A Survey on LoRaWAN Architecture, Protocol and Technologies
Abstract
:1. Introduction
- Low power, the network and end devices should consume low energy.
- Communication, deployment and management cost is an essential issue since a large number of deployments are considered.
- From devices to the applications, the whole eco-system needs strong security mechanism.
- Built-in localization is a plus when indoor deployments are considered.
- Network deployment in dense urban areas leads radio networks to jam within same or adjacent channels. Robust (interference resistance) modulation is a must.
- End of the day, nodes generate data and this has to be handled properly.
2. LoRa & LoRaWAN Technologies
2.1. Architecture
- Channel management
- Energy efficiency
- Adaptive data rate
- Security
- GPS-Free geolocation
2.2. OSI Reference Layers
2.3. Physical Layer-LoRa
Related Work
2.4. MAC Layer—LoRaWAN
2.4.1. LoRaWAN - Classes
2.4.2. Physical Message Formats
2.4.3. MAC Message Formats
2.4.4. MAC Commands
2.4.5. Class B: Synchronized Reception Window
- The node makes a request to operate as Class B mode and searches for a beacon. The beacon can be found or not with the help of BeaconTimingReq message.
- The node selects an appropriate ping slot data rate and slot period depending on the signal strength and battery level.
- Class B mode is controlled over FCTRL field of every UL frame transmitted by end-device.
- End-device periodically reports its location and DL route to the network server.
- If no beacon frame received for given time [7], devices fall back to Class A device.
2.4.6. Class C: Continuous Listening Nodes
2.4.7. Channel Access
2.4.8. Adaptive Data Rate (ADR)
2.4.9. GPS-Free Positioning
2.4.10. LoRaWAN v1.0–1.1
- Passive and Handover Roaming for existing sessions
- Activation of New Roaming based on Passive and Handover Roaming
2.5. Energy
2.6. Security
- DevAddr: a 32 bit device identifier.
- AppEUI: an Application unique identifier which as IEEE UI64 address space.
- NwkSKey: a Network session key used to encrypt end-device to network-server communication.
- AppSKey: an Application session key (AES-128 key) used to protect application specific data.
2.6.1. Over-the-Air Activation (OTAA)
2.6.2. Activation by Personalization (ABP)
2.6.3. LoRaWAN Simulation
- Each node is configured to simulate only Class A devices.
- Each node is configured to send packets ranging from 10 to 50 bytes (plus 14 bytes protocol overhead).
- Each node is configured with random 7–12 SF values.
- Nodes has always a packet to transmit after time if there are no collisions. Equation (8).
- Frame air time is computed using Equation (2).
- Nodes are distributed to have a communication range with the GW. Ex. Figure 21.
- The GW is placed in the center of the simulation area. Ex. Figure 21.
- Simulation runs with single GW and it has 4 different sub-bands configuration.
- Simulation is configured to simulayte a complete year (365 days).
2.7. Related Work
2.7.1. Security
2.7.2. Energy
3. Applications
3.1. LoRaWAN Applications
3.2. LoRaWAN Network Server
- Managing all MAC layer functionality,
- Managing Join Request and Join Responses and Roaming
- End-node address control,
- Frame counter and authentication controls,
- Acknowledgment mechanism,
- Data rate adoption (or ADR)
- Data delivery to Application Servers,
- Data delivery to end-devices from Application Servers.
4. Future Work & Research Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Bardyn, J.; Melly, T.; Seller, O.; Sornin, N. IoT: The era of LPWAN is starting now. In Proceedings of the ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Lausanne, Switzerland, 12–15 September 2016; pp. 25–30. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M. Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 2016, 23, 60–67. [Google Scholar] [CrossRef]
- Semtech Corporation. LoRa Modulation Basics; AN1200.22; Semtech Corporation: Camarillo, CA, USA, 2015; Available online: https://www.semtech.com/uploads/documents/an1200.22.pdf (accessed on 14 August 2019).
- LoRa Alliance. Wide Area Network for IoT. Available online: https://lora-alliance.org (accessed on 14 August 2018).
- LoRa Alliance. LoRaWAN v1.0 Specification; LoRa Alliance: Fremont, CA, USA, 2015; Available online: https://lora-alliance.org/resource-hub/lorawanr-specification-v10 (accessed on 15 September 2019).
- Semtech Corporation. SX1276/77/78/79 - 137 MHz to 1020 MHz Low Power Long Range Transciever. 2015. Available online: https://www.semtech.com/uploads/documents/an1200.22.pdf (accessed on 14 August 2019).
- Buyukakkaslar, M.T.; Erturk, M.A.; Aydin, M.A.; Vollero, L. LoRaWAN as an e-Health Communication Technology. In Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, Italy, 4–8 July 2017; Volume 2, pp. 310–313. [Google Scholar] [CrossRef]
- Jörke, P.; Böcker, S.; Liedmann, F.; Wietfeld, C. Urban channel models for smart city IoT-networks based on empirical measurements of LoRa-links at 433 and 868 MHz. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Petajajarvi, J.; Mikhaylov, K.; Roivainen, A.; Hanninen, T.; Pettissalo, M. On the coverage of LPWANs: range evaluation and channel attenuation model for LoRa technology. In Proceedings of the 14th International Conference on ITS Telecommunications (ITST), Copenhagen, Denmark, 2–4 December 2015; pp. 55–59. [Google Scholar] [CrossRef]
- Oliveira, R.; Guardalben, L.; Sargento, S. Long range communications in urban and rural environments. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 3–6 July 2017; pp. 810–817. [Google Scholar] [CrossRef]
- Sanchez-Gomez, J.; Sanchez-Iborra, R.; Skarmeta, A. Transmission Technologies Comparison for IoT Communications in Smart-Cities. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Andrei, M.L.; Rădoi, L.A.; Tudose, D.Ş. Measurement of node mobility for the LoRa protocol. In Proceedings of the 16th RoEduNet Conference: Networking in Education and Research (RoEduNet), Targu Mures, Romania, 21–23 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Seye, M.R.; Gueye, B.; Diallo, M. An evaluation of LoRa coverage in Dakar Peninsula. In Proceedings of the 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 3–5 October 2017; pp. 478–482. [Google Scholar] [CrossRef]
- Vejlgaard, B.; Lauridsen, M.; Nguyen, H.; Kovacs, I.Z.; Mogensen, P.; Sorensen, M. Interference Impact on Coverage and Capacity for Low Power Wide Area IoT Networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Wixted, A.J.; Kinnaird, P.; Larijani, H.; Tait, A.; Ahmadinia, A.; Strachan, N. Evaluation of LoRa and LoRaWAN for wireless sensor networks. In Proceedings of the IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Vejlgaard, B.; Lauridsen, M.; Nguyen, H.; Kovacs, I.Z.; Mogensen, P.; Sorensen, M. Coverage and Capacity Analysis of Sigfox, LoRa, GPRS, and NB-IoT. In Proceedings of the IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Lauridsen, M.; Nguyen, H.; Vejlgaard, B.; Kovacs, I.Z.; Mogensen, P.; Sorensen, M. Coverage Comparison of GPRS, NB-IoT, LoRa, and SigFox in a 7800 km² Area. In Proceedings of the IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Dimayuga, J.C.; Fernandez, I.C.; Lopez, A.E.; Pangilinan, R.; Alarcon, L.; de Leon, M.T.; Maestro, R.J.; Rosales, M.; Densing, C.V. A study on the effects of dynamic voltage and frequency scaling on an error detection block for a LoRa communications system. In Proceedings of the TENCON 2017—2017 IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017; pp. 1538–1543. [Google Scholar] [CrossRef]
- Vera, M.D.; Garcia, C.M.; Marifosque, L.K.; Palafox, J.; Soriano, D.; Alarcón, L.; de Leon, M.T.; Densing, C.V.; Maestro, R.J.; Rosales, M. Designing wireless transceiver blocks for LoRa application. In Proceedings of the TENCON 2017—2017 IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017; pp. 2116–2121. [Google Scholar] [CrossRef]
- Dellosa, D.; del Mundo, M.B.; Manzanares, G.; Marqueses, E.D.; Alarcón, E.R.V.L.; Densing, C.V.; Maestro, R.J.; Rosales, M.; de Leon, M.T. Design of sigma-delta analog-to-digital converters implemented in 65nm digital CMOS process for LoRa. In Proceedings of the TENCON 2017—2017 IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017; pp. 500–504. [Google Scholar] [CrossRef]
- Bor, M.; Roedig, U. LoRa Transmission Parameter Selection. In Proceedings of the 13th International Conference on Distributed Computing in Sensor Systems (DCOSS), Ottawa, ON, Canada, 5–7 June 2017; pp. 27–34. [Google Scholar] [CrossRef]
- Qin, Z.; McCann, J.A. Resource Efficiency in Low-Power Wide-Area Networks for IoT Applications. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Croce, D.; Gucciardo, M.; Mangione, S.; Santaromita, G.; Tinnirello, I. Impact of LoRa Imperfect Orthogonality: Analysis of Link-Level Performance. IEEE Commun. Lett. 2018, 22, 796–799. [Google Scholar] [CrossRef] [Green Version]
- Benaissa, S.; Plets, D.; Tanghe, E.; Trogh, J.; Martens, L.; Vandaele, L.; Verloock, L.; Tuyttens, F.A.M.; Sonck, B.; Joseph, W. Internet of animals: characterisation of LoRa sub-GHz off-body wireless channel in dairy barns. Electron. Lett. 2017, 53, 1281–1283. [Google Scholar] [CrossRef]
- Ouyang, X.; Dobre, O.A.; Guan, Y.L.; Zhao, J. Chirp Spread Spectrum Toward the Nyquist Signaling Rate—Orthogonality Condition and Applications. IEEE Signal Process. Lett. 2017, 24, 1488–1492. [Google Scholar] [CrossRef]
- Angrisani, L.; Arpaia, P.; Bonavolontà, F.; Conti, M.; Liccardo, A. LoRa protocol performance assessment in critical noise conditions. In Proceedings of the IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), Modena, Italy, 11–13 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Mikhaylov, K.; Petäjäjärvi, J.; Janhunen, J. On LoRaWAN scalability: Empirical evaluation of susceptibility to inter-network interference. In Proceedings of the European Conference on Networks and Communications (EuCNC), Oulu, Finland, 12–15 Jully 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Alsohaily, A.; Sousa, E.; Tenenbaum, A.J.; Maljevic, I. LoRaWAN radio interface analysis for North American frequency band operation. In Proceedings of the IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), , Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Orfanidis, C.; Feeney, L.M.; Jacobsson, M. Measuring PHY layer interactions between LoRa and IEEE 802.15.4g networks. In Proceedings of the IFIP Networking Conference (IFIP Networking) and Workshops, Stockholm, Sweden, 12–16 June 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Lauridsen, M.; Vejlgaard, B.; Kovacs, I.Z.; Nguyen, H.; Mogensen, P. Interference Measurements in the European 868 MHz ISM Band with Focus on LoRa and SigFox. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Krupka, L.; Vojtech, L.; Neruda, M. The issue of LPWAN technology coexistence in IoT environment. In Proceedings of the 17th International Conference on Mechatronics - Mechatronika (ME), Prague, Czech Republic, 19–22 March 2016; pp. 1–8. [Google Scholar]
- Barriquello, C.H.; Bernardon, D.P.; Canha, L.N.; e Silva, F.E.S.; Porto, D.S.; da Silveira Ramos, M.J. Performance assessment of a low power wide area network in rural smart grids. In Proceedings of the 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Greece, 28–31 August 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Radcliffe, P.J.; Chavez, K.G.; Beckett, P.; Spangaro, J.; Jakob, C. Usability of LoRaWAN Technology in a Central Business District. In Proceedings of the IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Wan, X.; Du, X.; Yang, Y.; Zhang, J.; Sardar, M.S.; Cui, J. Smartphone based LoRa in-soil propagation measurement for wireless underground sensor networks. In Proceedings of the IEEE Conference on Antenna Measurements Applications (CAMA), Tsukuba, Japan, 4–6 December 2017; pp. 114–117. [Google Scholar] [CrossRef]
- Wendt, T.; Volk, F.; Mackensen, E. A benchmark survey of long range (LoRaTM) spread-spectrum- communication at 2.45 GHz for safety applications. In Proceedings of the IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 13–15 April 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Chuma, E.L.; Iano, Y.; Roger, L.L.B. Compact antenna based on fractal for IoT sub-GHz wireless communications. In Proceedings of the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Aguas de Lindoia, Brazil, 27–30 August 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Trinh, L.H.; Nguyen, T.Q.K.; Tran, H.L.; Nguyen, P.C.; Truong, N.V.; Ferrero, F. Low-profile horizontal omni-directional antenna for LoRa wearable devices. In Proceedings of the International Conference on Advanced Technologies for Communications (ATC), Quy Nhon, Vietnam, 18–20 October 2017; pp. 136–139. [Google Scholar] [CrossRef]
- Trinh, L.H.; Nguyen, T.Q.K.; Phan, D.D.; Tran, V.Q.; Bui, V.X.; Truong, N.V.; Ferrero, F. Miniature antenna for IoT devices using LoRa technology. In Proceedings of the International Conference on Advanced Technologies for Communications (ATC), Quy Nhon, Vietnam, 9–14 July 2017; pp. 170–173. [Google Scholar] [CrossRef]
- Asadallah, F.A.; Costantine, J.; Tawk, Y.; Lizzi, L.; Ferrero, F.; Christodoulou, C.G. A digitally tuned reconfigurable patch antenna for IoT devices. In Proceedings of the IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 917–918. [Google Scholar] [CrossRef]
- Ramachandran, G.S.; Yang, F.; Lawrence, P.; Michiels, S.; Joosen, W.; Hughes, D. μPnP-WAN: Experiences with LoRa and its deployment in DR Congo. In Proceedings of the 9th International Conference on Communication Systems and Networks (COMSNETS), Bangalore, India, 4–8 June 2017; pp. 63–70. [Google Scholar] [CrossRef]
- Ayele, E.D.; Hakkenberg, C.; Meijers, J.P.; Zhang, K.; Meratnia, N.; Havinga, P.J.M. Performance analysis of LoRa radio for an indoor IoT applications. In Proceedings of the International Conference on Internet of Things for the Global Community (IoTGC), Funchal, Portugal, 10–13 July 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Erturk, M.A. LoraWAN indoor performance analysis. Int. Res. J. Comput. Sci. 2017, 23–29. [Google Scholar] [CrossRef]
- Gregora, L.; Vojtech, L.; Neruda, M. Indoor signal propagation of LoRa technology. In Proceedings of the 17th International Conference on Mechatronics - Mechatronika (ME), Prague, Czech Republic, 7–9 December 2016; pp. 1–4. [Google Scholar]
- Aoudia, F.A.; Magno, M.; Gautier, M.; Berder, O.; Benini, L. A Low Latency and Energy Efficient Communication Architecture for Heterogeneous Long-Short Range Communication. In Proceedings of the Euromicro Conference on Digital System Design (DSD), Limassol, Cyprus, 31 August–2 September 2016; pp. 200–206. [Google Scholar] [CrossRef]
- Vangelista, L. Frequency Shift Chirp Modulation: The LoRa Modulation. IEEE Signal Process. Lett. 2017, 24, 1818–1821. [Google Scholar] [CrossRef]
- LoRa Alliance. LoRaWAN v1.0.1 Specification; LoRa Alliance: Fremont, CA, USA, 2016; Available online: https://lora-alliance.org/resource-hub/lorawanr-specification-v101 (accessed on 15 September 2019).
- LoRa Alliance. LoRaWAN v1.0.2 Specification; LoRa Alliance: Fremont, CA, USA, 2016; Available online: https://lora-alliance.org/resource-hub/lorawanr-specification-v102 (accessed on 15 September 2019).
- LoRa Alliance. LoRaWAN v1.0.3 Specification; LoRa Alliance: Fremont, CA, USA, 2018; Available online: https://lora-alliance.org/resource-hub/lorawanr-specification-v103 (accessed on 15 September 2019).
- LoRa Alliance. LoRaWAN v1.1 Specification; LoRa Alliance: Fremont, CA, USA, 2017; Available online: https://lora-alliance.org/resource-hub/lorawanr-specification-v11 (accessed on 15 September 2019).
- LoRa Alliance. LoRaWAN v1.1 Regional Parameters; LoRa Alliance: Fremont, CA, USA, 2017; Available online: https://lora-alliance.org/resource-hub/lorawanr-specification-v11 (accessed on 15 September 2019).
- The Things Network. Available online: https://www.thethingsnetwork.org (accessed on 15 September 2019).
- The Things Network - Adaptive Data Rate (ADR). Available online: https://www.thethingsnetwork.org/docs/lorawan/adr.html (accessed on 15 September 2019).
- LoRa Alliance. LoRaWAN Backend Interfaces 1.0 Specification; LoRa Alliance: Fremont, CA, USA, 2017; Available online: https://lora-alliance.org/resource-hub/lorawanr-back-end-interfaces-v10 (accessed on 15 September 2019).
- Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the Limits of LoRaWAN. IEEE Commun. Mag. 2017, 55, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Lavric, A.; Popa, V. Internet of Things and LoRa™ Low-Power Wide-Area Networks: A survey. In Proceedings of the International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 13–14 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Liao, C.; Zhu, G.; Kuwabara, D.; Suzuki, M.; Morikawa, H. Multi-Hop LoRa Networks Enabled by Concurrent Transmission. IEEE Access 2017, 5, 21430–21446. [Google Scholar] [CrossRef]
- Georgiou, O.; Raza, U. Low Power Wide Area Network Analysis: Can LoRa Scale? IEEE Wirel. Commun. Lett. 2017, 6, 162–165. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, P.; Flammini, A.; Rizzi, M.; Sisinni, E.; Gidlund, M. On the evaluation of LoRaWAN virtual channels orthogonality for dense distributed systems. In Proceedings of the IEEE International Workshop on Measurement and Networking (M N), Naples, Italy, 27–28 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Mikhaylov, K.; Petaejaejaervi, J.; Haenninen, T. Analysis of Capacity and Scalability of the LoRa Low Power Wide Area Network Technology. In Proceedings of the European Wireless 2016; 22th European Wireless Conference, Oulu, Finland, 21–25 May 2016; pp. 1–6. [Google Scholar]
- Li, Z.; Zozor, S.; Drossier, J.; Varsier, N.; Lampin, Q. 2D time-frequency interference modelling using stochastic geometry for performance evaluation in Low-Power Wide-Area Networks. In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Centenaro, M.; Vangelista, L.; Kohno, R. On the impact of downlink feedback on LoRa performance. In Proceedings of the IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Sørensen, R.B.; Kim, D.M.; Nielsen, J.J.; Popovski, P. Analysis of Latency and MAC-Layer Performance for Class A LoRaWAN. IEEE Wirel. Commun. Lett. 2017, 6, 566–569. [Google Scholar] [CrossRef] [Green Version]
- Bankov, D.; Khorov, E.; Lyakhov, A. On the Limits of LoRaWAN Channel Access. In Proceedings of the International Conference on Engineering and Telecommunication (EnT), Moscow, Russia, 29–30 November 2016; pp. 10–14. [Google Scholar] [CrossRef]
- Accettura, N.; Medjiah, S.; Prabhu, B.; Monteil, T. Low power radiolocation through long range wide area networks: A performance study. In Proceedings of the IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Bankov, D.; Khorov, E.; Lyakhov, A. Mathematical model of LoRaWAN channel access. In Proceedings of the IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, China, 12–15 June 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Delobel, F.; Rachkidy, N.E.; Guitton, A. Analysis of the Delay of Confirmed Downlink Frames in Class B of LoRaWAN. In Proceedings of the IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Gupta, V.; Devar, S.K.; Kumar, N.H.; Bagadi, K.P. Modelling of IoT Traffic and Its Impact on LoRaWAN. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Oliveira, R.; Guardalben, L.; Luis, M.; Sargento, S. Multi-Technology Data Collection: Short and Long Range Communications. In Proceedings of the IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Sartori, B.; Thielemans, S.; Bezunartea, M.; Braeken, A.; Steenhaut, K. Enabling RPL multihop communications based on LoRa. In Proceedings of the IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Dvornikov, A.; Abramov, P.; Efremov, S.; Voskov, L. QoS Metrics Measurement in Long Range IoT Networks. In Proceedings of the IEEE 19th Conference on Business Informatics (CBI), Thessaloniki, Greece, 24–27 July 2017; Volume 2, pp. 15–20. [Google Scholar] [CrossRef]
- Ebi, C.; Schaltegger, F.; Rüst, A.; Blumensaat, F. Synchronous LoRa Mesh Network to Monitor Processes in Underground Infrastructure. IEEE Access 2019, 7, 57663–57677. [Google Scholar] [CrossRef]
- Zhu, M.; Cui, Y.; Qian, L. CC-OffGrid: A content-centric communication system in infrastructure-less mobile environments. In Proceedings of the 14th IEEE Annual Consumer Communications Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 July 2017; pp. 760–766. [Google Scholar] [CrossRef]
- Zhang, K.; Marchiori, A. Demo Abstract: PlanIt and DQ-N for Low-Power Wide-Area Networks. In Proceedings of the IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI), Pittsburgh, PA, USA, 8–11 July 2017; pp. 291–292. [Google Scholar]
- Vilajosana, X.; Dohler, M.; Yegin, A. Transmission of IPv6 Packets over LoRa; Internet Engineering Task Force - IETF: Fremont, CA, USA, 2016. [Google Scholar]
- Thielemans, S.; Bezunartea, M.; Steenhaut, K. Establishing transparent IPv6 communication on LoRa based low power wide area networks (LPWANS). In Proceedings of the Wireless Telecommunications Symposium (WTS), Chicago, IL, USA, 8–11 July 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Herrera-Tapia, J.; Hernández-Orallo, E.; Tomás, A.; Calafate, C.T.; Cano, J.; Zennaro, M.; Manzoni, P. Evaluating the use of sub-gigahertz wireless technologies to improve message delivery in opportunistic networks. In Proceedings of the IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), Calabria, Italy, 16–18 May 2017; pp. 305–310. [Google Scholar] [CrossRef]
- Rizzi, M.; Ferrari, P.; Flammini, A.; Sisinni, E. Evaluation of the IoT LoRaWAN Solution for Distributed Measurement Applications. IEEE Trans. Instrum. Meas. 2017, 66, 3340–3349. [Google Scholar] [CrossRef]
- Aras, E.; Ramachandran, G.S.; Lawrence, P.; Hughes, D. Exploring the Security Vulnerabilities of LoRa. In Proceedings of the 3rd IEEE International Conference on Cybernetics (CYBCONF), Exeter, UK, 21–23 June 2017. [Google Scholar] [CrossRef]
- Oniga, B.; Dadarlat, V.; Poorter, E.D.; Munteanu, A. Analysis, design and implementation of secure LoRaWAN sensor networks. In Proceedings of the 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 7–9 September 2017; pp. 421–428. [Google Scholar] [CrossRef]
- Krejčí, R.; Hujňák, O.; Švepeš, M. Security survey of the IoT wireless protocols. In Proceedings of the 25th Telecommunication Forum (TELFOR), Belgrade, Serbia, 21–22 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Na, S.; Hwang, D.; Shin, W.; Kim, K.H. Scenario and countermeasure for replay attack using join request messages in LoRaWAN. In Proceedings of the International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13 June 2017; pp. 718–720. [Google Scholar] [CrossRef]
- Tomasin, S.; Zulian, S.; Vangelista, L. Security Analysis of LoRaWAN Join Procedure for Internet of Things Networks. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, D.; Park, J.; Kim, K.H. Risk analysis and countermeasure for bit-flipping attack in LoRaWAN. In Proceedings of the International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 13–14 July 2017; pp. 549–551. [Google Scholar] [CrossRef]
- Kim, J.; Song, J. A Secure Device-to-Device Link Establishment Scheme for LoRaWAN. IEEE Sens. J. 2018, 18, 2153–2160. [Google Scholar] [CrossRef]
- Özyılmaz, K.R.; Yurdakul, A. Work-in-progress: integrating low-power IoT devices to a blockchain-based infrastructure. In Proceedings of the International Conference on Embedded Software (EMSOFT), Seoul, Korea, 15–20 October 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Xu, W.; Jha, S.; Hu, W. LoRa-Key: Secure Key Generation System for LoRa-based Network. IEEE Internet Things J. 2019, 1. [Google Scholar] [CrossRef]
- Ozyilmaz, K.R.; Yurdakul, A. Designing a Blockchain-Based IoT With Ethereum, Swarm, and LoRa: The Software Solution to Create High Availability With Minimal Security Risks. IEEE Consum. Electron. Mag. 2019, 8, 28–34. [Google Scholar] [CrossRef]
- Morin, É.; Maman, M.; Guizzetti, R.; Duda, A. Comparison of the Device Lifetime in Wireless Networks for the Internet of Things. IEEE Access 2017, 5, 7097–7114. [Google Scholar] [CrossRef]
- Kurtoglu, A.; Carletta, J.; Lee, K. Energy consumption in long-range linear wireless sensor networks using LoRaWan and ZigBee. In Proceedings of the IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1163–1167. [Google Scholar] [CrossRef]
- Haghighi, M.; Qin, Z.; Carboni, D.; Adeel, U.; Shi, F.; McCann, J.A. Game theoretic and auction-based algorithms towards opportunistic communications in LPWA LoRa networks. In Proceedings of the IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 735–740. [Google Scholar] [CrossRef]
- Costa, M.; Farrell, T.; Doyle, L. On energy efficiency and lifetime in low power wide area network for the Internet of Things. In Proceedings of the IEEE Conference on Standards for Communications and Networking (CSCN), Helsinki, Finland, 18–20 September 2017; pp. 258–263. [Google Scholar] [CrossRef]
- Tseng, Y.; Yang, J. A 0.9-GHz fully integrated 45fabricated using a 0.18-μm CMOS process for LoRa applications. In Proceedings of the Silicon Nanoelectronics Workshop (SNW), Kyoto, Japan, 4–5 June 2017; pp. 117–118. [Google Scholar] [CrossRef]
- Allai, I.; Senouci, S.; Penhoat, J.; Gourhant, Y. A new sustainable mechanism to wake-up bast stations in mobile networks. In Proceedings of the Global Information Infrastructure and Networking Symposium (GIIS), Porto, Portugal, 19–21 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Hadwen, T.; Smallbon, V.; Zhang, Q.; D’Souza, M. Energy efficient LoRa GPS tracker for dementia patients. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, Korea, 11–15 July 2017; pp. 771–774. [Google Scholar] [CrossRef]
- Sahoo, U.K.; Patnaik, B. Design and implementation of remote monitoring system of solar lanterns, based on lorawan and cloud technology. In Proceedings of the International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 18–19 July 2017; pp. 129–133. [Google Scholar] [CrossRef]
- Orfei, F.; Mezzetti, C.B.; Cottone, F. Vibrations powered LoRa sensor: An electromechanical energy harvester working on a real bridge. In Proceedings of the IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Yang, W.; Wang, M.; Zhang, J.; Zou, J.; Hua, M.; Xia, T.; You, X. Narrowband Wireless Access for Low-Power Massive Internet of Things: A Bandwidth Perspective. IEEE Wirel. Commun. 2017, 24, 138–145. [Google Scholar] [CrossRef]
- Mikhaylov, K.; Petrov, V.; Gupta, R.; Lema, M.A.; Galinina, O.; Andreev, S.; Koucheryavy, Y.; Valkama, M.; Pouttu, A.; Dohler, M. Energy Efficiency of Multi-Radio Massive Machine-Type Communication (MR-MMTC): Applications, Challenges, and Solutions. IEEE Commun. Mag. 2019, 1–7. [Google Scholar] [CrossRef]
- Loubet, G.; Takacs, A.; Dragomirescu, D. Implementation of a Battery-Free Wireless Sensor for Cyber-Physical Systems Dedicated to Structural Health Monitoring Applications. IEEE Access 2019, 7, 24679–24690. [Google Scholar] [CrossRef]
- Lee, W.; Schubert, M.J.W.; Ooi, B.; Ho, S.J. Multi-Source Energy Harvesting and Storage for Floating Wireless Sensor Network Nodes With Long Range Communication Capability. IEEE Trans. Ind. Appl. 2018, 54, 2606–2615. [Google Scholar] [CrossRef]
- Guibene, W.; Nowack, J.; Chalikias, N.; Fitzgibbon, K.; Kelly, M.; Prendergast, D. Evaluation of LPWAN Technologies for Smart Cities: River Monitoring Use-Case. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, CA, USA, 19–22 March 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Almeida, R.; Oliveira, R.; Sousa, D.; Luis, M.; Senna, C.; Sargento, S. A Multi-Technology Opportunistic Platform for Environmental Data Gathering on Smart Cities. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Rossi, M.; Tosato, P. Energy neutral design of an IoT system for pollution monitoring. In Proceedings of the IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Milan, Italy, 24–25 July 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, S.; Xia, C.; Zhao, Z. A low-power real-time air quality monitoring system using LPWAN based on LoRa. In Proceedings of the 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, China, 25–28 October 2016; pp. 379–381. [Google Scholar] [CrossRef]
- Li, L.; Ren, J.; Zhu, Q. On the application of LoRa LPWAN technology in Sailing Monitoring System. In Proceedings of the 13th Annual Conference on Wireless On-demand Network Systems and Services (WONS), Jackson, WY, USA, 21–24 Febuary 2017; pp. 77–80. [Google Scholar] [CrossRef]
- Wotherspoon, J.; Wolhuter, R.; Niesler, T. Choosing an integrated radio-frequency module for a wildlife monitoring wireless sensor network. In Proceedings of the IEEE AFRICON, Cape Town, South Africa, 18–20 September 2017; pp. 314–319. [Google Scholar] [CrossRef]
- Lami, Y.; Nocera, G.; Genon-Catalot, D.; Lagreze, A.; Fourty, N. Landslide prevention using a buried sensor network. In Proceedings of the IEEE Radio and Antenna Days of the Indian Ocean (RADIO), St. Gilles-les-Bains, Reunion, 10–13 October 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Romdhane, R.F.; Lami, Y.; Genon-Catalot, D.; Fourty, N.; Lagrèze, A.; Jongmans, D.; Baillet, L. Wireless sensors network for landslides prevention. In Proceedings of the IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), Annecy, France, 26–28 June 2017; pp. 222–227. [Google Scholar] [CrossRef]
- Babazadeh, M.; Kartakis, S.; McCann, J.A. Highly-distributed sensor processing using IoT for critical infrastructure monitoring. In Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, Malaysia, 12–15 December 2017; pp. 1065–1074. [Google Scholar] [CrossRef]
- Bellini, B.; Amaud, A. A 5 μA wireless platform for cattle heat detection. In Proceedings of the IEEE 8th Latin American Symposium on Circuits Systems (LASCAS), Bariloche, Argentina, 20–23 Febuary 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Ilie-Ablachim, D.; Pătru, G.C.; Florea, I.; Rosner, D. Monitoring device for culture substrate growth parameters for precision agriculture: Acronym: MoniSen. In Proceedings of the 15th RoEduNet Conference: Networking in Education and Research, Bucharest, Romania, 7–9 September 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Hirata, T.; Terada, K.; Toyota, M.; Takada, Y.; Matsumoto, K.; Tanaka, M.S. Proposal of a power saving network for rice fields using LoRa. In Proceedings of the IEEE 6th Global Conference on Consumer Electronics (GCCE), Nagoya, Japan, 24–27 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Usmonov, M.; Gregoretti, F. Design and implementation of a LoRa based wireless control for drip irrigation systems. In Proceedings of the 2nd International Conference on Robotics and Automation Engineering (ICRAE), Shanghai, China, 29–31 December 2017; pp. 248–253. [Google Scholar] [CrossRef]
- Zhao, W.; Lin, S.; Han, J.; Xu, R.; Hou, L. Design and Implementation of Smart Irrigation System Based on LoRa. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Saravanan, M.; Das, A.; Iyer, V. Smart water grid management using LPWAN IoT technology. In Proceedings of the Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6–9 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Kontogiannis, S.; Kokkonis, G.; Ellinidou, S.; Valsamidis, S. Proposed Fuzzy-NN Algorithm with LoRaCommunication Protocol for Clustered Irrigation Systems. Future Internet 2017, 9, 78. [Google Scholar] [CrossRef]
- Kontogiannis, S. An Internet of Things-Based Low-Power Integrated Beekeeping Safety and Conditions Monitoring System. Inventions 2019, 4, 52. [Google Scholar] [CrossRef]
- A’ssri, S.A.; Zaman, F.H.K.; Mubdi, S. The efficient parking bay allocation and management system using LoRaWAN. In Proceedings of the IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 4–5 August 2017; pp. 127–131. [Google Scholar] [CrossRef]
- Zarnescu, A.; Ungurelu, R.; Iordache, A.G.; Secere, M.; Spoiala, M. Crossroad traffic monitoring using magnetic sensors. In Proceedings of the IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME), Constanta, Romania, 26–29 October 2017; pp. 413–418. [Google Scholar] [CrossRef]
- Nor, R.F.A.M.; Zaman, F.H.K.; Mubdi, S. Smart traffic light for congestion monitoring using LoRaWAN. In Proceedings of the IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 4–5 August 2017; pp. 132–137. [Google Scholar] [CrossRef]
- Loriot, M.; Aljer, A.; Shahrour, I. Analysis of the use of LoRaWan technology in a large-scale smart city demonstrator. In Proceedings of the Sensors Networks Smart and Emerging Technologies (SENSET), Beirut, Lebanon, 12–14 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Bharadwaj, A.S.; Rego, R.; Chowdhury, A. IoT based solid waste management system: A conceptual approach with an architectural solution as a smart city application. In Proceedings of the IEEE Annual India Conference (INDICON), Bangalore, India, 16–18 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Chou, Y.; Mo, Y.; Su, J.; Chang, W.; Chen, L.; Tang, J.; Yu, C. i-Car system: A LoRa-based low power wide area networks vehicle diagnostic system for driving safety. In Proceedings of the International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 March 2017; pp. 789–791. [Google Scholar] [CrossRef]
- Tanaka, M.S.; Miyanishi, Y.; Toyota, M.; Murakami, T.; Hirazakura, R.; Itou, T. A study of bus location system using LoRa: Bus location system for community bus “Notty”. In Proceedings of the IEEE 6th Global Conference on Consumer Electronics (GCCE), Nagoya, Japan, 24–27 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Terashmila, L.K.A.; Iqbal, T.; Mann, G. A comparison of low cost wireless communication methods for remote control of grid-tied converters. In Proceedings of the IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 30 April–3 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Filho, H.G.S.; Filho, J.P.; Moreli, V.L. The adequacy of LoRaWAN on smart grids: A comparison with RF mesh technology. In Proceedings of the IEEE International Smart Cities Conference (ISC2), Trento, Italy, 12–15 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Ferrari, P.; Flammini, A.; Rinaldi, S.; Rizzi, M.; Sisinni, E. On the use of LPWAN for EVehicle to grid communication. Proceedings of th AEIT International Annual Conference, Cagliari, Italy, 20–22 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Mdhaffar, A.; Chaari, T.; Larbi, K.; Jmaiel, M.; Freisleben, B. IoT-based health monitoring via LoRaWAN. In Proceedings of the IEEE EUROCON 2017 -17th International Conference on Smart Technologies, Ohrid, Macedonia, 6–8 July 2017; pp. 519–524. [Google Scholar] [CrossRef]
- Hayati, N.; Suryanegara, M. The IoT LoRa system design for tracking and monitoring patient with mental disorder. In Proceedings of the IEEE International Conference on Communication, Networks and Satellite (Comnetsat), Semarang, Indonesia, 5–7 October 2017; pp. 135–139. [Google Scholar] [CrossRef]
- Petäjäjärvi, J.; Mikhaylov, K.; Hämäläinen, M.; Iinatti, J. Evaluation of LoRa LPWAN technology for remote health and wellbeing monitoring. In Proceedings of the 10th International Symposium on Medical Information and Communication Technology (ISMICT), Worcester, MA, USA, 20–23 March 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Kifouche, A.; Baudoin, G.; Hamouche, R.; Kocik, R. Generic sensor network for building monitoring: design, issues, and methodology. Proceedings of th IEEE Conference on Wireless Sensors (ICWiSe), Miri, Malaysia, 13–14 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Facchini, F.; Vitetta, G.M.; Losi, A.; Ruscelli, F. On the performance of 169 MHz WM-Bus and 868 MHz LoRa technologies in smart metering applications. In Proceedings of the IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), Modena, Italy, 11–13 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- De Castro Tomé, M.; Nardelli, P.H.J.; Alves, H. Long-Range Low-Power Wireless Networks and Sampling Strategies in Electricity Metering. IEEE Trans. Ind. Electron. 2019, 66, 1629–1637. [Google Scholar] [CrossRef]
- Wan, X.; Yang, Y.; Du, X.; Sardar, M.S. Design of propagation testnode for LoRa based wireless underground sensor networks. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), Singapore, 19–22 November 2017; pp. 579–583. [Google Scholar] [CrossRef]
- Liedmann, F.; Wietfeld, C. SoMoS—A multidimensional radio field based soil moisture sensing system. In Proceedings of the IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Ionescu, L.M.; Mazăre, A.; Liţă, A.I.; Visan, D.; Serban, G.; Belu, N.; Sanmarghitan, A.; Goeller, T.; Balauta, S. Current consumption monitoring and analysis system for energy management improvement in an industrial complex. In Proceedings of the IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME), Constanta, Romania, 26–29 October 2017; pp. 286–291. [Google Scholar] [CrossRef]
- Haxhibeqiri, J.; Karaagac, A.; den Abeele, F.V.; Joseph, W.; Moerman, I.; Hoebeke, J. LoRa indoor coverage and performance in an industrial environment: Case study. In Proceedings of the 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Trinh, L.H.; Bui, V.X.; Ferrero, F.; Nguyen, T.Q.K.; Le, M.H. Signal propagation of LoRa technology using for smart building applications. In Proceedings of the IEEE Conference on Antenna Measurements Applications (CAMA), Tsukuba, Japan, 4–6 December 2017; pp. 381–384. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Chen, T.; Chang, C.; Cheng, Y.; Hsu, C.; Lin, Y. Performance of LoRa-Based IoT Applications on Campus. In Proceedings of the IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Penkov, S.; Taneva, A.; Kalkov, V.; Ahmed, S. Industrial network design using Low-Power Wide-Area Network. In Proceedings of the 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 11–13 November 2017; pp. 40–44. [Google Scholar] [CrossRef]
- Bonavolontà, F.; Tedesco, A.; Moriello, R.S.L.; Tufano, A. Enabling wireless technologies for industry 4.0: State of the art. In Proceedings of the IEEE International Workshop on Measurement and Networking (MN), Naples, Italy, 27–29 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Kainrath, K.; Gruber, M.; Flühr, H.; Leitgeb, E. Communication techniques for Remotely Piloted Aircraft with Integrated Modular Avionics. In Proceedings of the International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom), Graz, Austria, 14–16 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Colavolpe, G.; Foggi, T.; Ricciulli, M.; Zanettini, Y.; Mediano-Alameda, J. Reception of LoRa Signals from LEO Satellites. IEEE Trans. Aerosp. Electron. Syst. 2019, 1. [Google Scholar] [CrossRef]
- Khattak, H.A.; Farman, H.; Jan, B.; Din, I.U. Toward Integrating Vehicular Clouds with IoT for Smart City Services. IEEE Netw. 2019, 33, 65–71. [Google Scholar] [CrossRef]
- Allal, I.; Mongazon-Cazavet, B.; Agha, K.A.; Senouci, S.; Gourhant, Y. A green small cells deployment in 5G — Switch ON/OFF via IoT networks amp; energy efficient mesh backhauling. In Proceedings of the IFIP Networking Conference (IFIP Networking) and Workshops, Stockholm, Sweden, 12–16 June 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Li, Y.; Yan, X.; Zeng, L.; Wu, H. Research on water meter reading system based on LoRa communication. In Proceedings of the IEEE International Conference on Smart Grid and Smart Cities (ICSGSC), Singapore, 23–26 July 2017; pp. 248–251. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, M.; Meng, F.; Qiao, Y.; Xu, S.; Hour, S. A Low-Power Wide-Area Network Information Monitoring System by Combining NB-IoT and LoRa. IEEE Int. Things J. 2019, 6, 590–598. [Google Scholar] [CrossRef]
- San-Um, W.; Lekbunyasin, P.; Kodyoo, M.; Wongsuwan, W.; Makfak, J.; Kerdsri, J. A long-range low-power wireless sensor network based on U-LoRa technology for tactical troops tracking systems. In Proceedings of the Third Asian Conference on Defence Technology (ACDT), Phuket, Thailand, 18–20 June 2017; pp. 32–35. [Google Scholar] [CrossRef]
- Tanaka, M.S.; Katoh, T.; Ishida, K. Child-observation system with wide area networks of IoT child observation using information terminal bus stops in Nonoichi city. In Proceedings of the IEEE 16th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 30 October–1 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- The Things Network Stack v2. Available online: https://github.com/TheThingsNetwork/ttn (accessed on 15 September 2019).
- Dongare, A.; Hesling, C.; Bhatia, K.; Balanuta, A.; Pereira, R.L.; Iannucci, B.; Rowe, A. OpenChirp: A Low-Power Wide-Area Networking architecture. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 569–574. [Google Scholar] [CrossRef]
- LoRa Server, Open-Source LoRaWAN Network-Server. Available online: https://www.loraserver.io/ (accessed on 15 September 2019).
- Actility LoRaWAN Network Server. Available online: https://www.actility.com/lorawan-network-server/ (accessed on 15 September 2019).
- RestIOT. Available online: https://www.resiot.io/en/ (accessed on 15 September 2019).
- LORIOT. Available online: https://www.loriot.io (accessed on 15 September 2019).
Sigfox | NB-IoT | LoRaWAN | WiFi | ZigBee | Bluetooth | ||
---|---|---|---|---|---|---|---|
Standards | Sigfox | 3GPP | LoRa Alliance | IEEE 802.11 | IEEE 802.15.4 | Bluetooth SIG | |
Modulation | BPSK | QPSK | CSS | DSSS, OFDM | DSSS, QPSK | GFSK | |
Frequencies | ISM: 433 MHz, 868 MHz, 915 MHz | Licensed under LTE | ISM: 433 MHz, 868 MHz, 915 MHz | ISM: 2.4 GHz, 5 GHz | ISM: 868 MHz, 2.4 GHz | 2.4 GHz | |
Coverage | 10–40 km | 2–20 km | 1–10 km | 10–100 m | 10–100 m | 10–100 m | |
Bandwidth | 100 Hz | 200 kHz | 125 kHz, 250 kHz | 20 MHz, 40 MHz, 80 MHz, 160 MHz | 2 MHz | 1 MHz | |
TX Limit | 140 Packets per Day | Unlimited | Duty Cycle Lim. | Unlimited | Unlimited | Unlimited | |
Max Data Rate | 100 bps | 200 kbps | 50 kbps | Gbps | 250 kbs at 2.4 GHz | 2 Mbps | |
Private Deployments | No | No | Yes | Yes | Yes | Yes | |
Energy Consumption | Low | Low | Low | High | Low | Low | |
Security | Low | High | High | Low-High | High | Low-High |
Spreading Factor | Chirps/Symbol | Demodulation SNR |
---|---|---|
7 | 128 | −7.5 dB |
8 | 256 | −10 dB |
9 | 512 | −12.5 dB |
10 | 1024 | −15 dB |
11 | 2048 | −17.5 dB |
12 | 4096 | −20 dB |
Class | Battery Consumption | Description |
---|---|---|
A | Most energy efficient | Must be supported by all the End-Nodes. DL after TX |
B | Efficient with controlled DL | Slotted communication synchronized with beacon frames |
C | Least efficient | Devices listen continuously. DL without latency. |
MType | Description |
---|---|
000 | Join Request |
001 | Join Accept |
010 | Unconfirmed Data Up |
011 | Unconfirmed Data Down |
100 | Confirmed Data Up |
101 | Confirmed Data Down |
110 | RFU |
111 | Proprietary |
CID | Command | Transmitted By | Description |
---|---|---|---|
0x02 | LinkCheckReq | Node | Connection validation. |
0x03 | LinkCheckAns | GW | Reply to LinkCheckReq. |
0x03 | LinkADRReq | GW | Adjust node data rate, tx power, rx rate or channel |
0x04 | LinkADRAns | Node | Response to LinkADRReq. |
0x04 | DutyCycleReq | GW | Set tx duty cycle. |
0x04 | DutyCycleAns | Node | Response DutyCycleReq. |
0x05 | RXParamSetupReq | GW | Set rx slot parameters. |
0x05 | RXParamSetupAns | Node | Response RXParamSetupReq. |
0x06 | DevStatusReq | GW | Request status of node. |
0x06 | DevStatusAns | Node | Response to DevStatusReq with battery level ad demodulation margin. |
0x07 | NewChannelReq | GW | Setup/modify new radio channel. |
0x07 | NewChannelAns | Node | Response to NewChannelReq. |
0x08 | RXTimingSetupReq | GW | Set reception slot timing. |
0x08 | RXTimingSetupAns | Node | Response to RXTimingSetupReq. |
0x08-0xFF | Proprietary | Node/GW | Reserved further extensions. |
CID | Command | Transmitted By | Description |
---|---|---|---|
0x10 | PingSlotInfoReq | Node | Periodic ping unicast message. |
0x10 | PingSlotInfoAns | GW | Reply to PingSlotInfoReq. |
0x11 | PingSlotChannelReq | GW | Sets ping channel for node. |
0x11 | PingSlotFreqAns | Node | Response to PingSlotChannelReq. |
0x12 | BeaconTimingReq | Node | Request to next beacon timing and channel. |
0x12 | BeaconTimingAns | GW | Response BeaconTimingReq. |
0x13 | BeaconFreqReq | GW | Configuration of beacon broadcast frequency. |
0x13 | BeaconFreqAns | Node | Response BeaconFreqReq. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ertürk, M.A.; Aydın, M.A.; Büyükakkaşlar, M.T.; Evirgen, H. A Survey on LoRaWAN Architecture, Protocol and Technologies. Future Internet 2019, 11, 216. https://doi.org/10.3390/fi11100216
Ertürk MA, Aydın MA, Büyükakkaşlar MT, Evirgen H. A Survey on LoRaWAN Architecture, Protocol and Technologies. Future Internet. 2019; 11(10):216. https://doi.org/10.3390/fi11100216
Chicago/Turabian StyleErtürk, Mehmet Ali, Muhammed Ali Aydın, Muhammet Talha Büyükakkaşlar, and Hayrettin Evirgen. 2019. "A Survey on LoRaWAN Architecture, Protocol and Technologies" Future Internet 11, no. 10: 216. https://doi.org/10.3390/fi11100216
APA StyleErtürk, M. A., Aydın, M. A., Büyükakkaşlar, M. T., & Evirgen, H. (2019). A Survey on LoRaWAN Architecture, Protocol and Technologies. Future Internet, 11(10), 216. https://doi.org/10.3390/fi11100216