A Fairness Index Based on Rate Variance for Downlink Non-Orthogonal Multiple Access System
Abstract
:1. Introduction
2. System Model
3. Fairness Index Based on Rate
- (1)
- When the transmission rates of all users in the system are equal, the maximum value of F can be obtained (Fmax = 1).
- (2)
- The minimum value of F can be obtained (Fmin = 0) when only one user’s transmission rate is not 0 and all the other users’ rates are 0.
- (3)
- The value range of F has nothing to do with the number of users, channel conditions, or transmission power, but only with the distribution of users’ transmission rates.
4. Power Allocation under Fairness Constraints
4.1. Power Allocation Intra Cluster
Algorithm 1: Intra cluster power allocation algorithm under fairness constraint |
Input: , , , , and . Output: and |
1: if ,, turn to step 3; 2: if , , according to , get ; 3: ; |
4: end. |
4.2. Power Allocation Inter Cluster
Algorithm 2: Inter cluster power allocation algorithm under fairness constraint |
Input: , , , H, W, n0, i |
Output: |
1: if i = 1, initialize ; else, turn to step 5; |
2: according to , n ∊ [1, N], calculate ; |
3: initialize θ, ; |
4: initialize γ, ; |
5: using sequential quadratic programming method to solve problems P4 with nonlinear constraints, get ; |
6: end. |
4.3. Joint Power Allocation Intra and Inter Cluster
Algorithm 3: Joint power allocation inter and intra cluster under fairness constraints |
Input: , , , , , , Output: 1: initialize , execute Algorithm 1 and get , calculate ; 2: i = i + 1; 3: bring ; 4: for n = 1: N; 5: substitute ; 6: end; 7: calculate ; 8: if , turn to step 2; 9: output ; |
10: end. |
5. Simulation and Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luan, N. 6G: Typical applications, key technologies and challenges. Chin. J. Internet Things 2022, 6, 29–43. [Google Scholar]
- Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The Road towards 6G: A comprehensive survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366. [Google Scholar] [CrossRef]
- De Alwis, C.; Kalla, A.; Pham, Q.V.; Kumar, P.; Dev, K.; Hwang, W.-J.; Liyanage, M. Survey on 6G frontiers: Trends, applications, requirements, technologies and future research. IEEE Open J. Commun. Soc. 2021, 2, 836–886. [Google Scholar] [CrossRef]
- Shah, A.F.M.S.; Qasim, A.N.; Karabulut, M.A.; Ilhan, H.; Islam, B. Survey and performance evaluation of multiple access schemes for next-generation wireless communication systems. IEEE Access 2021, 9, 113428–113442. [Google Scholar] [CrossRef]
- Wei, Z.; Zhu, X.; Sun, S.; Wang, J.; Hanzo, L. Energy-Efficient Full-Duplex Cooperative Nonorthogonal Multiple Access. IEEE Trans. Veh. Technol. 2018, 67, 10123–10128. [Google Scholar] [CrossRef]
- Cai, Y.; Ke, C.; Ni, Y.; Zhang, J.; Zhu, H. Power allocation for NOMA in D2D relay communications. China Commun. 2021, 18, 61–69. [Google Scholar] [CrossRef]
- Emir, A.; Kara, F.; Kaya, H.; Yanikomeroglu, H. Deep Learning Empowered Semi-Blind Joint Detection in Cooperative NOMA. IEEE Access 2021, 9, 61832–61852. [Google Scholar] [CrossRef]
- Jia, M.; Gao, Q.; Guo, Q.; Gu, X. Energy-efficiency power allocation design for UAV-assisted spatial NOMA. IEEE Internet Things J. 2021, 8, 15205–15215. [Google Scholar] [CrossRef]
- Fang, F.; Wang, K.; Ding, Z.; Leung, V.C.M. Energy-efficient resource allocation for NOMA-MEC networks with imperfect CSI. IEEE Trans. Commun. 2021, 69, 3436–3449. [Google Scholar] [CrossRef]
- Huang, K.; Wang, Z.; Zhang, H.; Diamantoulakis, P.D.; Li, L.; Karagiannidis, G.K. Energy efficient resource allocation algorithm in multi-carrier NOMA systems. In Proceedings of the 2019 IEEE 20th International Conference on High Performance Switching and Routing, Xi’an, China, 26–29 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Lee, S.; Lee, J.H. Joint user scheduling and power allocation for energy efficient millimeter wave NOMA systems with random beamforming. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference, Chicago, IL, USA, 27–30 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Wu, G.; Zheng, W.; Li, Y.; Zhou, M. Energy-efficient power allocation for IoT devices in CR-NOMA networks. China Commun. 2021, 18, 166–181. [Google Scholar] [CrossRef]
- Glei, N.; Chibani, R.B. Energy-efficient resource allocation for NOMA systems. In Proceedings of the 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD), Istanbul, Turkey, 21–24 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 648–651. [Google Scholar]
- Glei, N.; Belgacem Chibani, R. Power allocation for energy-efficient downlink NOMA systems. In Proceedings of the 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 24–26 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 611–613. [Google Scholar]
- Shen, R.; Wang, X.; Xu, Y. Weighted sum-rate maximized power allocation in downlink MIMO-NOMA systems. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology, Xi’an, China, 16–19 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 679–684. [Google Scholar]
- Wang, X.; Chen, R.; Xu, Y.; Meng, Q. Low-complexity power allocation in NOMA systems with imperfect SIC for maximizing weighted sum-rate. IEEE Access 2019, 7, 94238–94253. [Google Scholar] [CrossRef]
- Gupta, P.; Ghosh, D. Channel assignment with power allocation for sum rate maximization in NOMA cellular networks. In Proceedings of the 2020 5th International Conference on Computing, Communication and Security (ICCCS), Patna, India, 14–16 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Zamani, M.R.; Eslami, M.; Khorramizadeh, M. Optimal sum-rate maximization in a NOMA system with channel estimation error. In Proceedings of the Electrical Engineering (ICEE), Iranian Conference on Electrical Engineering (ICEE) 2018, Mashhad, Iran, 8–10 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 720–724. [Google Scholar]
- Yang, K.; Yan, X.; Wang, Q.; Wu, H.-C.; Qin, K. Joint power allocation and relay beamforming optimization for weighted sum-rate maximization in NOMA AF relay system. IEEE Commun. Lett. 2021, 25, 219–223. [Google Scholar] [CrossRef]
- Sindhu, P.; Deepak, K.S.; Abdul Hameed, K.M. A novel low complexity power allocation algorithm for downlink NOMA networks. In Proceedings of the 2018 IEEE Recent Advances in Intelligent Computational Systems, Thiruvananthapuram, India, 6–8 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 36–40. [Google Scholar]
- Salaün, L.; Coupechoux, M.; Chen, C.S. Weighted sum-rate maximization in multi-carrier NOMA with cellular power constraint. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 451–459. [Google Scholar]
- Wang, Q.; Zhao, F. Joint spectrum and power allocation for NOMA enhanced relaying networks. IEEE Access 2019, 7, 27008–27016. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, J.; Cao, X. User Dynamic Clustering in Downlink NOMA Based on Adaptive Genetic Algorithm. J. Signal Processing 2021, 37, 835–842. [Google Scholar]
- Zhang, H.; Duan, Y.; Long, K.; Long, K.; Leung, V.C.M. Energy efficient resource allocation in terahertz downlink NOMA systems. IEEE Trans. Commun. 2021, 69, 1375–1384. [Google Scholar] [CrossRef]
- Muhammed, A.J.; Ma, Z.; Zhang, Z.; Fan, P.; Larsson, E.G. Energy-efficient resource allocation for NOMA based small cell networks with wireless backhauls. IEEE Trans. Commun. 2020, 68, 3766–3781. [Google Scholar] [CrossRef]
- Liu, B.; Liu, C.; Peng, M. Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT networks. IEEE J. Sel. Areas Commun. 2021, 39, 1015–1027. [Google Scholar] [CrossRef]
- Jain, R.K.; Chiu, D.M.W.; Hawe, W.R. A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems; Tech. Rep. TR-301; Digital Equipment Corporation: Maynard, MA, USA, 1984. [Google Scholar]
- Gui, G.; Sari, H.; Biglieri, E. A new definition of fairness for non-orthogonal multiple access. IEEE Commun. Lett. 2019, 23, 1267–1271. [Google Scholar] [CrossRef]
- Al-Obiedollah, H.; Cumanan, K.; Thiyagalingam, J.; Burr, A.G.; Ding, Z.; Dobre, O.A. Sum rate fairness trade-off-based resource allocation technique for MISO NOMA systems. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference, Marrakesh, Morocco, 15–18 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Abd-Elnaby, M. Capacity and fairness maximization-based resource allocation for downlink NOMA networks. Comput. Mater. Contin. 2021, 69, 521–537. [Google Scholar] [CrossRef]
- Ding, H.; Li, L. Joint subcarrier and power allocation with proportional fairness in multicarrier nonorthogonal multiple access systems. Int. J. Commun. Syst. 2022, 35, e5027. [Google Scholar] [CrossRef]
- Fan, Z.; Wen, C.; Wang, Z.; Wan, X.-Y. Price-based power allocation with rate proportional fairness constraint in downlink non-orthogonal multiple access systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2017, E100.A, 2543–2546. [Google Scholar] [CrossRef]
- Li, J.; Mei, D.; Deng, D.; Khan, I.; Uthansakul, P. Proportional fairness-based power allocation algorithm for downlink NOMA 5G wireless networks. Comput. Mater. Contin. 2020, 65, 1571–1590. [Google Scholar]
- Zhang, Z.; Qu, H.; Wang, W.; Luan, Z.; Zhao, J. Joint user association and power allocation for max-Min fairness in downlink multicell NOMA networks. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology, Xi’an, China, 14–16 October 2020; IEEE: Piscataway, NJ, USA, 2019; pp. 941–946. [Google Scholar]
- Mounchili, S.; Hamouda, S. New user grouping scheme for better user pairing in NOMA systems. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 820–825. [Google Scholar]
Fairness Index | Value Range | Fairness Criteria |
---|---|---|
proposed fairness index | [0, 1] | rate |
Jain index | , 1] | rate |
GUI index | [0, 1] | channel state and power allocation |
Parameter | Value |
---|---|
BS transmit power Pt | 40 dBm |
total bandwidth W | 1 MHz |
cell radius D | 500 m |
path loss exponent λ | 5 |
noise unilateral power spectral density | −174 dBm/Hz |
error tolerance ε | 0.001 |
lower bound of intra cluster fairness | 0.7 |
lower bound of inter cluster fairness | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zhu, J.; Pan, Z. A Fairness Index Based on Rate Variance for Downlink Non-Orthogonal Multiple Access System. Future Internet 2022, 14, 261. https://doi.org/10.3390/fi14090261
Yang J, Zhu J, Pan Z. A Fairness Index Based on Rate Variance for Downlink Non-Orthogonal Multiple Access System. Future Internet. 2022; 14(9):261. https://doi.org/10.3390/fi14090261
Chicago/Turabian StyleYang, Jie, Jiajia Zhu, and Ziyu Pan. 2022. "A Fairness Index Based on Rate Variance for Downlink Non-Orthogonal Multiple Access System" Future Internet 14, no. 9: 261. https://doi.org/10.3390/fi14090261
APA StyleYang, J., Zhu, J., & Pan, Z. (2022). A Fairness Index Based on Rate Variance for Downlink Non-Orthogonal Multiple Access System. Future Internet, 14(9), 261. https://doi.org/10.3390/fi14090261