sport. Blood 2020, 39, 100632. [Google Scholar] [CrossRef]
- Seeger, B.; Grau, M. Relation between exercise performance and blood storage condition and storage time in autologous blood doping. Biology 2020, 10, 14. [Google Scholar] [CrossRef]
- Krumm, B.; Saugy, J.J.; Botre, F.; Donati, F.; Faiss, R. Indirect biomarkers of blood doping: A systematic review. Drug Test. Anal. 2023, 16, 49–64. [Google Scholar] [CrossRef]
- Brisot, E.; Leprêtre, P.-M.; Hamza, E.; Fourdinier, O.; Brigant, B.; Ouled-Haddou, H.; Choukroun, G.; Massy, Z.A.; Verbeke, F.; Meuth, V.M.-L.; et al. Uremic toxins levels are associated with miR-223 in chronic kidney disease-associated anemia. Noncoding RNA Res. 2025, 13, 121–130. [Google Scholar] [CrossRef]
- Breenfeldt Andersen, A.; Bejder, J.; Bonne, T.C.; Sørensen, H.; Sørensen, H.; Jung, G.; Ganz, T.; Nemeth, E.; Secher, N.H.; Johansson, P.I.; et al. Hepcidin and Erythroferrone Complement the Athlete Biological Passport in the Detection of Autologous Blood Transfusion. Med. Sci. Sports Exerc. 2023, 54, 1604–1616. [Google Scholar] [CrossRef] [PubMed]
- Lima, G.; Kolliari-Turner, A.; Malinsky, F.R.; Guppy, F.M.; Martin, R.P.; Wang, G.; Voss, S.C.; Georgakopoulos, C.; Borrione, P.; Pigozzi, F.; et al. Integrating Whole Blood Transcriptomic Collection Procedures Into the Current Anti-Doping Testing System, Including Long-Term Storage and Re-Testing of Anti-Doping Samples. FFront. Mol. Biosci. 2021, 8, 728273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Emrich, I.E.; Scheuer, A.; Wagenpfeil, S.; Ganz, T.; Heine, G.H. Increase of plasma erythroferrone levels during high-altitude exposure: A sub-analysis of the TOP OF HOMe study. Am. J. Hematol. 2021, 96, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Mahendru, D.; Kumaravel, J.; Mahalmani, V.M.; Mehdi, B. Athlete Biological Passport: Need and Challenges. Indian J. Orthop. 2020, 54, 264–265. [Google Scholar] [CrossRef]
- Marchand, A.; Ericsson, M. Homologous blood transfusion and doping: Where are we now? Drug Test. Anal. 2024, 16, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Bizjak, D.A.; Grolle, A.; Urena, J.A.N.; Bloch, W.; Deitenbeck, R.; Grau, M. Monitoring of RBC rheology after cryopreservation to detect autologous blood doping in vivo? A pilot study. Clin. Hemorheol. Microcirc. 2020, 76, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.D.; Beharry, A.; Teramoto, M.; Lai, A.; Wilick, S.E.; Eichner, D. Hematological changes following an Ironman triathlon: An antidoping perspective. Drug Test. Anal. 2019, 11, 1747. [Google Scholar] [CrossRef]
- Garvican-Lewis, L.A.; Vuong, V.L.; Govus, A.D.; Peeling, P.; Jung, G.; Nemeth, E.; Hughes, D.; Lovell, G.; Eichner, D.; Gore, C.J. Intravenous Iron Does Not Augment the Hemoglobin Mass Response to Simulated Hypoxia. Med. Sci. Sports Exers. 2018, 50, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Voss, S.C.; Al-Hamad, K.; Samsam, W.; Cherif, A.; Georgakopoulos, C.; Al Maadheed, M.; Balanos, G.; Lucas, S.; Sottas, P.E.; Wilson, M.; et al. A novel mixed living high training low intervention and the hematological module of the athlete biological passport. Drug Test. Anal. 2020, 12, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Rogers, H.M.; Springer, D.A.; Noguchi, C.T. Neuronal nitric oxide synthase required for erythropoietin modulation of heart function in mice. Front. Physiol. 2024, 15, 1338476. [Google Scholar] [CrossRef] [PubMed]
- Lauritzen, F.; Solheim, A. The purpose and effectiveness of doping testing in sport. Front. Sports Act. Living 2024, 6, 1386539. [Google Scholar] [CrossRef]
- Kozhuharov, V.R.; Staynova, R.; Ivanov, K.; Manev, H.; Ivanova, S. Exploring Doping Awareness: Medical Experts’ Perspectives and Their Commitment to Doping Prevention. Pharmacy 2025, 13, 59. [Google Scholar] [CrossRef]
- Gjelstad, A.; Herlofsen, T.M.; Bjerke, A.L.; Lauritzen, F.; Björnsdottir, I. Use of pharmaceuticals amongst athletes tested by Anti-Doping Norway in a five-year period. Front. Sports Act. Living 2023, 5, 1260806. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Liu, K.; Liu, X.; He, S.; Zhou, X. Study on Internal Standards Applicable to the Detection of Recombinant Erythropoieti. Drug Test. Analys. 2024, 17, 1294–1302. [Google Scholar] [CrossRef]
- The Interaction of Iron and Erythropoietin. Harvard University. 2000. Available online: https://sickle.bwh.harvard.edu/iron_epo.html (accessed on 20 March 2025).
- Capatano, A.; Cimmino, F.; Petrella, L.; Pizzella, A.; D’Angelo, M.; Ambrosio, K.; Marino, F.; Sabbatini, A.; Petrelli, M.; Paolini, B.; et al. Iron metabolism and ferroptosis in health and diseases: The crucial role of mitochondria in metabolically active tissues. J. Nutrit. Biochem. 2025, 140, 109888. [Google Scholar] [CrossRef]
- Czamplik, P.F.; Wiórek, A. Comparison of Standard and New Iron Status Biomarkers: A Prospective Cohort Study in Sepsis Patients. Healthcare 2023, 11, 995. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T.; Locatelli, F.; Arici, M.; Akizawa, T.; Reusch, M. Iron Parameters in Patients Treated with Roxadustat for Anemia of Chronic Kidney Disease. J. Clin. Med. 2023, 12, 4217. [Google Scholar] [CrossRef] [PubMed]
- Toll, L.; Weiss, N.; Vierbaum, L.; Schellenberg, I.; Thevis, M.; Wenzel, F. Longitudinal evaluation of laboratory results and method precision in worldwide erythropoietin external quality assessments. Front. Mol. Biosci. 2024, 11, 1390079. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Casal, M.N.; Pasricha, S.R.; Martinez, R.X.; Lopez-Perez, L.; Peña-Rosas, J.P. Serum or plasma ferritin concentration as an index of iron deficiency and overload. Cochrane Database Syst. Rev. 2021, 5, CD011817. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schaefer, B.; Meindl, E.; Wagner, S.; Tilg, H.; Zoller, H. Intravenous iron supplementation therapy. Mol. Asp. Med. 2020, 75, 100862. [Google Scholar] [CrossRef]
- Nazlić, J.; Gujinović, D.; Mudnić, I.; Boban, Z.; Dželalija, A.M.; Tandara, L.; Gugo, K.; Radman, M.; Kovačić, V.; Boban, M. Red wine consumption activates the erythropoietin-erythroferrone-hepcidin erythropoietic pathway in both apparently healthy individuals and patients with type 2 diabetes. Food Fruct. 2025, 16, 1864–1871. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.P.; Majeti, K.R.; Ekman, F.K.; Selvaraj, S.; Sharma, D.; Sinha, R.; Soupene, E.; Chati, P.; Luna, S.E.; Charlesworth, C.T.; et al. Engineering synthetic signaling receptors to enable erythropoietin-free erythropoiesis. Nat. Commun. 2025, 16, 1140. [Google Scholar] [CrossRef]
- Chiu, D.K.C.; Zhang, X.; Cheng, B.Y.L.; Liu, Q. Tumor-derived erythropoietin acts as an immunosuppressive switch in cancer immunity. Science 2025, 388, eadr3026. [Google Scholar] [CrossRef]
- Heregger, R.; Greil, R. Erythropoiesis-stimulating agents—Benefits and harms in the treatment of anemia in cancer patients. Mag. Eur. Med. Onc. EMO 2023, 16, 259–262. [Google Scholar] [CrossRef]
- Aapro, M.; Gascón, P.; Patel, K.; Rodgers, G.M.; Fung, S.; Arantes, L.H., Jr.; Wish, J. Erythropoiesis-Stimulating Agents in the Management of Anemia in Chronic Kidney Disease or Cancer: A Historical Perspective. Front. Pharmacol. 2019, 9, 1498. [Google Scholar] [CrossRef]
- Ahmed, S.H.; Asghar, M.S.; Waseem, S.; Shaik, A.A. The efficacy of daprodustat compared to standard recombinant human erythropoietin (rhEPO) in treating anemia among patients undergoing dialysis: A systematic review and meta-analysis. J. Clin. Oncol. 2025, 43, e23316. [Google Scholar] [CrossRef]
- Shah, B.K.; Bhat, W.H.; George, J.; Ramaiah, B. Comparative study of efficacy and safety of erythropoietin and darbepoetin for treatment of anemia in chronic kidney disease patients: A comparative, observational and prospective study. Int. J. Bas. Clin. Pharmacol. 2025, 14. [Google Scholar] [CrossRef]
- Gembillo, G.; Soraci, L.; Peritore, L.; Siligato, R.; Labbozzetta, V.; Giuffrida, A.E.; Cuzzola, F.; Spinella, C.; Romeo, A.; Calabrese, V.; et al. Impact of SARS-CoV-2 Infection on Erythropoietin Resistance Index in Hemodialysis Patients. Geriatrics 2025, 10, 33. [Google Scholar] [CrossRef]
- Migliaccio, A.R. Erythropoietin: A Personal Alice in Wonderland Trip in the Shadow of the Giants. Biomolecules 2024, 14, 408. [Google Scholar] [CrossRef]
- Ehrenreich, H.; Weissenborn, K.; Begemann, M.; Busch, M.; Vieta, E.; Miskowiak, K.W. Erythropoietin as candidate for supportive treatment of severe COVID-19. Mol. Med. 2020, 26, 58. [Google Scholar] [CrossRef]
- Peng, B.; Kong, G.; Yang, C.; Ming, Y. Erythropoietin and its derivatives: From tissue protection to immune regulation. Cell Death. Dis. 2020, 11, 79. [Google Scholar] [CrossRef]
- Huber, A.; Demarchi, M.; Verissimo, T.; Fernandez, M.; Dufey, A.; Berchtold, L.; Dalga, D.; Triponez, F.; Sadowski, S.M.; Ponte, B.; et al. Primary hyperparathyroidism induces erythropoietin resistance through fibroblast growth factor 23. Eur. J. Endocrin. 2025, 192, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Edmonston, D.; Wolf, M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat. Rev. Nephrol. 2020, 16, 7–19. [Google Scholar] [CrossRef]
- Vočanec, D.; Prijatelj, T.; Debeljak, N.; Kunej, T. Genetic variants of erythropoietin (EPO) and EPO receptor genes in familial erythrocytosis. Int. J. Lab. Hem. 2018, 41, 162–167. [Google Scholar] [CrossRef] [PubMed]
- McMullin, M.F. Genetic Background of Congenital Erythrocytosis. Genes 2021, 12, 1151. [Google Scholar] [CrossRef] [PubMed]
- Drăgoi, C.M.; Diaconu, C.C.; Nicolae, A.C.; Dumitrescu, I.-B. Redox Homeostasis and Molecular Biomarkers in Precision Therapy for Cardiovascular Diseases. Antioxidants 2024, 13, 1163. [Google Scholar] [CrossRef]
- Wu, Y.W.; Comstock, B.A.; Gonzalez, F.F.; Mayock, D.E.; Goodman, A.M.; Maitre, N.L.; Chang, T.; Van Meurs, K.P.; Lampland, A.L.; Bendel-Stenzel, E.; et al. Trial of Erythropoietin for Hypoxic–Ischemic Encephalopathy in Newborns. N. Engl. J. Med. 2022, 387, 148–159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ivain, P.; Montaldo, P.; Khan, A.; Elagovan, R.; Burgod, C.; Morales, M.M.; Pant, S.; Thayyil, S. Erythropoietin monotherapy for neuroprotection after neonatal encephalopathy in low-to-middle income countries: A systematic review and meta-analysis. J. Perinatol. 2021, 41, 2134–2140. [Google Scholar] [CrossRef]
- Pan, J.J.; Wu, Y.; Cheng, Y.R.; Chen, X.Q.; Yang, Y. The effect of erythropoietin on neonatal hypoxic-ischemic encephalopathy: An updated meta-analysis of randomized control trials. Front Pediatr. 2023, 10, 1074287. [Google Scholar] [CrossRef] [PubMed]
- Juul, S.E.; Voldal, E.; Comstock, B.A.; Massaro, A.N.; Bammler, T.K.; Mayock, D.E.; Heagerty, P.J.; Wu, Y.W.; Numis, A.L.; HEAL Consortium. Association of High-Dose Erythropoietin With Circulating Biomarkers and Neurodevelopmental Outcomes Among Neonates With Hypoxic Ischemic Encephalopathy: A Secondary Analysis of the HEAL Randomized Clinical Trial. JAMA Netw, Open. 2023, 6, e2322131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marsia, S.; Kumar, D.; Raheel, H.; Salman, A.; Aslam, B.; Ikram, A.; Kumar, P.; Aslam, A.; Shafiq, A.; Gul, A. Evaluating the Safety and Efficacy of Erythropoietin Therapy for Neonatal Hypoxic-Ischemic Encephalopathy: A Systematic Review and Meta-Analysis. Pediatr. Neur. 2024, 152, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Ezenwa, B.; Ezeaka, C.; Fajolu, I.; Ogbenna, A.; Olowoyeye, O.; Nwaiwu, O.; Opoola, Z.; Olorunfemi, G. Impact of Erythropoietin in the management of Hypoxic Ischaemic Encephalopathy in resource-constrained settings: Protocol for a randomized control trial. BMC Neurol. 2020, 20, 171. [Google Scholar] [CrossRef]
- Oorschot, D.E.; Sizemore, R.J.; Amer, A.R. Treatment of Neonatal Hypoxic-Ischemic Encephalopathy with Erythropoietin Alone, and Erythropoietin Combined with Hypothermia: History, Current Status, and Future Research. Int. J. Mol. Sci. 2020, 21, 1487. [Google Scholar] [CrossRef]
- Pang, R.; Avdic-Belltheus, A.; Meehan, C.; Martinello, K.; Mutshiya, T.; Yang, Q.; Sokolska, M.; Torrealdea, F.; Hristova, M.; Bainbridge, A.; et al. Melatonin and/or erythropoietin combined with hypothermia in a piglet model of perinatal asphyxia. Brain Commun. 2020, 3, fcaa211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aboouf, M.A.; Guscetti, F.; von Büren, N.; Armbruster, J.; Ademi, H.; Ruetten, M.; Meléndez-Rodríguez, F.; Rülicke, T.; Seymer, A.; Jacobs, R.A.; et al. Erythropoietin receptor regulates tumor mitochondrial biogenesis through iNOS and pAKT. Front. Oncol. 2022, 12, 976961. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Levy, A.T.; Weingarten, S.J.; Robinson, K.; Suner, T.; McLaren, R.A., Jr.; Saad, A.; Al-Kouatly, H.B. Recombinant erythropoietin for the treatment of iron deficiency anemia in pregnancy: A systematic review. Int. J. Gynaecol. Obstet. 2025, 168, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Fattizzo, B.; Pedone, G.L.; Brambilla, C.; Pettine, L.; Zaninoni, A.; Passamonti, F.; Barcellini, W. Recombinant erythropoietin in autoimmune hemolytic anemia with inadequate bone marrow response: A prospective analysis. Blood Adv. 2024, 8, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Kragesteen, B.K.; Giladi, A.; David, E.; Halevi, S.; Geirsdóttir, L.; Lempke, O.M.; Li, B.; Bapst, A.M.; Xie, K.; Katzenelenbogen, Y.; et al. The transcriptional and regulatory identity of erythropoietin producing cells. Nat. Med. 2023, 29, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, L.L.P.; Iskander, D. The role of glucocorticoids in erythropoiesis. Front. Hematol. 2025, 4, 1540152. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Izumi, Y.; Fukuyama, T.; Inoue, H.; Oshima, T.; Yamazaki, T.; Uematsu, T.; Kobayashi, N.; Shimada, Y.; Nagaba, Y.; et al. Effects of Angiotensin II on Erythropoietin Production in the Kidney and Liver. Molecules 2021, 26, 5399. [Google Scholar] [CrossRef]
- Diaconu, C.C.; Cozma, M.-A.; Dobrică, E.-C.; Gheorghe, G.; Jichitu, A.; Ionescu, V.A.; Nicolae, A.C.; Drăgoi, C.M.; Găman, M.A. Polypharmacy in the Management of Arterial Hypertension—Friend or Foe ? Medicina 2021, 57, 1288. [Google Scholar] [CrossRef]
- Drăgoi, C.M.; Nicolae, A.-C.; Dumitrescu, I.-B. Emerging Strategies in Drug Development and Clinical Care in the Era of Personalized and Precision Medicine. Pharmaceutics 2024, 16, 1107. [Google Scholar] [CrossRef]
- Drăgoi, C.M.; Nicolae, A.-C.; Ungurianu, A.; Margină, D.M.; Grădinaru, D.; Dumitrescu, I.-B. Circadian Rhythms, Chrononutrition, Physical Training, and Redox Homeostasis—Molecular Mechanisms in Human Health. Cells 2024, 13, 138. [Google Scholar] [CrossRef]
Trade Name | License Holder | Year of Approval | Manufacturing Process | |
---|---|---|---|---|
First Generation | ||||
Epoietin alfa | Epogen®—US | Amgen | 1989 | Recombinant DNA technology (in CHO cells) *** |
Eprex®—Europe | Orto Biotech | 1988 | ||
Procrit®—US | Amgen | 1989 | ||
Second Generation | ||||
Epoietin beta | NeoRecormon®—Europe | Roche | 1997 | Recombinant DNA technology (in CHO cells) *** |
Recormon®—US | Roche | 1997 | ||
Darbepoetin alfa | Aranesp®—US, Europe | Amgen | 2001 | |
Third Generation | ||||
Epoietin delta | Dynepo® *—Europe | Transkaryotic Therapies/Shire | 2007 | Activated gene technology (in HT cells) ** |
Methoxy polyethylene glycol epoetin beta | Mircera®—US, Europe | Roche Registration GmbH | 2007 | Recombinant DNA technology (in CHO cells) *** |
Epoetin alfa (biosimilar) | Binocrit®—Europe | Sandoz | 2007 | |
Abseamed®—Europe | Medice | |||
Epoietin alfa-hexal®—Europe | Hexal AG | |||
Retacrit®—US | Pfizer | 2018 | ||
Epoetin zeta (biosimilar) | Retacrit®—US, Europe | Hospiro | 2007 | |
Silapo®—Europe | Stada | |||
Epoetin theta | Eporatio®—Europe | Teva | 2009 | |
Biopoin® *—Europe | Ratio Pharm |
Drug/Trade Name | Key Pharmacological Distinction |
---|---|
Epoetin beta (NeoRecormon®) | Composition identical to human urinary EPO from anemic patients; stimulates erythropoiesis without affecting leukopoiesis. |
Darbepoetin alfa (Aranesp®) | Expression similar to endogenous EPO; longer half-life, reducing the number of required doses. |
Epoetin beta (Mircera®) | PEGylated (methoxy-polyethylene attachment); structure identical to endogenous EPO but binds receptors differently, giving it a longer duration of action. |
Epoetin alfa (Epoetin alfa XEXAL®) | 165 amino acid sequence identical to endogenous epoetin; indistinguishable from natural EPO. |
Epoetin alfa (Binocrit®) | Biosimilar to endogenous EPO; stimulates red blood cell production, with reported benefits but some potential risks. |
Epoetin zeta (Retacrit®) | Biosimilar with 165 amino acid sequence identical to urinary EPO; acts as a growth factor stimulating erythropoiesis. |
Epoetin theta (Eporatio®) | Produced via recombinant DNA technology; expressed similarly to endogenous EPO; stimulates red blood cell production. |
Drug/Trade Name | Pharmacokinetic/Distribution Characteristics | Hematological Parameter Variability | Other Notes |
---|---|---|---|
Epoetin beta (NeoRecormon®) | Peak serum concentration after 12–28 h | Varies with subject health status/diagnosis and route of administration | Amino acid and hydrocarbon composition identical to urinary EPO from anemic patients |
Darbepoetin alfa (Aranesp®) | Uniform PK in adults & children/adolescents | Hematological parameters stable, independent of dose number & administration route | Longer half-life reduces injection frequency |
Epoetin beta (Mircera®) | Modified with methoxy-polyethylene glycol (PEG); long-acting | Varies with health status/diagnosis and administration route; not influenced by hemodialysis | Binds differently to EPOR → prolonged action |
Epoetin alfa (Epoetin alfa XEXAL®) | Slightly elevated distribution volume vs. plasma space | Hematological parameters vary with dose number, independent of route | Uniform PK in adults & children/adolescents |
Epoetin alfa (Binocrit®) | Slightly elevated distribution volume vs. plasma space | Hematological parameters vary with dose number, independent of route | Uniform PK in adults & children/adolescents; biosimilar |
Epoetin zeta (Retacrit®) | Distribution volume varies with diagnosis, dosage frequency, and route | Hematological parameters vary with dose number | Serum concentration increase (linear/nonlinear) influenced by diagnosis, age, and treatment |
Epoetin theta (Eporatio®) | Peak serum concentration after 10–14 h | Hematological factors vary with gender, age, and administration method | Recombinant DNA-derived |
Drug/Trade Name | Preclinical Safety Data |
---|---|
Epoetin beta (NeoRecormon®) | Repeated doses did not reveal proliferative risks (e.g., no genotoxicity, carcinogenicity). |
Darbepoetin alfa (Aranesp®) | Repeated doses showed enhanced pharmacological effects, ↑ blood viscosity, ↓ tissue permeability. No genotoxic, tumorigenic, or carcinogenic effects. No fertility impairment reported. |
Epoetin beta (Mircera®) | No genotoxic, tumorigenic, or carcinogenic effects. No fertility impairment reported. |
Epoetin alfa (Epoetin alfa XEXAL®) | Preclinical safety profile similar to epoetin zeta. |
Epoetin alfa (Binocrit®) | Preclinical safety profile similar to epoetin alfa XEXAL®. |
Epoetin zeta (Retacrit®) | Stimulates erythropoiesis without affecting leukopoiesis. Does not induce chromosomal aberrations or genetic mutations. Conflicting data on possible association with bone marrow fibrosis in secondary hyperparathyroidism. |
Epoetin theta (Eporatio®) | No genotoxic, tumorigenic, or carcinogenic effects. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Creangă, E.-C.; Stan, R.; Nicolae, A.-C.; Drăgoi, C.M.; Dumitrescu, I.-B. Personalized Therapeutic Advances in Erythropoietin Signaling: From Anemia Management to Extensive Clinical Applications. Pharmaceutics 2025, 17, 1190. https://doi.org/10.3390/pharmaceutics17091190
Creangă E-C, Stan R, Nicolae A-C, Drăgoi CM, Dumitrescu I-B. Personalized Therapeutic Advances in Erythropoietin Signaling: From Anemia Management to Extensive Clinical Applications. Pharmaceutics. 2025; 17(9):1190. https://doi.org/10.3390/pharmaceutics17091190
Chicago/Turabian StyleCreangă, Elena-Christen, Raluca Stan, Alina-Crenguţa Nicolae, Cristina Manuela Drăgoi, and Ion-Bogdan Dumitrescu. 2025. "Personalized Therapeutic Advances in Erythropoietin Signaling: From Anemia Management to Extensive Clinical Applications" Pharmaceutics 17, no. 9: 1190. https://doi.org/10.3390/pharmaceutics17091190
APA StyleCreangă, E.-C., Stan, R., Nicolae, A.-C., Drăgoi, C. M., & Dumitrescu, I.-B. (2025). Personalized Therapeutic Advances in Erythropoietin Signaling: From Anemia Management to Extensive Clinical Applications. Pharmaceutics, 17(9), 1190. https://doi.org/10.3390/pharmaceutics17091190