Predicting the Duration of Forest Fires Using Machine Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Used Datasets
- Up to 6 h is considered to be a fire of short duration;
- Up to 2 days is a forest fire of medium duration;
- A duration of 2 days or more is considered a long-duration fire.
- Fire department.
- Province.
- Season.
- Burnt area: Forest area, grove, grasslands, reeds/swamps, agricultural lands, cover crop, and garbage dumps.
- Personnel: Firefighters, volunteers, army, etc.
- Vehicles: Firefighting, tanks, etc.
- Aerial means: Helicopters and other aircraft.
2.2. The Used Machine Learning Methods
2.2.1. Bayesian Networks
2.2.2. Naïve Bayes
2.2.3. Logistic Regression
2.2.4. Artificial Neural Networks
2.2.5. The J48 Algorithm
2.2.6. Random Forest
3. Results
- The numbers in cells denote the average classification error as calculated on the test set.
- The column Year denotes the year where the machine learning methods were applied.
- The column BAYESNET stands for the application of the Bayesian network method.
- The column NAIVEBAYES denotes the application of the naïve Bayes algorithm.
- The column LOGISTIC represents the application of the logistic regression algorithm.
- The column MLP denotes the application of a neural network to the dataset.
- The column J48 denotes the application of the J48 method to the forest fire data.
- The column RANDOMFOREST denotes the usage of the Random Forest method on the data.
- The row Average denotes the average classification error for all datasets.
- The column RANDOM FOREST denotes the results with the method Random Forest implemented by the WEKA package.
- The column MLP10 BFGS stands for the results obtained by an artificial neural network trained by the BFGS optimization method, as modified by Powell [122]. This neural network is equipped with 10 processing nodes.
- The column MLP10 LBFGS represents the results obtained by a neural network with 10 processing nodes that was trained using the limited memory BFGS optimization method [123].
- The column RBF10 denotes the results produced by the training of a radial basis function (RBF) [124] network with 10 processing nodes.
4. Conclusions
- Incorporation of more machine learning methods from the relevant literature.
- Using feature selection or construction techniques from the recent literature to identify the most important factors influencing the classification process.
- Usage of methods that create classification rules, in order to discover any hidden relationships between the data and the classes of the datasets.
- Usage of data that also include meteorological data, in order to identify a possible correlation of the categories with the meteorological conditions that prevailed at the time of the fire.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiang, Z.; Meka, E.Z.; Anderson, R.C.; Kakabadse, Y. Forests Nature at Your Service. UNEP Report. The Magazine of the United Nations Environment Program. Available online: https://www.unep.org/zh-hans/node/11645 (accessed on 21 October 2024).
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Stocks, B.J.; Mason, J.A.; Todd, J.B.; Bosch, E.M.; Wotton, B.M.; Amiro, B.D.; Flannigan, M.D.; Hirsch, K.G.; Logan, K.A.; Martell, D.L.; et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 2002, 107, FFR-5. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Amiro, B.D.; Logan, K.A.; Stocks, B.J.; Wotton, B.M. Forest fires and climate change in the 21 st century. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 847–859. [Google Scholar] [CrossRef]
- Sahar, O. Wildfires in Algeria: Problems and challenges. iForest 2015, 8, 818–826. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Van Der Werf, G.R.; Randerson, J.T.; Collatz, G.J.; Giglio, L. Carbon emissions from fires in tropical and subtropical ecosystems. Glob. Change Biol. 2003, 9, 547–562. [Google Scholar] [CrossRef]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A review of the effects of forest fire on soil properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Aleksić, P.; Krstić, M.; Jančić, G. Forest fires—Ecological and economic problem in Serbia. Bot. Serb. 2009, 32, 169–176. [Google Scholar]
- Wang, D.; Guan, D.; Zhu, S.; Kinnon, M.M.; Geng, G.; Zhang, Q.; Zheng, H.; Lei, T.; Shao, S.; Gong, P.; et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 2021, 4, 252–260. [Google Scholar] [CrossRef]
- Hystad, P.W.; Keller, P.C. Towards a destination tourism disaster management framework: Long-term lessons from a forest fire disaster. Tour. Manag. 2008, 29, 151–162. [Google Scholar] [CrossRef]
- Boustras, G.; Boukas, N. Forest fires’ impact on tourism development: A comparative study of Greece and Cyprus. Manag. Environ. Qual. 2013, 24, 498–511. [Google Scholar] [CrossRef]
- Otrachshenko, V.; Nunes, L.C. Fire takes no vacation: Impact of fires on tourism. Environ. Dev. Econ. 2022, 27, 86–101. [Google Scholar] [CrossRef]
- Sastry, N. Forest fires, air pollution, and mortality in Southeast Asia. Demography 2002, 39, 1–23. [Google Scholar] [CrossRef]
- Frankenberg, E.; McKee, D.; Thomas, D. Health consequences of forest fires in Indonesia. Demography 2005, 42, 109–129. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 0058. [Google Scholar] [CrossRef]
- Zhong, M.; Fan, W.; Liu, T.; Li, P. Statistical analysis on current status of China forest fire safety. Fire Saf. J. 2003, 38, 257–269. [Google Scholar] [CrossRef]
- Avila-Flores, D.; Pompa-Garcia, M.; Antonio-Nemiga, X.; Rodriguez-Trejo, D.A.; Vargas-Perez, E.; Santillan-Perez, J. Driving factors for forest fire occurrence in Durango State of Mexico: A geospatial perspective. Chin. Geogr. Sci. 2010, 20, 491–497. [Google Scholar] [CrossRef]
- Lovreglio, R.; Leone, V.; Giaquinto, P.; Notarnicola, A. Wildfire cause analysis: Four case-studies in southern Italy. iForest 2010, 3, 8–15. [Google Scholar] [CrossRef]
- Casbeer, D.W.; Beard, R.W.; McLain, T.W.; Li, S.-M.; Mehra, R.K. Forest fire monitoring with multiple small UAVs. In Proceedings of the 2005, American Control Conference, Portland, OR, USA,, 8–10 June 2005; Volume 5, pp. 3530–3535. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Li, W.; Cui, D. A forest fire monitoring system based on GPRS and ZigBee wireless sensor network. In Proceedings of the 2010 5th IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan, 15–17 June 2010; pp. 1859–1862. [Google Scholar] [CrossRef]
- Stula, M.; Krstinic, D.; Seric, L. Intelligent forest fire monitoring system. Inf. Syst. Front. 2012, 14, 725–739. [Google Scholar] [CrossRef]
- Merino, L.; Caballero, F.; Martínez-de-Dios, J.R.; Maza, I.; Ollero, A. An Unmanned Aircraft System for Automatic Forest Fire Monitoring and Measurement. J. Intell. Robot. Syst. 2012, 65, 533–548. [Google Scholar] [CrossRef]
- Aslan, Y.E.; Korpeoglu, I.; Ulusoy, Ö. A framework for use of wireless sensor networks in forest fire detection and monitoring, Computers. Environ. Urban Syst. 2012, 36, 614–625. [Google Scholar] [CrossRef]
- Serna, M.Á.; Casado, R.; Bermúdez, A.; Pereira, N. Distributed Forest Fire Monitoring Using Wireless Sensor Networks. Int. J. Distrib. Sens. Netw. 2015, 11, 10. [Google Scholar] [CrossRef]
- Dwiasnati, S.; Devianto, Y. Classification of forest fire areas using machine learning algorithm. World J. Adv. Eng. Technol. Sci. 2021, 3, 8–15. [Google Scholar] [CrossRef]
- Pang, Y.; Li, Y.; Feng, Z.; Feng, Z.; Zhao, Z.; Chen, S.; Zhang, H. Forest Fire Occurrence Prediction in China Based on Machine Learning Methods. Remote Sens. 2022, 14, 5546. [Google Scholar] [CrossRef]
- Dampage, U.; Bandaranayake, L.; Wanasinghe, R.; Kottahachchi, K.; Jayasanka, B. Forest fire detection system using wireless sensor networks and machine learning. Sci. Rep. 2022, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Feng, Z.; Sun, L.; Yang, X.; Li, Y.; Xu, B.; Chen, Y. Mapping China’s Forest Fire Risks with Machine Learning. Forests 2022, 13, 856. [Google Scholar] [CrossRef]
- Singh, K.R.; Neethu, K.P.; Madhurekaa, K.; Harita, A.; Mohan, P. Parallel SVM model for forest fire prediction. Soft Comput. Lett. 2021, 3, 100014. [Google Scholar] [CrossRef]
- Abid, F. A survey of machine learning algorithms based forest fires prediction and detection systems. Fire Technol. 2021, 57, 559–590. [Google Scholar] [CrossRef]
- Vicente, J.; Guillemant, P. An image processing technique for automatically detecting forest fire. Int. J. Therm. Sci. 2002, 41, 1113–1120. [Google Scholar] [CrossRef]
- Yan, Q.; Bo, P.; Juanjuan, Z. Forest Fire Image Intelligent Recognition based on the Neural Network. J. Multimed. 2014, 9, 469–475. [Google Scholar]
- Mahmoud, M.A.; Ren, H. Forest Fire Detection Using a Rule-Based Image Processing Algorithm and Temporal Variation. Math. Probl. Eng. 2018, 2018, 7612487. [Google Scholar] [CrossRef]
- Wang, Y.; Dang, L.; Ren, J. Forest fire image recognition based on convolutional neural network. J. Algorithms Comput. Technol. 2019, 13, 1748302619887689. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhang, Y.; Xin, J.; Yi, Y.; Liu, D. Forest Fire Detection with Color Features and Wavelet Analysis Based on Aerial Imagery. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 2206–2211. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Dogan, A.; Birant, D. Machine learning and data mining in manufacturing. Expert Syst. Appl. 2021, 166, 114060. [Google Scholar] [CrossRef]
- Singh, H.; Ang, L.M.; Lewis, T.; Paudyal, D.; Acuna, M.; Srivastava, P.K.; Srivastava, S.K. Trending and emerging prospects of physics-based and ML-based wildfire spread models: A comprehensive review. J. For. Res. 2024, 35, 135. [Google Scholar] [CrossRef]
- Farid, A.; Alam, M.K.; Goli, V.S.N.S.; Akin, I.D.; Akinleye, T.; Chen, X.; Cheng, Q.; Cleall, P.; Cuomo, S.; Foresta, V.; et al. A Review of the Occurrence and Causes for Wildfires and Their Impacts on the Geoenvironment. Fire 2024, 7, 295. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, M.; Wang, H. A Neural Network Model for Wildfire Scale Prediction Using Meteorological Factors. IEEE Access 2019, 7, 176746–176755. [Google Scholar] [CrossRef]
- KC, U.; Aryal, J.; Hilton, J.; Garg, S. A Surrogate Model for Rapidly Assessing the Size of a Wildfire over Time. Fire 2021, 4, 20. [Google Scholar] [CrossRef]
- Xi, D.D.; Dean, C.B.; Taylor, S.W. Modeling the duration and size of wildfires using joint mixture models. Environmetrics 2021, 32, e2685. [Google Scholar] [CrossRef]
- US Forest Service. Department of Agriculture. Science and Technology. Managing Fire, Fire Forecasting. Available online: https://www.fs.usda.gov/science-technology/managing-fire (accessed on 21 October 2024).
- eustafor. European State Forest Association. Forest Fires in Europe: A Growing Challenge. Towards a Resilient Future. Available online: https://eustafor.eu/forest-fires-in-europe-a-growing-challenge/ (accessed on 21 October 2024).
- Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine learning for the geosciences: Challenges and opportunities. IEEE Trans. Knowl. Data Eng. 2017, 31, 1544–1554. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, C.; Work, T.; Candau, J.N.; DesRochers, A.; Kneeshaw, D. Application of machine-learning methods in forest ecology: Recent progress and future challenges. Environ. Rev. 2018, 26, 339–350. [Google Scholar] [CrossRef]
- Finney, M.A. The challenge of quantitative risk analysis for wildland fire. For. Ecol. Manage. 2005, 211, 97–108. [Google Scholar] [CrossRef]
- Xiao, H. Estimating Wildfire Duration Using Regression—Models. 2023. Available online: https://arxiv.org/pdf/2308.08936 (accessed on 21 October 2024).
- Ben-Gal, I. Bayesian Networks. In Encyclopedia of Statistics in Quality and Reliability; Ruggeri, F., Kenett, R.S., Faltin, F.W., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2008. [Google Scholar]
- Koski, T.; Noble, J. Bayesian Networks: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Friedman, N.; Linial, M.; Nachman, I.; Pe, D. Using Bayesian networks to analyze expression data. In Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, Tokyo, Japan, 8–11 April 2000; pp. 127–135. [Google Scholar]
- Cai, B.; Huang, L.; Xie, M. Bayesian Networks in Fault Diagnosis. IEEE Trans. Ind. Inform. 2017, 13, 2227–2240. [Google Scholar] [CrossRef]
- Barton, N.D.; Kuikka, S.; Varis, O.; Uusitalo, L.; Henriksen, H.J.; Borsuk, M.; de la Hera, A.; Farmani, R.; Johnson, S.; Linnell, J.D. Bayesian networks in environmental and resource management. Integr. Environ. Assess Manag. 2012, 8, 418–429. [Google Scholar] [CrossRef]
- Sevinc, V.; Kucuk, O.; Goltas, M. A Bayesian network model for prediction and analysis of possible forest fire causes. For. Ecol. Manag. 2020, 457, 117723. [Google Scholar] [CrossRef]
- Chen, F.; Jia, H.; Du, E.; Chen, Y.; Wang, L. Modeling of the cascading impacts of drought and forest fire based on a Bayesian network. Int. J. Disaster Risk Reduct. 2024, 111, 104716. [Google Scholar] [CrossRef]
- Kim, B.; Lee, J. A Bayesian network-based information fusion combined with DNNs for robust video fire detection. Appl. Sci. 2021, 11, 7624. [Google Scholar] [CrossRef]
- Webb, G.I.; Keogh, E.; Miikkulainen, R. Naïve Bayes. Encycl. Mach. Learn. 2010, 15, 713–714. [Google Scholar]
- Ting, S.L.; Ip, W.H.; Tsang, A.H. Is Naive Bayes a good classifier for document classification. Int. J. Softw. Eng. Its Appl. 2011, 5, 37–46. [Google Scholar]
- Chen, H.; Hu, S.; Hua, R.; Zhao, X. Improved naive Bayes classification algorithm for traffic risk management. EURASIP J. Adv. Signal Process. 2021, 30, 2021. [Google Scholar] [CrossRef]
- Panda, M.; Patra, M.R. Network intrusion detection using naive bayes. Int. J. Comput. Sci. Netw. Secur. 2007, 7, 258–263. [Google Scholar]
- Nugroho, A.A.; Iwan, I.; Azizah, K.I.N.; Raswa, F.H. Peatland Forest Fire Prevention Using Wireless Sensor Network Based on Naïve Bayes Classifier. KnE Soc. Sci. 2019, 3, 20–34. [Google Scholar]
- Zainul, M.; Minggu, E. Classification of Hotspots Causing Forest and Land Fires Using the Naive Bayes Algorithm. Interdiscip. Soc. Stud. 2022, 1, 555–567. [Google Scholar] [CrossRef]
- Karo, I.M.K.; Amalia, S.N.; Septiana, D. Wildfires Classification Using Feature Selection with K-NN, Naïve Bayes, and ID3 Algorithms. J. Softw. Eng. Inf. Commun. Technol. (SEICT) 2022, 3, 15–24. [Google Scholar] [CrossRef]
- Shu, L.; Zhang, H.; You, Y.; Cui, Y.; Chen, W. Towards fire prediction accuracy enhancements by leveraging an improved naïve bayes algorithm. Symmetry 2021, 13, 530. [Google Scholar] [CrossRef]
- Sperandei, S. Understanding logistic regression Analysis. Biochem. Medica 2014, 24, 12–18. [Google Scholar] [CrossRef]
- Cabrera, A.F. Logistic regression analysis in higher education: An applied perspective. High. Educ. Handb. Theory Res. 1994, 10, 225–256. [Google Scholar]
- Lawson, C.; Montgomery, D.C. Logistic Regression Analysis of Customer Satisfaction Data. Qual. Reliab. Eng. Int. 2006, 22, 971–984. [Google Scholar] [CrossRef]
- Hu, Z.; Lo, C.P. Modeling urban growth in Atlanta using logistic regression. Comput. Environ. Urban Syst. 2007, 31, 667–688. [Google Scholar] [CrossRef]
- Vilar del Hoyo, L.; Martín Isabel, M.P.; Martínez Vega, F.J. Logistic regression models for human-caused wildfire risk estimation: Analysing the effect of the spatial accuracy in fire occurrence data. Eur. J. Forest Res. 2011, 130, 983–996. [Google Scholar] [CrossRef]
- De Bem, P.P.; de Carvalho Júnior, O.A.; Matricardi, E.A.T.; Guimarães, R.F.; Gomes, R.A.T. Predicting wildfire vulnerability using logistic regression and artificial neural networks: A case study in Brazil’s Federal District. Int. J. Wildland Fire 2018, 28, 35–45. [Google Scholar] [CrossRef]
- Nhongo, E.J.S.; Fontana, D.C.; Guasselli, L.A.; Bremm, C. Probabilistic modelling of wildfire occurrence based on logistic regression, Niassa Reserve, Mozambique. Geomat. Nat. Hazards Risk 2019, 10, 1772–1792. [Google Scholar] [CrossRef]
- Peng, W.; Wei, Y.; Chen, G.; Lu, G.; Ye, Q.; Ding, R.; Hu, P.; Cheng, Z. Analysis of Wildfire Danger Level Using Logistic Regression Model in Sichuan Province, China. Forests 2023, 14, 2352. [Google Scholar] [CrossRef]
- Bishop, C. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Cybenko, G. Approximation by superpositions of a sigmoidal Function. Math. Control. Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Baldi, P.; Cranmer, K.; Faucett, T.; Sadowski, P.; Whiteson, D. Parameterized neural networks for high-energy physics. Eur. Phys. J. C 2016, 76, 1–7. [Google Scholar] [CrossRef]
- Valdas, J.J.; Bonham-Carter, G. Time dependent neural network models for detecting changes of state in complex processes: Applications in earth sciences and astronomy. Neural Netw. 2006, 19, 196–207. [Google Scholar] [CrossRef]
- Carleo, G.; Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 2017, 355, 602–606. [Google Scholar] [CrossRef]
- Shirvany, Y.; Hayati, M.; Moradian, R. Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Appl. Soft Comput. 2009, 9, 20–29. [Google Scholar] [CrossRef]
- Malek, A.; Beidokhti, R.S. Numerical solution for high order differential equations using a hybrid neural network—Optimization method. Appl. Math. Comput. 2006, 183, 60–271. [Google Scholar] [CrossRef]
- Yadav, A.K.; Chandel, S.S. Solar radiation prediction using Artificial Neural Network techniques: A review. Renew. Sustain. Energy Rev. 2014, 33, 772–781. [Google Scholar] [CrossRef]
- Topuz, A. Predicting moisture content of agricultural products using artificial neural networks. Adv. Eng. Softw. 2010, 41, 464–470. [Google Scholar] [CrossRef]
- Escamilla-García, A.; Soto-Zarazúa, G.M.; Toledano-Ayala, M.; Rivas-Araiza, E.; Gastélum-Barrios, A. Applications of Artificial Neural Networks in Greenhouse Technology and Overview for Smart Agriculture Development. Appl. Sci. 2020, 10, 3835. [Google Scholar] [CrossRef]
- Shen, L.; Wu, J.; Yang, W. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks. J. Chem. Theory Comput. 2016, 12, 4934–4946. [Google Scholar] [CrossRef] [PubMed]
- Manzhos, S.; Dawes, R.; Carrington, T. Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces. Int. J. Quantum Chem. 2015, 115, 1012–1020. [Google Scholar] [CrossRef]
- Wei, J.N.; Duvenaud, D.; Aspuru-Guzik, A. Neural Networks for the Prediction of Organic Chemistry Reactions. ACS Cent. Sci. 2016, 2, 725–732. [Google Scholar] [CrossRef]
- Li, G.; Shi, J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87, 2313–2320. [Google Scholar] [CrossRef]
- Falat, L.; Pancikova, L. Quantitative Modelling in Economics with Advanced Artificial Neural Networks. Procedia Econ. Financ. 2015, 34, 194–201. [Google Scholar] [CrossRef]
- Namazi, M.; Shokrolahi, A.; Maharluie, M.S. Detecting and ranking cash flow risk factors via artificial neural networks technique. J. Bus. Res. 2016, 69, 1801–1806. [Google Scholar] [CrossRef]
- Tkacz, G. Neural network forecasting of Canadian GDP growth. Int. J. Forecast. 2001, 17, 57–69. [Google Scholar] [CrossRef]
- Baskin, I.I.; Winkler, D.; Tetko, I.V. A renaissance of neural networks in drug discovery. Expert Opin. Drug Discov. 2016, 11, 785–795. [Google Scholar] [CrossRef]
- Bartzatt, R. Prediction of Novel Anti-Ebola Virus Compounds Utilizing Artificial Neural Network (ANN). World J. Pharm. Res. 2018, 7, 16. [Google Scholar]
- Hossain, F.A.; Zhang, Y.; Yuan, C.; Su, C.Y. Wildfire Flame and Smoke Detection Using Static Image Features and Artificial Neural Network. In Proceedings of the 2019 1st International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 23–27 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Lall, S.; Mathibela, B. The application of artificial neural networks for wildfire risk prediction. In Proceedings of the 2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA), Amritapuri, India, 18–20 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Sayad, Y.O.; Mousannif, H.; Al Moatassime, H. Predictive modeling of wildfires: A new dataset and machine learning approach. Fire Saf. J. 2019, 104, 130–146. [Google Scholar] [CrossRef]
- Gao, K.; Feng, Z.; Wang, S. Using multilayer perceptron to predict forest fires in jiangxi province, southeast china. Discret. Dyn. Nat. Soc. 2022, 1, 6930812. [Google Scholar] [CrossRef]
- Bhargava, N.; Sharma, G.; Bhargava, R.; Mathuria, M. Decision tree analysis on j48 algorithm for data mining. Proc. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2013, 3, 1114–1119. [Google Scholar]
- Kaur, G.; Chhabra, A. Improved J48 classification algorithm for the prediction of diabetes. Int. J. Comput. Appl. 2014, 98, 22. [Google Scholar] [CrossRef]
- Sahu, S.; Mehtre, B.M. Network intrusion detection system using J48 Decision Tree. In Proceedings of the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, India, 10–13 August 2015; pp. 2023–2026. [Google Scholar]
- Sakhare, N.N.; Joshi, S.A. Classification of criminal data using J48-Decision Tree algorithm. Int. J. Data Warehous. Min. 2015, 4, 167–171. [Google Scholar]
- Abdullah, S.F.; Rahman, A.F.N.A.; Abas, Z.A.; Saad, W.H.M. Fingerprint gender classification using univariate decision tree (j48). Int. J. Adv. Comput. Sci. Appl. 2016, 7, 217–221. [Google Scholar]
- Jehad, R.; Yousif, S.A. Fake news classification using random forest and decision tree (j48). Al-Nahrain J. Sci. 2020, 23, 49–55. [Google Scholar] [CrossRef]
- Abid, F.; Izeboudjen, N. Predicting forest fire in algeria using data mining techniques: Case study of the decision tree algorithm. In Advanced Intelligent Systems for Sustainable Development (AI2SD’2019) Volume 4-Advanced Intelligent Systems for Applied Computing Sciences; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 363–370. [Google Scholar]
- Breiman, L. Random forests. In Machine Learning; Springer: Berlin/Heidelberg, Germany, 2001; Volume 45, pp. 5–32. [Google Scholar]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Qi, Y. Random Forest for Bioinformatics. In Ensemble Machine Learning; Zhang, C., Ma, Y., Eds.; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Xu, B.; Guo, X.; Ye, Y.; Cheng, J. An improved random forest classifier for text categorization. J. Comput. 2012, 7, 2913–2920. [Google Scholar] [CrossRef]
- Farnaaz, N.; Jabbar, M.A. Random Forest Modeling for Network Intrusion Detection System. Procedia Comput. Sci. 2016, 89, 213–217. [Google Scholar] [CrossRef]
- Latifah, A.L.; Shabrina, A.; Wahyuni, I.N.; Sadikin, R. Evaluation of Random Forest model for forest fire prediction based on climatology over Borneo. In Proceedings of the 2019 International Conference on Computer, Control, Informatics and Its Applications (IC3INA), Tangerang, Indonesia, 23–24 October 2019; pp. 4–8. [Google Scholar]
- Malik, A.; Rao, M.R.; Puppala, N.; Koouri, P.; Thota, V.A.K.; Liu, Q.; Chiao, S.; Gao, J. Data-Driven Wildfire Risk Prediction in Northern California. Atmosphere 2021, 12, 109. [Google Scholar] [CrossRef]
- Gao, C.; Lin, H.; Hu, H. Forest fire risk prediction based on random forest and backpropagation neural network of Heihe area in Heilongjiang province, China. Forests 2023, 14, 170. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Hall, M.; Frank, F.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Aher, S.B.; Lobo, L.M.R.J. Data mining in educational system using weka. In International conference on emerging technology trends. Found. Comput. Sci. 2011, 3, 20–25. [Google Scholar]
- Hussain, S.; Dahan, N.A.; Ba-Alwib, F.M.; Ribata, N. Educational data mining and analysis of students’ academic performance using WEKA. Indones. J. Electr. Eng. Comput. Sci. 2018, 9, 447–459. [Google Scholar] [CrossRef]
- Sigurdardottir, A.K.; Jonsdottir, H.; Benediktsson, R. Outcomes of educational interventions in type 2 diabetes: WEKA data-mining analysis. Patient Educ. Couns. 2007, 67, 21–31. [Google Scholar] [CrossRef]
- Amin, M.N.; Habib, A. Comparison of different classification techniques using WEKA for hematological data. Am. J. Eng. Res. 2015, 4, 55–61. [Google Scholar]
- Suthaharan, S.; Suthaharan, S. Support vector machine. In Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning; Springer: Berlin/Heidelberg, Germany, 2016; pp. 207–235. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Powell, M.J.D. A Tolerant Algorithm for Linearly Constrained Optimization Calculations. Math. Program 1989, 45, 547–566. [Google Scholar] [CrossRef]
- Liu, D.C.; Nocedal, J. On the Limited Memory Method for Large Scale Optimization. Math. Program. B. 1989, 45, 503–528. [Google Scholar] [CrossRef]
- Park, J.; Sandberg, I.W. Universal Approximation Using Radial-Basis-Function Networks. Neural Comput. 1991, 3, 246–257. [Google Scholar] [CrossRef]
- Gropp, W.; Lusk, E.; Doss, N.; Skjellum, A. A high-performance, portable implementation of the MPI message passing interface standard. Parallel Comput. 1996, 22, 789–828. [Google Scholar] [CrossRef]
- Chandra, R. Parallel Programming in OpenMP; Morgan Kaufmann: Cambridge, MA, USA, 2001. [Google Scholar]
Year | BAYESNET | NAIVEBAYES | LOGISTIC | MLP | J48 | RANDOMFOREST |
---|---|---|---|---|---|---|
2014 | 11.44% | 12.89% | 9.81% | 11.37% | 10.04% | 9.42% |
2015 | 11.08% | 11.26% | 9.53% | 10.65% | 9.51% | 8.95% |
2016 | 25.71% | 13.00% | 3.41% | 3.90% | 3.65% | 3.00% |
2017 | 11.04% | 11.51% | 9.48% | 10.08% | 10.30% | 9.29% |
2018 | 11.20% | 10.46% | 9.09% | 9.48% | 9.27% | 8.58% |
2019 | 9.61% | 9.25% | 8.29% | 8.53% | 9.08% | 8.01% |
2020 | 18.00% | 6.72% | 5.54% | 5.97% | 6.09% | 5.50% |
2021 | 12.35% | 14.15% | 12.04% | 13.59% | 13.59% | 11.92% |
2022 | 10.25% | 9.62% | 9.01% | 9.47% | 9.04% | 8.93% |
2023 | 9.74% | 9.19% | 8.26% | 8.77% | 8.39% | 7.66% |
Average | 13.04% | 10.81% | 8.45% | 9.18% | 8.90% | 8.13% |
BAYES NET | NAIVEBAYES | LOGISTIC | MLP | J48 | FOREST | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
YEAR | PRECISION | RECALL | PRECISION | RECALL | PRECISION | RECALL | PRECISION | RECALL | PRECISION | RECALL | PRECISION | RECALL |
2014 | 0.889 | 0.886 | 0.851 | 0.871 | 0.89 | 0.902 | 0.87 | 0.886 | 0.888 | 0.90 | 0.898 | 0.906 |
2015 | 0.892 | 0.889 | 0.87 | 0.887 | 0.891 | 0.905 | 0.876 | 0.893 | 0.892 | 0.905 | 0.901 | 0.91 |
2016 | 0.959 | 0.743 | 0.959 | 0.87 | 0.96 | 0.966 | 0.955 | 0.961 | 0.959 | 0.963 | 0.968 | 0.97 |
2017 | 0.897 | 0.89 | 0.869 | 0.885 | 0.893 | 0.905 | 0.886 | 0.889 | 0.886 | 0.897 | 0.899 | 0.907 |
2018 | 0.897 | 0.888 | 0.879 | 0.895 | 0.894 | 0.909 | 0.89 | 0.905 | 0.894 | 0.907 | 0.905 | 0.914 |
2019 | 0.914 | 0.904 | 0.894 | 0.907 | 0.903 | 0.917 | 0.903 | 0.915 | 0.898 | 0.909 | 0.912 | 0.92 |
2020 | 0.929 | 0.82 | 0.923 | 0.933 | 0.937 | 0.945 | 0.933 | 0.94 | 0.931 | 0.939 | 0.94 | 0.945 |
2021 | 0.879 | 0.876 | 0.835 | 0.858 | 0.865 | 0.88 | 0.846 | 0.864 | 0.849 | 0.864 | 0.871 | 0.881 |
2022 | 0.91 | 0.897 | 0.889 | 0.904 | 0.893 | 0.91 | 0.891 | 0.905 | 0.896 | 0.91 | 0.9 | 0.911 |
2023 | 0.912 | 0.903 | 0.894 | 0.908 | 0.905 | 0.917 | 0.899 | 0.912 | 0.906 | 0.916 | 0.916 | 0.923 |
Year | 10 Trees | 20 Trees | 50 Trees | 100 Trees | 150 Trees | 200 Trees |
---|---|---|---|---|---|---|
2014 | 10.05% | 9.66% | 9.59% | 9.43% | 9.24% | 9.25% |
2015 | 9.90% | 9.44% | 9.16% | 8.95% | 9.07% | 9.00% |
2016 | 3.34% | 3.15% | 2.97% | 3.00% | 3.01% | 2.99% |
2017 | 10.07% | 9.54% | 9.43% | 9.30% | 9.36% | 9.25% |
2018 | 9.27% | 8.76% | 8.52% | 8.58% | 8.64% | 8.67% |
2019 | 8.81% | 8.18% | 7.95% | 8.02% | 7.98% | 7.89% |
2020 | 6.11% | 5.78% | 5.53% | 5.51% | 5.58% | 5.57% |
2021 | 12.26% | 11.67% | 11.74% | 11.92% | 11.77% | 11.77% |
2022 | 9.43% | 9.44% | 9.14% | 8.94% | 8.86% | 8.86% |
2023 | 8.47% | 7.85% | 7.61% | 7.67% | 7.43% | 7.43% |
Year | Random Forest | SVM | MLP10_BFGS | MLP10_LBFGS | RBF10 |
---|---|---|---|---|---|
2014 | 9.43% | 14.19% | 11.61% | 10.28% | 13.76% |
2015 | 8.95% | 13.08% | 10.86% | 9.71% | 12.34% |
2016 | 3.00% | 5.03% | 4.36% | 3.61% | 7.25% |
2017 | 9.30% | 13.20% | 10.60% | 9.77% | 12.87% |
2018 | 8.58% | 11.50% | 10.16% | 9.15% | 11.12% |
2019 | 8.02% | 10.67% | 9.27% | 8.26% | 9.83% |
2020 | 5.51% | 8.18% | 6.69% | 5.62% | 10.39% |
2021 | 11.92% | 17.98% | 14.12% | 12.71% | 18.17% |
2022 | 8.94% | 11.16% | 9.86% | 8.98% | 11.05% |
2023 | 7.67% | 11.37% | 9.55% | 8.63% | 11.53% |
Average | 8.13% | 11.64% | 9.71% | 8.67% | 11.83% |
Year | MLP2 BFGS | MLP5 BFGS | MLP10_BFGS | MLP15_BFGS | MLP20 BFGS |
---|---|---|---|---|---|
2014 | 12.88% | 12.40% | 11.61% | 11.58% | 11.43% |
2015 | 11.78% | 10.98% | 10.86% | 12.71% | 12.66% |
2016 | 5.08% | 4.40% | 4.36% | 4.13% | 4.14% |
2017 | 12.14% | 10.71% | 10.60% | 10.80% | 10.46% |
2018 | 10.46% | 10.28% | 10.16% | 10.04% | 9.90% |
2019 | 9.61% | 9.21% | 9.27% | 9.12% | 9.01% |
2020 | 7.49% | 6.67% | 6.69% | 6.36% | 6.40% |
2021 | 16.29% | 14.82% | 14.12% | 14.05% | 13.95% |
2022 | 10.39% | 10.06% | 9.86% | 9.67% | 9.63% |
2023 | 10.51% | 9.96% | 9.55% | 9.45% | 9.47% |
Average | 10.66% | 9.95% | 9.71% | 9.79% | 9.71% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopitsa, C.; Tsoulos, I.G.; Charilogis, V.; Stavrakoudis, A. Predicting the Duration of Forest Fires Using Machine Learning Methods. Future Internet 2024, 16, 396. https://doi.org/10.3390/fi16110396
Kopitsa C, Tsoulos IG, Charilogis V, Stavrakoudis A. Predicting the Duration of Forest Fires Using Machine Learning Methods. Future Internet. 2024; 16(11):396. https://doi.org/10.3390/fi16110396
Chicago/Turabian StyleKopitsa, Constantina, Ioannis G. Tsoulos, Vasileios Charilogis, and Athanassios Stavrakoudis. 2024. "Predicting the Duration of Forest Fires Using Machine Learning Methods" Future Internet 16, no. 11: 396. https://doi.org/10.3390/fi16110396
APA StyleKopitsa, C., Tsoulos, I. G., Charilogis, V., & Stavrakoudis, A. (2024). Predicting the Duration of Forest Fires Using Machine Learning Methods. Future Internet, 16(11), 396. https://doi.org/10.3390/fi16110396