Heterogeneous Factors Influencing Electric Vehicle Acceptance: Application of Structural Equation Modeling
Abstract
:1. Introduction
2. Conceptual Framework and the Formulation of Hypotheses
2.1. Benefits for the Built Environment (BBEN)
2.2. Knowledge about Innovation (INKN)
2.3. Environmental Awareness Aspect (ENAW)
2.4. Societal Aspect of ELVs (SAELV)
2.5. Capital Cost of ELVs (CCELV)
2.6. Environmental and Health Benefits of ELVs (EHELV)
3. Data Analyses
3.1. Data and Econometric Technique
3.2. Measurement Model Estimation
4. Structural Model Results and Discussion
5. Conclusions and Policies
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Nair, S.; Rao, N.; Mishra, S.; Patil, A. India’s charging infrastructure—Biggest single point impediment in EV adaptation in India. In Proceedings of the 2017 IEEE Transportation Electrification Conference, ITEC-India, Pune, India, 13–15 December 2017; pp. 1–6. [Google Scholar]
- Breschi, V.; Ravazzi, C.; Strada, S.; Dabbene, F.; Tanelli, M. Driving electric vehicles’ mass adoption: Design of human-centric policies to meet climate and societal goals Dataset and preprocessing. Transp. Res. Part A 2021, 171, 103651. [Google Scholar] [CrossRef]
- Peng, T.; Ou, X.; Yuan, Z.; Yan, X.; Zhang, X. Development and application of China provincial road transport energy demand and GHG emissions analysis model. Appl. Energy 2018, 222, 313–328. [Google Scholar] [CrossRef]
- Spurlock, C.A.; Sears, J.; Wong-Parodi, G.; Walker, V.; Jin, L.; Taylor, M.; Duvall, A.; Gopal, A.; Todd, A. Describing the users: Understanding adoption of and interest in shared, electrified, and automated transportation in the San Francisco Bay Area. Transp. Res. Part D Transp. Environ. 2019, 71, 283–301. [Google Scholar] [CrossRef]
- Skippon, S.M.; Kinnear, N.; Lloyd, L.; Stannard, J. How experience of use influences mass-market drivers’ willingness to consider a battery electric vehicle: A randomised controlled trial. Transp. Res. Part A Policy Pract. 2016, 92, 26–42. [Google Scholar] [CrossRef]
- Song, R.; Potoglou, D. Are existing battery electric vehicles adoption studies able to inform policy? A review for policymakers. Sustainability 2020, 12, 6494. [Google Scholar] [CrossRef]
- Gopal, A.R.; Park, W.Y.; Witt, M.; Phadke, A. Hybrid- and battery-electric vehicles offer low-cost climate benefits in China. Transp. Res. Part D Transp. Environ. 2018, 62, 362–371. [Google Scholar] [CrossRef]
- To, W.M.; Lee, P.K.C. GHG emissions from electricity consumption: A case study of Hong Kong from 2002 to 2015 and trends to 2030. J. Clean. Prod. 2017, 165, 589–598. [Google Scholar] [CrossRef]
- Irfan, M.; Ahmad, M. Relating consumers’ information and willingness to buy electric vehicles: Does personality matter? Transp. Res. Part D Transp. Environ. 2021, 100, 103049. [Google Scholar] [CrossRef]
- Liu, R.; Ding, Z.; Jiang, X.; Sun, J.; Jiang, Y.; Qiang, W. How does experience impact the adoption willingness of battery electric vehicles? The role of psychological factors. Environ. Sci. Pollut. Res. 2020, 27, 25230–25247. [Google Scholar] [CrossRef]
- Tan, C.S.; Ooi, H.Y.; Goh, Y.N. A moral extension of the theory of planned behavior to predict consumers’ purchase intention for energy-efficient household appliances in Malaysia. Energy Policy 2017, 107, 459–471. [Google Scholar] [CrossRef]
- He, X.; Zhan, W.; Hu, Y. Consumer purchase intention of electric vehicles in China: The roles of perception and personality. J. Clean. Prod. 2018, 204, 1060–1069. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Li, J.; Wang, J.; Liang, L. Policy implications for promoting the adoption of electric vehicles: Do consumer’s knowledge, perceived risk and financial incentive policy matter ? Transp. Res. Part A Policy Pract. 2018, 117, 58–69. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Newell, P.; Carley, S.; Fanzo, J. Equity, technological innovation and sustainable behaviour in a low-carbon future. Nat. Hum. Behav. 2022, 6, 326–337. [Google Scholar] [CrossRef]
- Loengbudnark, W.; Khalilpour, K.; Bharathy, G.; Taghikhah, F.; Voinov, A. Battery and hydrogen-based electric vehicle adoption: A survey of Australian consumers perspective. Case Stud. Transp. Policy 2022, 10, 2451–2463. [Google Scholar] [CrossRef]
- Triguero, A.; Moreno-Mondéjar, L.; Davia, M.A. The influence of energy prices on adoption of clean technologies and recycling: Evidence from European SMEs. Energy Econ. 2014, 46, 246–257. [Google Scholar] [CrossRef]
- Jaiswal, D.; Kant, R. Green purchasing behaviour: A conceptual framework and empirical investigation of Indian consumers. J. Retail. Consum. Serv. 2018, 41, 60–69. [Google Scholar] [CrossRef]
- Nulkar, G. SMEs and Environmental Performance—A Framework for Green Business Strategies. Procedia-Soc. Behav. Sci. 2014, 133, 130–140. [Google Scholar] [CrossRef]
- Afshan, S.; Ozturk, I.; Yaqoob, T. Facilitating renewable energy transition, ecological innovations and stringent environmental policies to improve ecological sustainability: Evidence from MM-QR method. Renew. Energy 2022, 196, 151–160. [Google Scholar] [CrossRef]
- Sumrin, S.; Gupta, S.; Asaad, Y.; Wang, Y.; Bhattacharya, S.; Foroudi, P. Eco-innovation for environment and waste prevention. J. Bus. Res. 2021, 122, 627–639. [Google Scholar] [CrossRef]
- Wu, Y.; Gu, F.; Ji, Y.; Ma, S.; Guo, J. Electric vehicle adoption and local PM2.5 reduction: Evidence from China. J. Clean. Prod. 2023, 396, 136508. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, I.; Khan, M.Q.S.; Jabeen, G.; Jabeen, H.S.; Isik, C. Households’ perception-based factors influencing biogas adoption: Innovation diffusion framework. Energy 2023, 263, 126155. [Google Scholar] [CrossRef]
- Mpoi, G.; Milioti, C.; Mitropoulos, L. Factors and incentives that affect electric vehicle adoption in Greece. Int. J. Transp. Sci. Technol. 2023, 1–16, in press. [Google Scholar] [CrossRef]
- Potoglou, D.; Whittle, C.; Tsouros, I.; Whitmarsh, L. Consumer intentions for alternative fuelled and autonomous vehicles: A segmentation analysis across six countries. Transp. Res. Part D Transp. Environ. 2020, 79, 102243. [Google Scholar] [CrossRef]
- Debnath, R.; Bardhan, R.; Reiner, D.M.; Miller, J.R. Political, economic, social, technological, legal and environmental dimensions of electric vehicle adoption in the United States: A social-media interaction analysis. Renew. Sustain. Energy Rev. 2021, 152, 111707. [Google Scholar] [CrossRef]
- Guta, D.D. Determinants of household use of energy-efficient and renewable energy technologies in rural Ethiopia. Technol. Soc. 2020, 61, 101249. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R.; Gatto, A. Civic engagement and energy transition in the Nordic-Baltic Sea Region: Parametric and nonparametric inquiries. Socio-Econ. Plan. Sci. 2022, 101347, in press. [Google Scholar] [CrossRef]
- Silva, N.; Fuinhas, J.A.; Koengkan, M. Assessing the advancement of new renewable energy sources in Latin American and Caribbean countries. Energy 2021, 237, 121611. [Google Scholar] [CrossRef]
- Mathiesen, B.V.; Lund, H.; Connolly, D.; Wenzel, H.; Ostergaard, P.A.; Möller, B.; Nielsen, S.; Ridjan, I.; Karnøe, P.; Sperling, K.; et al. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl. Energy 2015, 145, 139–154. [Google Scholar] [CrossRef]
- Sahoo, D.; Harichandan, S.; Kar, S.K.; Sreejesh, S. An empirical study on consumer motives and attitude towards adoption of electric vehicles in India: Policy implications for stakeholders. Energy Policy 2022, 165, 112941. [Google Scholar] [CrossRef]
- Jabeen, G.; Ahmad, M.; Zhang, Q. Perceived critical factors affecting consumers’ intention to purchase renewable generation technologies: Rural-urban heterogeneity. Energy 2021, 218, 119494. [Google Scholar] [CrossRef]
- Nematchoua, M.K.; Deuse, C.; Cools, M.; Reiter, S. Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Belgium. Renew. Sustain. Energy Rev. 2020, 119, 109544. [Google Scholar] [CrossRef]
- Sanni, S.O.; Oricha, J.Y.; Oyewole, T.O.; Bawonda, F.I. Analysis of backup power supply for unreliable grid using hybrid solar PV/diesel/biogas system. Energy 2021, 227, 120506. [Google Scholar] [CrossRef]
- Qin, Z.; Ozturk, I. Renewable and non-renewable energy consumption in brics: Assessing the dynamic linkage between foreign capital inflows and energy consumption. Energies 2021, 14, 2974. [Google Scholar] [CrossRef]
- Qian, L.; Yin, J. Linking Chinese cultural values and the adoption of electric vehicles: The mediating role of ethical evaluation. Transp. Res. Part D Transp. Environ. 2017, 56, 175–188. [Google Scholar] [CrossRef]
- Setiawan, A.D.; Zahari, T.N.; Purba, F.J.; Moeis, A.O.; Hidayatno, A. Investigating policies on increasing the adoption of electric vehicles in Indonesia. J. Clean. Prod. 2022, 380, 135097. [Google Scholar] [CrossRef]
- Paradies, G.L.; Usmani, O.A.; Lamboo, S.; van den Brink, R.W. Falling short in 2030: Simulating battery-electric vehicle adoption behaviour in the Netherlands. Energy Res. Soc. Sci. 2023, 97, 102968. [Google Scholar] [CrossRef]
- Wu, J.; Liao, H.; Wang, J.W.; Chen, T. The role of environmental concern in the public acceptance of autonomous electric vehicles: A survey from China. Transp. Res. Part F Traffic Psychol. Behav. 2019, 60, 37–46. [Google Scholar] [CrossRef]
- Jabeen, G.; Yan, Q.; Ahmad, M.; Fatima, N.; Jabeen, M.; Li, H.; Qamar, S. Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan. Renew. Energy 2020, 154, 650–660. [Google Scholar] [CrossRef]
- Pata, U.K. Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: A sustainability perspective. Renew. Energy 2021, 173, 197–208. [Google Scholar] [CrossRef]
- Luthra, S.; Kumar, S.; Garg, D.; Haleem, A. Barriers to renewable/sustainable energy technologies adoption: Indian perspective. Renew. Sustain. Energy Rev. 2015, 41, 762–776. [Google Scholar] [CrossRef]
- Fatima, N.; Li, Y.; Ahmad, M.; Jabeen, G.; Li, X. Factors influencing renewable energy generation development: A way to environmental sustainability. Environ. Sci. Pollut. Res. 2021, 28, 51714–51732. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2021; ISBN 1544396333. [Google Scholar]
- Huit, G.T.M.; Hair, J.F.; Proksch, D.; Sarstedt, M.; Pinkwart, A.; Ringle, C.M. Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. J. Int. Mark. 2018, 26, 1–21. [Google Scholar] [CrossRef]
- Bollen, K.A. A new incremental fit index for general structural equation models. Sociol. Methods Res. 1989, 17, 303–316. [Google Scholar] [CrossRef]
- Jabeen, G.; Yan, Q.; Ahmad, M.; Fatima, N.; Qamar, S. Consumers’ intention-based influence factors of renewable power generation technology utilization: A structural equation modeling approach. J. Clean. Prod. 2019, 237, 117737. [Google Scholar] [CrossRef]
- Qamar, S.; Ahmad, M.; Oryani, B.; Zhang, Q. Solar energy technology adoption and diffusion by micro, small, and medium enterprises: Sustainable energy for climate change mitigation. Environ. Sci. Pollut. Res. 2022, 29, 49385–49403. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Smith, D.; Reams, R.; Hair, J.F. Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. J. Fam. Bus. Strategy 2014, 5, 105–115. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2016; ISBN 9781483377445. [Google Scholar]
- Anderson, J.C.; Gerbing, D.W. Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Diamantopoulos, A.; Sarstedt, M.; Fuchs, C.; Wilczynski, P.; Kaiser, S. Guidelines for choosing between multi-item and single-item scales for construct measurement: A predictive validity perspective. J. Acad. Mark. Sci. 2012, 40, 434–449. [Google Scholar] [CrossRef]
- Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B Methodol. 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Geisser, S. A predictive approach to the random effect model. Biom. Trust 1974, 61, 101–107. [Google Scholar] [CrossRef]
- Ketchen, D.J. A Primer on Partial Least Squares Structural Equation Modeling; Elsevier: London, UK, 2013; Volume 46, ISBN 9781452217444. [Google Scholar]
- Jabeen, G.; Ahmad, M.; Zhang, Q. Factors influencing consumers’ willingness to buy green energy technologies in a green perceived value framework. Energy Sources Part B Econ. Plan. Policy 2021, 16, 669–685. [Google Scholar] [CrossRef]
- Ahmed, N.; Qamar, S.; Jabeen, G.; Yan, Q.; Ahmad, M. Systematic analysis of factors affecting biogas technology acceptance: Insights from the diffusion of innovation. Sustain. Energy Technol. Assess. 2022, 52, 102122. [Google Scholar] [CrossRef]
Data | Factors | BBEN | INKN | ENAW | SAELV | CCELV | EHELV | WAELV |
---|---|---|---|---|---|---|---|---|
Aggregate data | BBEN | [0.89] | ||||||
INKN | 0.276 | [0.84] | ||||||
ENAW | 0.372 | 0.267 | [0.80] | |||||
SAELV | 0.294 | 0.370 | 0.274 | [0.86] | ||||
CCELV | 0.181 | 0.583 | 0.485 | 0.468 | [0.82] | |||
EHELV | 0.174 | 0.482 | −0.101 | 0.489 | 0.391 | [0.81] | ||
WAELV | 0.353 | 0.310 | 0.573 | −0.382 | 0.479 | 0.602 | [0.79] | |
Peri-urban areas | BBEN | [0.88] | ||||||
INKN | 0.482 | [0.83] | ||||||
ENAW | 0.493 | 0.317 | [0.78] | |||||
SAELV | 0.278 | 0.329 | 0.512 | [0.80] | ||||
CCELV | 0.375 | 0.491 | −0.531 | 0.401 | [0.77] | |||
EHELV | 0.593 | 0.504 | 0.452 | 0.478 | 0.427 | [0.84] | ||
WAELV | 0.469 | 0.483 | 0.378 | −0.366 | 0.119 | 0.290 | [0.76] | |
Urban areas | BBEN | [0.76] | ||||||
INKN | 0.510 | [0.80] | ||||||
ENAW | 0.358 | 0.465 | [0.82] | |||||
SAELV | 0.389 | 0.469 | 0.428 | [0.78] | ||||
CCELV | 0.401 | 0.572 | −0.510 | 0.486 | [0.81] | |||
EHELV | 0.448 | 0.317 | 0.148 | 0.583 | 0.289 | [0.80] | ||
WAELV | 0.479 | 0.412 | 0.362 | −0.192 | 0.376 | 0.470 | [0.84] |
Aggregate Data | Peri-Urban Areas | Urban Areas | |||||||
---|---|---|---|---|---|---|---|---|---|
Constructs | Outer Loadings | CRL | AVEX | Outer Loadings | CRL | AVEX | Outer Loadings | CRL | AVEX |
Willingness to accept ELVs (WAELV) | 0.872 | 0.802 | 0.835 | 0.797 | 0.815 | 0.801 | |||
WAELV1 | 0.797 | 0.778 | 0.751 | ||||||
WAELV2 | 0.725 | 0.720 | 0.794 | ||||||
WAELV3 | 0.813 | 0.737 | 0.839 | ||||||
Environmental and health benefits of ELVs (EHELV) | 0.814 | 0.780 | 0.800 | 0.764 | 0.798 | 0.763 | |||
EHELV1 | 0.706 | 0.701 | 0.811 | ||||||
EHELV2 | 0.778 | 0.813 | 0.735 | ||||||
EHELV3 | 0.723 | 0.765 | 0.704 | ||||||
EHELV4 | 0.462 | 0.734 | 0.781 | ||||||
EHELV5 | 0.767 | 0.769 | 0.768 | ||||||
EHELV6 | 0.802 | 0.705 | 0.794 | ||||||
Capital cost of ELVs (CCELV) | 0.796 | 0.765 | 0.791 | 0.782 | 0.769 | 0.751 | |||
CCELV1 | 0.710 | 0.818 | 0.747 | ||||||
CCELV2 | 0.762 | 0.758 | 0.751 | ||||||
CCELV3 | 0.801 | 0.831 | 0.812 | ||||||
CCELV4 | 0.755 | 0.772 | 0.790 | ||||||
Societal aspect of ELVs (SAELV) | 0.798 | 0.772 | 0.795 | 0.776 | 0.789 | 0.757 | |||
SAELV1 | 0.799 | 0.628 | 0.764 | ||||||
SAELV2 | 0.792 | 0.694 | 0.759 | ||||||
SAELV3 | 0.689 | 0.752 | 0.833 | ||||||
SAELV4 | 0.761 | 0.791 | 0.817 | ||||||
Environmental awareness aspect (ENAW) | 0.845 | 0.810 | 0.732 | 0.714 | 0.806 | 0.788 | |||
ENAWA1 | 0.697 | 0.739 | 0.801 | ||||||
ENWA2 | 0.753 | 0.687 | 0.710 | ||||||
ENAW3 | 0.784 | 0.715 | 0.756 | ||||||
ENAW4 | 0.803 | 0.776 | 0.835 | ||||||
Knowledge about innovation (INKN) | 0.861 | 0.815 | 0.840 | 0.817 | 0.748 | 0.724 | |||
INKN1 | 0.749 | 0.725 | 0.758 | ||||||
INKN2 | 0.712 | 0.802 | 0.792 | ||||||
INKN3 | 0.721 | 0.830 | 0.703 | ||||||
Benefits for the built environment (BBEN) | 0.792 | 0.754 | 0.765 | 0.731 | 0.775 | 0.742 | |||
BBEN1 | 0.783 | 0.713 | 0.735 | ||||||
BBEN2 | 0.815 | 0.774 | 0.796 | ||||||
BBEN3 | 0.764 | 0.716 | 0.824 | ||||||
BBEN4 | 0.832 | 0.757 | 0.808 |
Data | Hypotheses | Paths | PHIFs | Decision | VIFS | f2 | R2 | Q2 |
---|---|---|---|---|---|---|---|---|
Aggregate data | H1 | BBEN → WAELV | 0.361 *** | Acceptance | 2.485 | 0.091 | 0.801 | 0.358 |
H2 | INKN → WAELV | 0.518 *** | Acceptance | 3.201 | 0.131 | |||
H3 | ENAW → WAELV | 0.376 *** | Acceptance | 2.673 | 0.095 | |||
H4 | SAELV→ WAELV | 0.598 *** | Acceptance | 1.062 | 0.151 | |||
H5 | CCELV → WAELV | −0.701 *** | Acceptance | 2.670 | 0.177 | |||
H6 | EHELV → WAELV | 0.465 *** | Acceptance | 1.982 | 0.118 | |||
Peri-urban data | H1 | BBEN → WAELV | 0.135 | Rejection | 3.678 | 0.034 | 0.739 | 0.360 |
H2 | INKN → WAELV | 0.118 | Rejection | 3.002 | 0.030 | |||
H3 | ENAW → WAELV | 0.299 *** | Acceptance | 1.364 | 0.076 | |||
H4 | SAELV→ WAELV | 0.529 *** | Acceptance | 1.584 | 0.134 | |||
H5 | CCELV → WAELV | −0.631 *** | Acceptance | 2.580 | 0.160 | |||
H6 | EHELV → WAELV | 0.194 | Rejection | 1.256 | 0.049 | |||
Urban data | H1 | BBEN → WAELV | 0.379 *** | Acceptance | 2.574 | 0.096 | 0.762 | 0.351 |
H2 | INKN → WAELV | 0.537 *** | Acceptance | 2.983 | 0.136 | |||
H3 | ENAW → WAELV | 0.402 *** | Acceptance | 1.562 | 0.102 | |||
H4 | SAELV→ WAELV | 0.623 *** | Acceptance | 6.485 | 0.158 | |||
H5 | CCELV → WAELV | −0.721 *** | Acceptance | 4.274 | 0.183 | |||
H6 | EHELV → WAELV | 0.486 *** | Acceptance | 2.492 | 0.123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Huang, J.; Chen, W.; Mao, Y.; Atchike, D.W.; Ahmad, M. Heterogeneous Factors Influencing Electric Vehicle Acceptance: Application of Structural Equation Modeling. World Electr. Veh. J. 2023, 14, 125. https://doi.org/10.3390/wevj14050125
Guo W, Huang J, Chen W, Mao Y, Atchike DW, Ahmad M. Heterogeneous Factors Influencing Electric Vehicle Acceptance: Application of Structural Equation Modeling. World Electric Vehicle Journal. 2023; 14(5):125. https://doi.org/10.3390/wevj14050125
Chicago/Turabian StyleGuo, Weishang, Jian Huang, Wei Chen, Yihua Mao, Desire Wade Atchike, and Munir Ahmad. 2023. "Heterogeneous Factors Influencing Electric Vehicle Acceptance: Application of Structural Equation Modeling" World Electric Vehicle Journal 14, no. 5: 125. https://doi.org/10.3390/wevj14050125
APA StyleGuo, W., Huang, J., Chen, W., Mao, Y., Atchike, D. W., & Ahmad, M. (2023). Heterogeneous Factors Influencing Electric Vehicle Acceptance: Application of Structural Equation Modeling. World Electric Vehicle Journal, 14(5), 125. https://doi.org/10.3390/wevj14050125