Abstract
This paper presents a new optimization method to design a rotor structure for a permanent magnet motor that can reduce vibration. The optimization problem is formulated with a multi-objective function to minimize the fluctuation of the radial magnetic force and the torque ripple. To obtain the optimal rotor shape consisting of a permanent magnet and ferromagnetic material, a multiple level set model is employed to express the structural boundaries and magnetic properties of each material. The updating process of the level set function based on the adjoint sensitivity and the time evolutional equation makes it possible to obtain a novel rotor configuration of the motor. To verify the usefulness of the proposed method, a rotor design example of the surface-mounted permanent magnet motor for electric power steering system is performed.