Therapeutic Approach Based on Nanotechnology with Chitosan-Coated Zein Nanoparticles Containing Quercetin Against Resistant Klebsiella pneumoniae Clinical Isolates
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Chitosan-Coated Zein Nanoparticles Containing Quercetin (QUER-ZNP-CH)
2.3. Formulation Characterization
2.3.1. Particle Size, PDI, Zeta Potential, and pH
2.3.2. Encapsulation Efficiency (%EE)
2.3.3. Fourier-Transform Infrared Spectroscopy (FTIR)
2.3.4. Thermal Analyses
2.3.5. Nanoparticle Morphology
2.3.6. Long-Term Physicochemical Stability of QUER-ZNP-CH
2.3.7. In Vitro Release Kinetics of QUER-ZNP-CH
2.4. In Vitro Antibacterial Activity
2.4.1. Evaluation of Antibacterial Activity
2.4.2. In Vivo Antibacterial Assay with Tenebrio molitor
2.5. Antibiofilm Activity
2.5.1. Evaluation of Biofilm Formation Inhibition
2.5.2. Evaluation of Biofilm Eradication
2.5.3. Scanning Electron Microscopy of Biofilm
2.6. In Vitro and In Vivo Toxicity
2.6.1. Hemolytic Activity
2.6.2. Toxicity in the Tenebrio molitor Model
2.7. Statistical Analysis
3. Results
3.1. Nanoparticulate Formulation Characterization
3.1.1. Physicochemical and Spectroscopic Characterization
3.1.2. Thermal Analyses
3.1.3. Nanoparticle Morphology
3.1.4. Long-Term Physicochemical Stability of Nanoparticles
3.1.5. In Vitro Release Kinetics of QUER Encapsulated in Zein Nanoparticles
3.2. In Vitro Antibacterial Activity
3.2.1. Evaluation of Antibacterial Activity
3.2.2. Evaluation of In Vivo Infection in T. molitor Model
3.3. Antibiofilm Activity
3.4. Scanning Electron Microscopy of Biofilm
3.5. In Vitro and In Vivo Toxicity
3.5.1. Hemolytic Activity
3.5.2. Toxicity in Tenebrio molitor Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lou, T.; Du, X.; Zhang, P.; Shi, Q.; Han, X.; Lan, P.; Yan, R.; Hu, H.; Wang, Y.; Wu, X.; et al. Risk Factors for Infection and Mortality Caused by Carbapenem-Resistant Klebsiella pneumoniae: A Large Multicentre Case-Control and Cohort Study. J. Infect. 2022, 84, 637–647. [Google Scholar] [CrossRef]
- Han, X.; Yao, J.; He, J.; Liu, H.; Jiang, Y.; Zhao, D.; Shi, Q.; Zhou, J.; Hu, H.; Lan, P.; et al. Clinical and Laboratory Insights into the Threat of Hypervirulent Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2024, 64, 107275. [Google Scholar] [CrossRef]
- Li, Y.; Kumar, S.; Zhang, L. Mechanisms of Antibiotic Resistance and Developments in Therapeutic Strategies to Combat Klebsiella pneumoniae Infection. Infect. Drug Resist. 2024, 17, 1107–1119. [Google Scholar] [CrossRef]
- Moustafa, H.A.E.; Hussein, A.M.I.; Zaki, L.G.; El-shennawy, G.A. Overview on Klebsiella pneumoniae Resistance to Antibiotics. Zagazig Univ. Med. J. 2025, 31, 264–270. [Google Scholar] [CrossRef]
- Joseph, B.J.; Mathew, M.; Rachel, R.; Mathew, J.; Radhakrishnan, E.K. Klebsiella pneumoniae Virulence Factors and Biofilm Components: Synthesis, Structure, Function, and Inhibitors. In ESKAPE Pathogens: Detection, Mechanisms and Treatment Strategies; Busi, S., Prasad, R., Eds.; Springer Nature: Singapore, 2024; pp. 271–295. ISBN 9789819987993. [Google Scholar]
- Li, L.; Gao, X.; Li, M.; Liu, Y.; Ma, J.; Wang, X.; Yu, Z.; Cheng, W.; Zhang, W.; Sun, H.; et al. Relationship between Biofilm Formation and Antibiotic Resistance of Klebsiella pneumoniae and Updates on Antibiofilm Therapeutic Strategies. Front. Cell Infect. Microbiol. 2024, 14, 1324895. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.K.; Domb, A.J. Antimicrobial Activities of Natural Bioactive Polyphenols. Pharmaceutics 2024, 16, 718. [Google Scholar] [CrossRef] [PubMed]
- Hamid, M.E.; Alamri, F.; Abdelrahim, I.M.; Joseph, M.; Elamin, M.M.; Alraih, A.M. Effects of Antimicrobial Flavonoids Against Representative Bacteria and Fungi: A Review of the Literature. Cureus 2024, 16, e62765. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.F.; Li, J.Y.; Wei, X.Y.; Ma, S.Q.; Wang, Q.G.; Qi, Z.; Tang, H. Preclinical Evidence of Reno-Protective Effect of Quercetin on Acute Kidney Injury: A Meta-Analysis of Animal Studies. Front. Pharmacol. 2023, 14, 1310023. [Google Scholar] [CrossRef]
- Kandemir, K.; Tomas, M.; McClements, D.J.; Capanoglu, E. Recent Advances on the Improvement of Quercetin Bioavailability. Trends Food Sci. Technol. 2022, 119, 192–200. [Google Scholar] [CrossRef]
- Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An Insight into Anticancer, Antioxidant, Antimicrobial, Antidiabetic and Anti-Inflammatory Effects of Quercetin: A Review. Polym. Bull. 2023, 80, 241–262. [Google Scholar] [CrossRef]
- Carrillo-Martinez, E.J.; Flores-Hernández, F.Y.; Salazar-Montes, A.M.; Nario-Chaidez, H.F.; Hernández-Ortega, L.D. Quercetin, a Flavonoid with Great Pharmacological Capacity. Molecules 2024, 29, 1000. [Google Scholar] [CrossRef]
- Tomou, E.-M.; Papakyriakopoulou, P.; Saitani, E.-M.; Valsami, G.; Pippa, N.; Skaltsa, H. Recent Advances in Nanoformulations for Quercetin Delivery. Pharmaceutics 2023, 15, 1656. [Google Scholar] [CrossRef]
- Macêdo, H.L.R.d.Q.; de Oliveira, L.L.; de Oliveira, D.N.; Lima, K.F.A.; Cavalcanti, I.M.F.; Campos, L.A.d.A. Nanostructures for Delivery of Flavonoids with Antibacterial Potential against Klebsiella pneumoniae. Antibiotics 2024, 13, 844. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jin, Y.; Yang, Y.; Zhao, J.; Zhang, C.; Zhang, H.; Wu, J.; Liu, X.; Luo, X.; Huang, C.; et al. Dermatophagoides pteronyssinus Allergen Der p 22: Cloning, Expression, IgE-Binding in Asthmatic Children, and Immunogenicity. Pediatr. Allergy Immunol. 2022, 33, e13835. [Google Scholar] [CrossRef]
- de Almeida Campos, L.A.; Francisco Silva Neto, A.; Cecília Souza Noronha, M.; Ferreira de Lima, M.; Macário Ferro Cavalcanti, I.; Stela Santos-Magalhães, N. Zein Nanoparticles for Drug Delivery: Preparation Methods and Biological Applications. Int. J. Pharm. 2023, 635, 122754. [Google Scholar] [CrossRef]
- Campos, L.A.; Neto, A.F.; Noronha, M.C.; Santos, J.V.; Cavalcante, M.K.; Castro, M.C.; Pereira, V.R.; Cavalcanti, I.M.; Santos-Magalhães, N.S. Zein Nanoparticles Containing Ceftazidime and Tobramycin: Antibacterial Activity against Gram-Negative Bacteria. Future Microbiol. 2024, 19, 317–334. [Google Scholar] [CrossRef]
- Arbade, G.K.; Hanuman, S.; Nune, M.; Katiki, A.B. Zein-Based Polymeric Biomaterials: An Overview for Applications in Soft Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2025, 74, 812–828. [Google Scholar] [CrossRef]
- Carvalho, S.G.; Haddad, F.F.; Dos Santos, A.M.; Scarim, C.B.; Ferreira, L.M.B.; Meneguin, A.B.; Chorilli, M.; Gremião, M.P.D. Chitosan Surface Modification Modulates the Mucoadhesive, Permeation and Anti-Angiogenic Properties of Gellan Gum/Bevacizumab Nanoparticles. Int. J. Biol. Macromol. 2024, 263, 130272. [Google Scholar] [CrossRef] [PubMed]
- Sha, L.; Raza, H.; Jia, C.; Khan, I.M.; Yang, H.; Chen, G. Genipin-Enriched Chitosan-Zein Nanoparticles for Improved Curcumin Encapsulation. Int. J. Biol. Macromol. 2025, 288, 138555. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, Y.; Li, X.; Chen, Y.; Wang, Y.; Liu, Y. Remineralization and Bacterial Inhibition of Early Enamel Caries Surfaces by Carboxymethyl Chitosan Lysozyme Nanogels Loaded with Antibacterial Drugs. J. Dent. 2025, 152, 105489. [Google Scholar] [CrossRef]
- Scavuzzi, A.M.L.; Maciel, M.A.V.; de Melo, H.R.L.; Alves, L.C.; Brayner, F.A.; Lopes, A.C.S. Occurrence of qnrB1 and qnrB12 Genes, Mutation in gyrA and ramR, and Expression of Efflux Pumps in Isolates of Klebsiella pneumoniae Carriers of blaKPC-2. J. Med. Microbiol. 2017, 66, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Abdelkawy, K.S.; Balyshev, M.E.; Elbarbry, F. A New Validated HPLC Method for the Determination of Quercetin: Application to Study Pharmacokinetics in Rats. Biomed. Chromatogr. 2017, 31, e3819. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI supplement M100; Lewis, J.S., III, Ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Czarniewska, E.; Urbański, A.; Chowański, S.; Kuczer, M. The Long-Term Immunological Effects of Alloferon and Its Analogues in the Mealworm Tenebrio Molitor. Insect Sci. 2018, 25, 429–438. [Google Scholar] [CrossRef]
- Stepanovic, S.; Vukovic, D.; Dakic, I.; Savic, B.; Svabic-Vlahovic, M. A Modified Microtiter-Plate Test for Quantification of Staphylococcal Biofilm Formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.A.V.; de Almeida Campos, L.A.; de Queiroz Macêdo, H.L.R.; de Lacerda Coriolano, D.; Agreles, M.A.A.; Xavier, D.E.; de Siqueira Ferraz-Carvalho, R.; de Andrade Aguiar, J.L.; Cavalcanti, I.M.F. Antibacterial and Antibiofilm Potential of Bacterial Cellulose Hydrogel Containing Vancomycin against Multidrug-Resistant Staphylococcus aureus and Staphylococcus epidermidis. Biology 2024, 13, 354. [Google Scholar] [CrossRef]
- Florenço, A.M.A.; de Moura, S.S.T.; Dos Santos Medeiros, S.M.d.F.R.; de Queiroz Macêdo, H.L.R.; de Almeida Campos, L.A.; Santos-Magalhães, N.S.; Cavalcanti, I.M.F. β-Lapachone Encapsulated into Stealth Liposomes: Inhibition of Biofilm and Cell Wall Thickness of MRSA. Braz. J. Microbiol. 2025, 56, 1787–1795. [Google Scholar] [CrossRef]
- Tahamtan, S.; Shamsabadipour, A.; Pourmadadi, M.; Khodabandehloo, A.H.; Ghadami, A.; Fathi-karkan, S.; Rahdar, A.; Pandey, S. Biocompatible Chitosan/Starch/Graphene Quantum Dots/Titanium Dioxide Nanocomposite: A Stimuli-Responsive, Porous Nanocarrier for Prolonged Quercetin Delivery in Lung Cancer Treatment. BioNanoScience 2024, 14, 2491–2508. [Google Scholar] [CrossRef]
- Xu, W.; McClements, D.J.; Zhang, Z.; Zhang, R.; Qiu, C.; Zhao, J.; Jin, Z.; Chen, L. Effect of Tannic Acid Modification on Antioxidant Activity, Antibacterial Activity, Environmental Stability and Release Characteristics of Quercetin Loaded Zein-Carboxymethyl Chitosan Nanoparticles. Int. J. Biol. Macromol. 2024, 280, 135853. [Google Scholar] [CrossRef]
- Liu, J.; Yu, H.; Kong, J.; Ge, X.; Sun, Y.; Mao, M.; Wang, D.Y.; Wang, Y. Preparation, Characterization, Stability, and Controlled Release of Chitosan-Coated Zein/Shellac Nanoparticles for the Delivery of Quercetin. Food Chem. 2024, 444, 138634. [Google Scholar] [CrossRef]
- Dai, Z.; Yin, W.; Li, J.; Ma, L.; Chen, F.; Shen, Q.; Hu, X.; Xue, Y.; Ji, J. Zein and Trimethyl Chitosan-Based Core–Shell Nanoparticles for Quercetin Oral Delivery to Enhance Absorption by Paracellular Pathway in Obesity Mice. Biomater. Res. 2025, 29, 0193. [Google Scholar] [CrossRef] [PubMed]
- de Araujo, J.T.C.; Martin-Pastor, M.; Pérez, L.; Pinazo, A.; de Sousa, F.F.O. Development of Anacardic Acid-Loaded Zein Nanoparticles: Physical Chemical Characterization, Stability and Antimicrobial Improvement. J. Mol. Liq. 2021, 332, 115808. [Google Scholar] [CrossRef]
- Zou, Y.; Qian, Y.; Rong, X.; Cao, K.; McClements, D.J.; Hu, K. Encapsulation of Quercetin in Biopolymer-Coated Zein Nanoparticles: Formation, Stability, Antioxidant Capacity, and Bioaccessibility. Food Hydrocoll. 2021, 120, 106980. [Google Scholar] [CrossRef]
- Ullah, F.; Iqbal, Z.; Khan, A.; Khan, S.A.; Ahmad, L.; Alotaibi, A.; Ullah, R.; Shafique, M. Formulation Development and Characterization of pH Responsive Polymeric Nano-Pharmaceuticals for Targeted Delivery of Anti-Cancer Drug (Methotrexate). Front. Pharmacol. 2022, 13, 911771. [Google Scholar] [CrossRef]
- Babinski, T.P.; Padilha Lorenzett, A.K.; Ziebarth, J.; Lima, V.A.D.; Mainardes, R.M. Optimization of Zein-Casein-Hyaluronic Acid Nanoparticles Obtained by Nanoprecipitation Using Design of Experiments (DoE). ACS Omega 2025, 10, 13440–13452. [Google Scholar] [CrossRef]
- He, Y.; Cheng, M.; Yang, R.; Li, H.; Lu, Z.; Jin, Y.; Feng, J.; Tu, L. Research Progress on the Mechanism of Nanoparticles Crossing the Intestinal Epithelial Cell Membrane. Pharmaceutics 2023, 15, 1816. [Google Scholar] [CrossRef]
- Veloz, V.A.; dos Santos, L.R.; Amaral, J.G.; Garcia, L.B.; Oliveira, R.A.; Santos, R.L.S.R. Nanopartículas de Zeína/PVA incorporadas com Eugenol e Óleo Essencial do Cravo-da-Índia: Otimização da Síntese e Validação Analítica para Quantificação do Eugenol. Quím. Nova 2024, 47, e-20230137. [Google Scholar] [CrossRef]
- Yeerong, K.; Chantawannakul, P.; Anuchapreeda, S.; Juntrapirom, S.; Kanjanakawinkul, W.; Müllertz, A.; Rades, T.; Chaiyana, W. Chitosan Alginate Nanoparticles of Protein Hydrolysate from Acheta Domesticus with Enhanced Stability for Skin Delivery. Pharmaceutics 2024, 16, 724. [Google Scholar] [CrossRef] [PubMed]
- Yazidi, R.; Mokni, R.E.; Grigorakis, S.; Loupassaki, S.; Petrotos, K.; Komaitis, M.; Makris, D.P. Development and Optimization of a Quercetin-Loaded Chitosan Lactate Nanoparticle Hydrogel with Antioxidant and Antibacterial Properties for Topical Skin Applications. Cosmetics 2025, 12, 141. [Google Scholar] [CrossRef]
- Barbosa, A.I.; Costa Lima, S.A.; Reis, S. Application of pH-Responsive Fucoidan/Chitosan Nanoparticles to Improve Oral Quercetin Delivery. Molecules 2019, 24, 346. [Google Scholar] [CrossRef]
- Rodríguez-Félix, F.; Del-Toro-Sánchez, C.L.; Cinco-Moroyoqui, F.J.; Juárez, J.; Ruiz-Cruz, S.; López-Ahumada, G.A.; Carvajal-Millan, E.; Castro-Enríquez, D.D.; Barreras-Urbina, C.G.; Tapia-Hernández, J.A. Preparation and Characterization of Quercetin-Loaded Zein Nanoparticles by Electrospraying and Study of In Vitro Bioavailability. J. Food Sci. 2019, 84, 1150–1161. [Google Scholar] [CrossRef]
- Khan, M.A.; Yue, L.; Teng, C.; Khalil, A.A.; Ayaz, M.; Khan, A.U.; Anwar, Y.; Sun, C. Quercetin-Loaded Hollow Zein Particles with Chitosan and Pectin Coating: Physicochemical Stability, In Vitro Release and Antioxidant Activity. Antioxidants 2021, 10, 1476. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Bouwens, E.C.; Velikov, K.P. Sodium Caseinate Stabilized Zein Colloidal Particles. J. Agric. Food Chem. 2010, 58, 2497–12503. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, R.; Palakurthi, S. Zein in Controlled Drug Delivery and Tissue Engineering. J. Control. Release 2014, 189, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, M.; He, J.; Du, M.; Wang, Z. Quercetin Amorphization by Solid Dispersion: Improved Solubility and Oral Bioavailability. Food Chem. 2021, 342, 128276. [Google Scholar] [CrossRef]
- Liu, F.; Ma, D.; Luo, X.; Zhang, Z.; He, L.; Gao, Y. Zein/Chitosan Nanoparticles for Encapsulation of Quercetin: Physical and Chemical Stability, Release Behaviour and Antioxidant Activity. Food Hydrocoll. 2020, 108, 105–112. [Google Scholar] [CrossRef]
- He, H.; Liu, L.; Gao, C.; Ma, L.; Li, W. Thermal Degradation Behavior of Zein/Chitosan Composite Films. Polym. Degrad. Stabil. 2016, 133, 8–17. [Google Scholar] [CrossRef]
- Derman, S.; Yilmaz, A.; Isik, B.S. Encapsulation of Quercetin in Chitosan Nanoparticles Prepared by Ionic Gelation Method: Characterization, Release Behaviour and Antioxidant Activity. Int. J. Biol. Macromol. 2015, 91, 784–791. [Google Scholar] [CrossRef]
- Honary, S.; Zahir, F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems—A Review (Part 2). Trop. J. Pharm. Res. 2013, 12, 265–273. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, Y.; Ji, H.; Lin, Q.; Li, X.; Sang, S.; Julian McClements, D.; Chen, L.; Long, J.; Jiao, A.; et al. Physicochemical Stability, Antioxidant Activity, and Antimicrobial Activity of Quercetin-Loaded Zein Nanoparticles Coated with Dextrin-Modified Anionic Polysaccharides. Food Chem. 2023, 415, 135736. [Google Scholar] [CrossRef] [PubMed]
- Tadele, D.T.; Mekonnen, T.H. Co-Encapsulation of Quercetin and α-Tocopherol Bioactives in Zein Nanoparticles: Synergistic Interactions, Stability, and Controlled Release. ACS Appl. Polym. Mater. 2024, 6, 3767–3777. [Google Scholar] [CrossRef]
- Sun, Z.; Li, D.; Lin, P.; Zhao, Y.; Zhang, J.; Sergeeva, I.; Li, Y.; Zheng, H. Preparation, Characterization, and Binding Mechanism of Quercetin-Loaded Composite Nanoparticles Based on Zein-Soybean Protein Isolate. Food Chem. 2025, 463, 141359. [Google Scholar] [CrossRef]
- Elmowafy, M.; Alruwaili, N.K.; Ahmad, N.; Kassem, A.M.; Ibrahim, M.F. Quercetin-Loaded Mesoporous Silica Nanoparticle-Based Lyophilized Tablets for Enhanced Physicochemical Features and Dissolution Rate: Formulation, Optimization, and In Vitro Evaluation. AAPS PharmSciTech 2022, 24, 6. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Pathak, K.; Das, R.J.; Saikia, R.; Sarma, H.; Gogoi, N.; Gogoi, U.; Das, A.; Alasiri, A.S.; Abdel-Wahab, B.A.; et al. Design and Optimization of Quercetin-Loaded Polymeric Eudragit L-100 Nanoparticles for Anti-Diabetic Activity with Improved Oral Delivery: In-Vitro and In-Vivo Evaluation. J. Inorg. Organomet. Polym. 2023, 33, 2411–2428. [Google Scholar] [CrossRef]
- Attar, E.S.; Chaudhari, V.H.; Deokar, C.G.; Dyawanapelly, S.; Devarajan, P.V. Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation. Eur. J. Drug Metab. Pharmacokinet. 2023, 48, 495–514. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Sandoval, J.; Aranda, M.; Henríquez-Aedo, K.; Fernández, M.; López-Rubio, A.; Fabra, M.J. Impact of Molecular Weight and Deacetylation Degree of Chitosan on the Bioaccessibility of Quercetin Encapsulated in Alginate/Chitosan-Coated Zein Nanoparticles. Int. J. Biol. Macromol. 2023, 242, 124876. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Shao, B.; Yang, Q.; Diao, Y.; Ju, J. The Force of Zein Self-Assembled Nanoparticles and the Application of Functional Materials in Food Preservation. Food Chem. 2025, 463, 141197. [Google Scholar] [CrossRef]
- Amalia, A.; Elfiyani, R.; Sari, P.U. Diffusion Rate of Quercetin from Chitosan-TPP Nanoparticles Dispersion of Onion (Allium Cepa L.) Ethanol Extract in Medium Phosphate Buffer pH 7.4. Pharmaciana 2022, 12, 94–105. [Google Scholar] [CrossRef]
- Aliya, K.; Cho, H.-S.; Olawuyi, I.F.; Lee, W.-Y. Modification of Inulin for Improved Encapsulation Efficiency and Controlled Release of Quercetin. Food Sci. Preserv. 2024, 31, 912–920. [Google Scholar] [CrossRef]
- Yuan, H.; Xun, H.; Wang, J.; Wang, J.; Yao, X.; Tang, F. Integrated Metabolomic and Transcriptomic Analysis Reveals the Underlying Antibacterial Mechanisms of the Phytonutrient Quercetin-Induced Fatty Acids Alteration in Staphylococcus aureus ATCC 27217. Molecules 2024, 29, 2266. [Google Scholar] [CrossRef] [PubMed]
- Trusova, V.M.; Tarabara, U.K.; Thomsen, M.H.; Gorbenko, G.P. Structural Modification of Lipid Membranes by Polyphenols: A Fluorescence Spectroscopy Study. Biochim. Et Biophys. Acta (BBA)—Biomembr. 2025, 1867, 184411. [Google Scholar] [CrossRef]
- Kim, M.; Jee, S.-C.; Shin, M.-K.; Han, D.-H.; Bu, K.-B.; Lee, S.-C.; Jang, B.-Y.; Sung, J.-S. Quercetin and Isorhamnetin Reduce Benzo[a]Pyrene-Induced Genotoxicity by Inducing RAD51 Expression through Downregulation of miR-34a. Int. J. Mol. Sci. 2022, 23, 13125. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, G.; Chao, X.; Xie, L.; Wang, H. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health 2020, 17, 6278. [Google Scholar] [CrossRef]
- Peña-Juarez, M.G.; Gonzalez-Calderon, J.A. Quercetin Dietary Supplement for the Synthesis and Stabilization of AgNPs in a Neutral Aqueous Medium and Their Enhanced Long-Term Antimicrobial Activity. MRS Commun. 2022, 12, 188–193. [Google Scholar] [CrossRef]
- Sharma, R.; Basist, P.; Alhalmi, A.; Khan, R.; Noman, O.M.; Alahdab, A. Synthesis of Quercetin-Loaded Silver Nanoparticles and Assessing Their Anti-Bacterial Potential. Micromachines 2023, 14, 2154. [Google Scholar] [CrossRef]
- Toushik, S.H.; Kim, K.; Park, S.-H.; Park, J.-H.; Ashrafudoulla, M.; Ulrich, M.S.I.; Mizan, M.F.R.; Hossain, M.I.; Shim, W.-B.; Kang, I.; et al. Prophylactic Efficacy of Lactobacillus Curvatus B67-Derived Postbiotic and Quercetin, Separately and Combined, against Listeria Monocytogenes and Salmonella Enterica Ser. Typhimurium on Processed Meat Sausage. Meat Sci. 2023, 197, 109065. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, H.; Lu, K.; Zou, Y.; Jia, D.; Yang, H.; Chen, H.; Zhang, Y.; Yu, Q. Bi-Functional Quercetin/Copper Nanoparticles Integrating Bactericidal and Anti-Quorum Sensing Properties for Preventing the Formation of Biofilms. Biomater. Sci. 2024, 12, 1788–1800. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Bao, F.; Fu, S.; Yang, Y.; Xu, Y. Preparation of Mesoporous Silica/Hydroxyapatite Loaded Quercetin Nanoparticles and Research on Its Antibacterial Properties. Med. Eng. Phys. 2024, 126, 104160. [Google Scholar] [CrossRef]
- Choi, H.; Raghavan, S.; Shin, J.; Kim, J.; Kim, K. Bioconjugated Zinc Oxide–Quercetin Nanocomposite Enhances the Selectivity and Anti-Biofilm Activity of ZnO Nanoparticles against Staphylococcus Species. Biotechnol. Bioproc. E 2025, 30, 55–69. [Google Scholar] [CrossRef]
- Tang, J.; Li, J.; Li, G.; Zhang, H.; Wang, L.; Li, D.; Ding, J. Spermidine-Mediated Poly(lactic-co-glycolic Acid) Nanoparticles Containing Fluorofenidone for the Treatment of Idiopathic Pulmonary Fibrosis. Int. J. Nanomed. 2017, 12, 6687–6704. [Google Scholar] [CrossRef]
- Nalini, T.; Basha, S.K.; Sadiq, A.M.; Kumari, V.S. In Vitro Cytocompatibility Assessment and Antibacterial Effects of Quercetin Encapsulated Alginate/Chitosan Nanoparticle. Int. J. Biol. Macromol. 2022, 219, 304–311. [Google Scholar] [CrossRef]
- Alshehri, M.A.; Panneerselvam, C. Development of Quercetin Loaded Biosynthesized Chitosan Grafted Iron Oxide Nanoformulation and Their Antioxidant, Antibacterial, and Anti-Cancer Properties. J. Drug Deliv. Sci. Technol. 2024, 101, 106247. [Google Scholar] [CrossRef]
- Canbolat, F.; Demir, N.; Yayıntas, O.T.; Pehlivan, M.; Eldem, A.; Ayna, T.K.; Senel, M. Chitosan Nanoparticles Loaded with Quercetin and Valproic Acid: A Novel Approach for Enhancing Antioxidant Activity against Oxidative Stress in the SH-SY5Y Human Neuroblastoma Cell Line. Biomedicines 2024, 12, 287. [Google Scholar] [CrossRef]
- de Souza, J.B.; de Lacerda Coriolano, D.; Dos Santos Silva, R.C.; da Costa Júnior, S.D.; de Almeida Campos, L.A.; Cavalcanti, I.D.L.; Lira Nogueira, M.C.d.B.; Pereira, V.R.A.; Brelaz-de-Castro, M.C.A.; Cavalcanti, I.M.F. Ceftazidime and Usnic Acid Encapsulated in Chitosan-Coated Liposomes for Oral Administration against Colorectal Cancer-Inducing Escherichia coli. Pharmaceuticals 2024, 17, 802. [Google Scholar] [CrossRef]
- Pinheiro, R.G.R.; Pinheiro, M.; Neves, A.R. Nanotechnology Innovations to Enhance the Therapeutic Efficacy of Quercetin. Nanomaterials 2021, 11, 2658. [Google Scholar] [CrossRef]
- Nalini, T.; Basha, S.K.; Sadiq, A.M.; Kumari, V.S. Pectin / Chitosan Nanoparticle Beads as Potential Carriers for Quercetin Release. Mater. Today Commun. 2022, 33, 104172. [Google Scholar] [CrossRef]
- Nalini, T.; Khaleel Basha, S.; Mohamed Sadiq, A.; Sugantha Kumari, V. Assessment of Acute Oral Toxicity of Quercetin Loaded Alginate/Chitosan Nanoparticles: In Vivo Study. Polym. Bull. 2023, 80, 10921–10937. [Google Scholar] [CrossRef]
- Adamski, Z.; Bufo, S.A.; Chowański, S.; Falabella, P.; Lubawy, J.; Marciniak, P.; Pacholska-Bogalska, J.; Salvia, R.; Scrano, L.; Słocińska, M.; et al. Beetles as Model Organisms in Physiological, Biomedical and Environmental Studies—A Review. Front. Physiol. 2019, 10, 319. [Google Scholar] [CrossRef]
- Costa, W.K.; de Oliveira, A.M.; Santos, I.B.d.S.; Silva, V.B.G.; da Silva, E.K.C.; Alves, J.V.d.O.; da Silva, A.P.S.; Lima, V.L.d.M.; Correia, M.T.d.S.; da Silva, M.V. Antibacterial Mechanism of Eugenia Stipitata McVaugh Essential Oil and Synergistic Effect against Staphylococcus Aureus. S. Afr. J. Bot. 2022, 147, 724–730. [Google Scholar] [CrossRef]
- da Silva, G.C.; de Oliveira, A.M.; Costa, W.K.; da Silva Filho, A.F.; Pitta, M.G.d.R.; Rêgo, M.J.B.d.M.; Antônia de Souza, I.; Paiva, P.M.G.; Napoleão, T.H. Antibacterial and Antitumor Activities of a Lectin-Rich Preparation from Microgramma vacciniifolia Rhizome. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100093. [Google Scholar] [CrossRef] [PubMed]
- Khoshnood, S.; Akrami, S.; Saki, M.; Motahar, M.; Masihzadeh, S.; Daneshfar, S.; Meghdadi, H.; Abbasi Montazeri, E.; Abdi, M.; Farshadzadeh, Z. Molecular Evaluation of Aminoglycosides Resistance and Biofilm Formation in Klebsiella pneumoniae Clinical Isolates: A Cross-Sectional Study. Health Sci. Rep. 2023, 6, e1266. [Google Scholar] [CrossRef] [PubMed]
- Allami, M.; Mohammed, E.J.; Alnaji, Z.; Jassim, S.A. Antibiotic Resistance and Its Correlation with Biofilm Formation and Virulence Genes in Klebsiella pneumoniae Isolated from Wounds. J. Appl. Genet. 2024, 65, 925–935. [Google Scholar] [CrossRef]
- Nazari, M.; Hemmati, J.; Asghari, B. Comprehensive Analysis of Virulence Genes, Antibiotic Resistance, Biofilm Formation, and Sequence Types in Clinical Isolates of Klebsiella pneumoniae. Can. J. Infect. Dis. Med. Microbiol. 2024, 2024, 1403019. [Google Scholar] [CrossRef]
- Choi, V.; Rohn, J.L.; Stoodley, P.; Carugo, D.; Stride, E. Drug Delivery Strategies for Antibiofilm Therapy. Nat. Rev. Microbiol. 2023, 21, 555–572. [Google Scholar] [CrossRef]
- Kannan, S.; Balakrishnan, J.; Govindasamy, A.; Arunagiri, R. New Insights into the Antibacterial Mode of Action of Quercetin against Uropathogen Serratia Marcescens In-Vivo and in-Vitro. Sci. Rep. 2022, 12, 21912. [Google Scholar] [CrossRef]
- Liu, P.; Kang, X.; Chen, X.; Luo, X.; Li, C.; Wang, G. Quercetin Targets SarA of Methicillin-Resistant Staphylococcus aureus to Mitigate Biofilm Formation. Microbiol. Spectr. 2024, 12, e0272223. [Google Scholar] [CrossRef]
- Lee, H.W.; Kharel, S.; Loo, S.C.J. Lipid-Coated Hybrid Nanoparticles for Enhanced Bacterial Biofilm Penetration and Antibiofilm Efficacy. ACS Omega 2022, 7, 35814–35824. [Google Scholar] [CrossRef]
- Messias de Souza, G.; Gervasoni, L.F.; Rosa, R.d.S.; de Souza Iacia, M.V.M.; Nai, G.A.; Pereira, V.C.; Winkelströter, L.K. Quercetin-Loaded Chitosan Nanoparticles as an Alternative for Controlling Bacterial Adhesion to Urethral Catheter. Int. J. Urol. 2022, 29, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Hooda, H.; Singh, P.; Bajpai, S. Effect of quercetin-impregnated silver nanoparticle on growth of some clinical pathogens. Mater. Today Proc. 2020, 31, 625–630. [Google Scholar] [CrossRef]
- Shabana, S.M.; Mayavan, K.; Venkatachalam, R. Influence of quercetin-loaded mesoporous silica nanoparticles (QMSNs) on immunity and disease resistance in Nile tilapia (Oreochromis niloticus). J. Appl. Aquac. 2021, 35, 585–604. [Google Scholar] [CrossRef]
- ASTM F756-17; Standard Practice for Assessment of Hemolytic Properties of Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Qi, W.; Qi, W.; Xiong, D.; Long, M. Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy. Molecules 2022, 27, 6545. [Google Scholar] [CrossRef]
- Fernandez Alarcon, J.; Soliman, M.; Lüdtke, T.U.; Clemente, E.; Dobricic, M.; Violatto, M.B.; Corbelli, A.; Fiordaliso, F.; Cordiglieri, C.; Talamini, L.; et al. Long-Term Retention of Gold Nanoparticles in the Liver Is Not Affected by Their Physicochemical Characteristics. Nanoscale 2023, 15, 8740–8753. [Google Scholar] [CrossRef] [PubMed]
- Brai, A.; Poggialini, F.; Vagaggini, C.; Pasqualini, C.; Simoni, S.; Francardi, V.; Dreassi, E. Tenebrio Molitor as a Simple and Cheap Preclinical Pharmacokinetic and Toxicity Model. Int. J. Mol. Sci. 2023, 24, 2296. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhao, X.; Luo, S.; Jiang, M.; Liu, Q.; Cao, Y. The Development of Yellow Mealworm (Tenebrio molitor) as a Cheap and Simple Model to Evaluate Acute Toxicity, Locomotor Activity Changes, and Metabolite Profile Alterations Induced by Nanoplastics of Different Sizes. J. Appl. Toxicol. 2025, 45, 994–1003. [Google Scholar] [CrossRef]
- Knežić, T.; Avramov, M.; Tatić, V.; Petrović, M.; Gadjanski, I.; Popović, Ž.D. Insects as a Prospective Source of Biologically Active Molecules and Pharmaceuticals-Biochemical Properties and Cell Toxicity of Tenebrio molitor and Zophobas morio Cell-Free Larval Hemolymph. Int. J. Mol. Sci. 2024, 25, 7491. [Google Scholar] [CrossRef]
- Pinto, E.J.S.; Araujo, J.T.C.D.; Ferreira, R.M.D.A.; Souto, R.N.P.; Lima, L.A.; Silva, P.G.D.B.; Garcia, M.T.; De La Fuente, A.; Sousa, F.F.O.D. Larvicidal Activity, Aquatic and in Vivo Toxicity of Anacardic Acid Loaded-Zein Nanoparticles. J. Drug Deliv. Sci. Technol. 2021, 63, 102513. [Google Scholar] [CrossRef]
- van Ballegooie, C.; Wretham, N.; Ren, T.; Popescu, I.-M.; Yapp, D.T.; Bally, M.B. PEG Conjugated Zein Nanoparticles for In Vivo Use. Pharmaceutics 2022, 14, 1831. [Google Scholar] [CrossRef] [PubMed]
- Zoe, L.H.; David, S.R.; Rajabalaya, R. Chitosan Nanoparticle Toxicity: A Comprehensive Literature Review of In Vivo and In Vitro Assessments for Medical Applications. Toxicol. Rep. 2023, 11, 83–106. [Google Scholar] [CrossRef]
Formulation | [QUER] (mg/mL) | Ø (nm) | PDI | ζ (mV) | %EE |
---|---|---|---|---|---|
QUER-ZNP-CH | 0.5 | 345.0 ± 0.9 | 0.248 | +51.1 ± 0.2 | 99.9 ± 0.6 |
Days | Ø (nm) | PDI | ζ (mV) | pH | Drug Content % |
---|---|---|---|---|---|
15 | 343.1 ± 0.4 | 0.239 | +49.2 ± 0.3 | 5.3 | 99.7 ± 0.4 |
30 | 349.7 ± 0.7 | 0.246 | +47.1 ± 0.7 | 5.1 | 99.9 ± 0.7 |
60 | 346.3 ± 0.7 | 0.235 | +48.8 ± 0.7 | 5.1 | 99.8 ± 0.3 |
90 | 345.2 ± 0.5 | 0.237 | +45.9 ± 0.8 | 5.2 | 99.6 ± 0.9 |
120 | 344.9 ± 0.9 | 0.241 | +46.6 ± 0.1 | 5.3 | 99.1 ± 0.9 |
180 | 349.0 ± 0.8 | 0.239 | +44.9 ± 0.4 | 5.5 | 98.5 ± 0.7 |
270 | 351.7 ± 0.9 | 0.242 | +45.1 ± 0.5 | 5.5 | 98.6 ± 0.6 |
365 | 352.1 ± 1.0 | 0.244 | +45.5 ± 0.9 | 5.3 | 98.9 ± 0.1 |
QUER | QUER-ZNP-CH | |||
---|---|---|---|---|
MIC | MBC | MIC | MBC | |
μg/mL | ||||
K. pneumoniae ATCC 13883 | 250 | >250 | 3.90 | 15.6 |
K. pneumoniae ATCC 700603 | 250 | >250 | 7.81 | 15.6 |
K. pneumoniae K25-A2 | 125 | >250 | 1.95 | 7.81 |
K. pneumoniae K26-A2 | >250 | >250 | 7.81 | 31.25 |
K. pneumoniae K29-A2 | >250 | >250 | 7.81 | 31.25 |
K. pneumoniae K31-A2 | >250 | >250 | 3.90 | 7.81 |
K. pneumoniae K32-A2 | 125 | >250 | 0.97 | 3.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Neto, A.F.; Agreles, M.A.A.; Correia, A.A.V.; Macêdo, H.L.R.d.Q.; Amaral, A.R.d.C.; Scavuzzi, A.M.L.; Alves, J.V.d.O.; Lopes, A.C.S.; Silva, M.V.d.; Correia, M.T.d.S.; et al. Therapeutic Approach Based on Nanotechnology with Chitosan-Coated Zein Nanoparticles Containing Quercetin Against Resistant Klebsiella pneumoniae Clinical Isolates. Pharmaceutics 2025, 17, 1227. https://doi.org/10.3390/pharmaceutics17091227
Silva-Neto AF, Agreles MAA, Correia AAV, Macêdo HLRdQ, Amaral ARdC, Scavuzzi AML, Alves JVdO, Lopes ACS, Silva MVd, Correia MTdS, et al. Therapeutic Approach Based on Nanotechnology with Chitosan-Coated Zein Nanoparticles Containing Quercetin Against Resistant Klebsiella pneumoniae Clinical Isolates. Pharmaceutics. 2025; 17(9):1227. https://doi.org/10.3390/pharmaceutics17091227
Chicago/Turabian StyleSilva-Neto, Azael Francisco, Maria Anndressa Alves Agreles, Ana Alice Venancio Correia, Hanne Lazla Rafael de Queiroz Macêdo, Alane Rafaela de Carvalho Amaral, Alexsandra Maria Lima Scavuzzi, João Victor de Oliveira Alves, Ana Catarina Souza Lopes, Márcia Vanusa da Silva, Maria Tereza dos Santos Correia, and et al. 2025. "Therapeutic Approach Based on Nanotechnology with Chitosan-Coated Zein Nanoparticles Containing Quercetin Against Resistant Klebsiella pneumoniae Clinical Isolates" Pharmaceutics 17, no. 9: 1227. https://doi.org/10.3390/pharmaceutics17091227
APA StyleSilva-Neto, A. F., Agreles, M. A. A., Correia, A. A. V., Macêdo, H. L. R. d. Q., Amaral, A. R. d. C., Scavuzzi, A. M. L., Alves, J. V. d. O., Lopes, A. C. S., Silva, M. V. d., Correia, M. T. d. S., Cavalcanti, I. M. F., & Campos, L. A. d. A. (2025). Therapeutic Approach Based on Nanotechnology with Chitosan-Coated Zein Nanoparticles Containing Quercetin Against Resistant Klebsiella pneumoniae Clinical Isolates. Pharmaceutics, 17(9), 1227. https://doi.org/10.3390/pharmaceutics17091227