Combined Transcranial Direct Current Stimulation and Functional Electrical Stimulation for Upper Limbs in Individuals with Stroke: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Population
2.3. Intervention and Comparison
2.4. Outcome Measurements
2.5. Study Type
2.6. Search Strategy
2.7. Selection Criteria and Data Extraction
2.8. Risk of Bias Assessment
2.9. Methodological Quality Assessment
2.10. Qualitative Analysis
- Strong evidence: Provided by statistically significant findings of outcome measures in at least 2 high-quality RCTs.
- Moderate evidence: Provided by statistically significant findings of outcome measures in at least 1 high-quality RCT and at least 1 low-quality RCT and/or 1 high-quality CCT.
- Limited evidence: Provided by statistically significant findings of outcome measures in at least 1 high-quality RCT and/or at least 2 high-quality CCTs (in the absence of a high-quality RCT).
- Indicative findings: Provided by statistically significant findings of outcome measures in at least 1 high-quality CCT and/or low-quality RCT (in the absence of high-quality RCTs) and/or 2 studies of a nonexperimental nature of sufficient quality (in the absence of RCTs and CCTs).
- No or insufficient evidence: Cases in which the results of eligible studies did not meet the criteria for one of the levels of evidence indicated above and/or in the case of conflicting results (statistically significant positive and statistically significant negative) between RCTs and CCTs or in the case of a lack of eligible studies.
3. Results
3.1. Characteristics of the Study Population and Study Design
3.2. Characteristics of the Interventions and Comparators
3.3. Outcomes Measured
3.4. Methodological Quality and Risk of Bias Results
3.5. Observed Effects
Upper-Limb Motor-Function-Related Outcomes
3.6. Activity and Participation-Related Outcomes
3.7. Qualitative Synthesis
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARAT | Action Research Arm Test |
BTA | Botulinum Toxin A |
CAHAI | Chedoke Arm and Hand Activity Inventory |
CCT | Controlled Clinical Trial |
CENTRAL | Cochrane Central Register of Controlled Trials |
CINAHL | Cumulative Index to Nursing and Allied Health Literature |
FES | Functional Electrical Stimulation |
FMA-UE | Fugl-Meyer Assessment of the Upper Extremity |
ICF | International Classification of Functioning, Disability and Health |
M1 | Primary Motor Cortex |
MAL | Motor Activity Log |
NHPT | Nine-Hole Peg Test |
OT | Occupational Therapy |
PEDro | Physiotherapy Evidence Database (escala de calidad metodológica) |
PICOS | Population, Intervention, Comparison, Outcomes, Study type |
PwS | People with Stroke |
RCT | Randomized Controlled Trial |
ROB2 | Revised Cochrane Risk of Bias Tool for Randomized Trials |
rPMS | Repetitive Peripheral Magnetic Stimulation |
rTMS | Repetitive Transcranial Magnetic Stimulation |
SCOPUS | (Base de datos bibliográfica) |
sEMG | Surface Electromyography |
tDCS | Transcranial Direct Current Stimulation |
UL | Upper Limb |
ULMF | Upper Limb Motor Function |
WMFT | Wolf Motor Function Test |
References
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int. J. Stroke 2022, 17, 18–29. [Google Scholar] [CrossRef]
- Saini, V.; Guada, L.; Yavagal, D.R. Global Epidemiology of Stroke and Access to Acute Ischemic Stroke Interventions. Neurology 2021, 97, S6–S16. [Google Scholar] [CrossRef] [PubMed]
- Jameson, J.L.; Fauci, A.S.; Kasper, D.L.; Hauser, A.L.; Longo, D.L.; Loscalzo, J. Harrison’s Principles of Internal Medicine, 20th ed.; McGraw-Hill Education: New York, NY, USA, 2018; Volume 2, ISBN 978-1-259-64401-6. [Google Scholar]
- Simpson, L.A.; Hayward, K.S.; McPeake, M.; Field, T.S.; Eng, J.J. Challenges of Estimating Accurate Prevalence of Arm Weakness Early After Stroke. Neurorehabil. Neural Repair. 2021, 35, 871–879. [Google Scholar] [CrossRef]
- Houwink, A.; Nijland, R.H.; Geurts, A.C.; Kwakkel, G. Functional Recovery of the Paretic Upper Limb after Stroke: Who Regains Hand Capacity? Arch. Phys. Med. Rehabil. 2013, 94, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Veerbeek, J.M.; Van Wegen, E.; Van Peppen, R.; Van Der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What Is the Evidence for Physical Therapy Poststroke? A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e87987. [Google Scholar] [CrossRef]
- Dobkin, B.H. Strategies for Stroke Rehabilitation. Lancet Neurol. 2004, 3, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Dimyan, M.A.; Cohen, L.G. Neuroplasticity in the Context of Motor Rehabilitation after Stroke. Nat. Rev. Neurol. 2011, 7, 76–85. [Google Scholar] [CrossRef]
- Lo, K.; Stephenson, M.; Lockwood, C. The Economic Cost of Robotic Rehabilitation for Adult Stroke Patients: A Systematic Review Protocol. JBI Database Syst. Rev. Implement. Rep. 2018, 16, 1593–1598. [Google Scholar] [CrossRef]
- Zotey, V.; Andhale, A.; Shegekar, T.; Juganavar, A. Adaptive Neuroplasticity in Brain Injury Recovery: Strategies and Insights. Cureus 2023, 15, e45873. [Google Scholar] [CrossRef]
- Hayward, K.S.; Kramer, S.F.; Dalton, E.J.; Hughes, G.R.; Brodtmann, A.; Churilov, L.; Cloud, G.; Corbett, D.; Jolliffe, L.; Kaffenberger, T.; et al. Timing and Dose of Upper Limb Motor Intervention After Stroke: A Systematic Review. Stroke 2021, 52, 3706–3717. [Google Scholar] [CrossRef]
- Thair, H.; Holloway, A.L.; Newport, R.; Smith, A.D. Transcranial Direct Current Stimulation (tDCS): A Beginner’s Guide for Design and Implementation. Front. Neurosci. 2017, 11, 641. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-Based Guidelines on the Therapeutic Use of Transcranial Direct Current Stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Ryu, B.; Oh, B.-M.; Kim, D.Y.; Kim, D.-S.; Kim, D.Y.; Kim, D.-K.; Kim, E.J.; Lee, H.Y.; Choi, H.; et al. Clinical Practice Guideline for Stroke Rehabilitation in Korea—Part 1: Rehabilitation for Motor Function (2022). Brain Neurorehabil. 2023, 16, e18. [Google Scholar] [CrossRef]
- Navarro-López, V.; del-Valle-Gratacós, M.; Carratalá-Tejada, M.; Cuesta-Gómez, A.; Fernández-Vázquez, D.; Molina-Rueda, F. The Efficacy of Transcranial Direct Current Stimulation on Upper Extremity Motor Function after Stroke: A Systematic Review and Comparative Meta-analysis of Different Stimulation Polarities. PMR 2024, 16, 496–510. [Google Scholar] [CrossRef] [PubMed]
- Eraifej, J.; Clark, W.; France, B.; Desando, S.; Moore, D. Effectiveness of Upper Limb Functional Electrical Stimulation after Stroke for the Improvement of Activities of Daily Living and Motor Function: A Systematic Review and Meta-Analysis. Syst. Rev. 2017, 6, 40. [Google Scholar] [CrossRef]
- Wolf, D.N.; Schearer, E.M. Evaluating an Open-Loop Functional Electrical Stimulation Controller for Holding the Shoulder and Elbow Configuration of a Paralyzed Arm. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 789–794. [Google Scholar]
- Xie, Y.; Yang, Y.; Jiang, H.; Duan, X.-Y.; Gu, L.; Qing, W.; Zhang, B.; Wang, Y. Brain-Machine Interface-Based Training for Improving Upper Extremity Function after Stroke: A Meta-Analysis of Randomized Controlled Trials. Front. Neurosci. 2022, 16, 949575. [Google Scholar] [CrossRef]
- Khan, M.A.; Fares, H.; Ghayvat, H.; Brunner, I.C.; Puthusserypady, S.; Razavi, B.; Lansberg, M.; Poon, A.; Meador, K.J. A Systematic Review on Functional Electrical Stimulation Based Rehabilitation Systems for Upper Limb Post-Stroke Recovery. Front. Neurol. 2023, 14, 1272992. [Google Scholar] [CrossRef]
- Brunner, I.; Lundquist, C.B.; Pedersen, A.R.; Spaich, E.G.; Dosen, S.; Savic, A. Brain Computer Interface Training with Motor Imagery and Functional Electrical Stimulation for Patients with Severe Upper Limb Paresis after Stroke: A Randomized Controlled Pilot Trial. J. Neuroeng. Rehabil. 2024, 21, 10. [Google Scholar] [CrossRef]
- Laursen, C.B.; Nielsen, J.F.; Andersen, O.K.; Spaich, E.G. Feasibility of Using Lokomat Combined with Functional Electrical Stimulation for the Rehabilitation of Foot Drop. Eur. J. Transl. Myol. 2016, 26, 6221. [Google Scholar] [CrossRef]
- Carson, R.G.; Buick, A.R. Neuromuscular Electrical Stimulation-promoted Plasticity of the Human Brain. J. Physiol. 2021, 599, 2375–2399. [Google Scholar] [CrossRef]
- Chen, B.; Gaikwad, S.; Powell, R.H.; Jo, H.J.; Kessler, A.B.; Chen, D.; Heckman, C.J.; Jones, L.; Guest, J.D.; Wolpaw, J.R.; et al. Combinatorial Approaches Increasing Neuronal Activity Accelerate Recovery after Spinal Cord Injury. Brain 2025, 6, 1911–1923. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Stone, P.W. Popping the (PICO) Question in Research and Evidence-Based Practice. Appl. Nurs. Res. 2002, 15, 197–198. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. An Application of Hierarchical Kappa-Type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics 1977, 33, 363–374. [Google Scholar] [CrossRef]
- Barton, C.J.; Webster, K.E.; Menz, H.B. Evaluation of the Scope and Quality of Systematic Reviews on Nonpharmacological Conservative Treatment for Patellofemoral Pain Syndrome. J. Orthop. Sports Phys. Ther. 2008, 38, 529–541. [Google Scholar] [CrossRef]
- Van Tulder, M.; Furlan, A.; Bombardier, C.; Bouter, L. Updated Method Guidelines for Systematic Reviews in the Cochrane Collaboration Back Review Group. Spine 2003, 28, 1290–1299. [Google Scholar] [CrossRef]
- Spooren, A.I.; Timmermans, A.A.; Seelen, H.A. Motor Training Programs of Arm and Hand in Patients with MS According to Different Levels of the ICF: A Systematic Review. BMC Neurol. 2012, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Anttila, H.; Autti-Rämö, I.; Suoranta, J.; Mäkelä, M.; Malmivaara, A. Effectiveness of Physical Therapy Interventions for Children with Cerebral Palsy: A Systematic Review. BMC Pediatr. 2008, 8, 14. [Google Scholar] [CrossRef]
- Knippenberg, E.; Verbrugghe, J.; Lamers, I.; Palmaers, S.; Timmermans, A.; Spooren, A. Markerless Motion Capture Systems as Training Device in Neurological Rehabilitation: A Systematic Review of Their Use, Application, Target Population and Efficacy. J. Neuroeng. Rehabil. 2017, 14, 61. [Google Scholar] [CrossRef]
- Etoh, S.; Kawamura, K.; Tomonaga, K.; Miura, S.; Harada, S.; Noma, T.; Kikuno, S.; Ueno, M.; Miyata, R.; Shimodozono, M. Effects of Concomitant Neuromuscular Electrical Stimulation during Repetitive Transcranial Magnetic Stimulation before Repetitive Facilitation Exercise on the Hemiparetic Hand. NeuroRehabilitation 2019, 45, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Bengisu, S.; Demir, N.; Krespi, Y. Effectiveness of Conventional Dysphagia Therapy (CDT), Neuromuscular Electrical Stimulation (NMES), and Transcranial Direct Current Stimulation (tDCS) in Acute Post-Stroke Dysphagia: A Comparative Evaluation. Dysphagia 2024, 39, 77–91. [Google Scholar] [CrossRef]
- Umeji, A.; Amano, S.; Hashimoto, Y.; Uchiyama, Y.; Domen, K. Constraint-Induced Movement Therapy Combined With Anodal Transcranial Direct Current Stimulation and Peripheral Neuromuscular Electrical Stimulation in Poststroke Patients: A Retrospective Study. Cureus 2025, 17, e79112. [Google Scholar] [CrossRef] [PubMed]
- Satow, T.; Kawase, T.; Kitamura, A.; Kajitani, Y.; Yamaguchi, T.; Tanabe, N.; Otoi, R.; Komuro, T.; Kobayashi, A.; Nagata, H.; et al. Combination of Transcranial Direct Current Stimulation and Neuromuscular Electrical Stimulation Improves Gait Ability in a Patient in Chronic Stage of Stroke. Case Rep. Neurol. 2016, 8, 39–46. [Google Scholar] [CrossRef]
- Takebayashi, T.; Takahashi, K.; Moriwaki, M.; Sakamoto, T.; Domen, K. Improvement of Upper Extremity Deficit after Constraint-Induced Movement Therapy Combined with and without Preconditioning Stimulation Using Dual-Hemisphere Transcranial Direct Current Stimulation and Peripheral Neuromuscular Stimulation in Chronic Stroke Patients: A Pilot Randomized Controlled Trial. Front. Neurol. 2017, 8, 568. [Google Scholar] [CrossRef]
- Shaheiwola, N.; Zhang, B.; Jia, J.; Zhang, D. Using tDCS as an Add-On Treatment Prior to FES Therapy in Improving Upper Limb Function in Severe Chronic Stroke Patients: A Randomized Controlled Study. Front. Hum. Neurosci. 2018, 12, 233. [Google Scholar] [CrossRef]
- Devi, M.; Arumugum, N.; Midha, D. Combined Effect of Transcranial Direct Current Stimulation (tDCS) and Functional Electrical Stimulation (FES) on Upper Limb Recovery in Patients with Subacute Stroke. J. Neurol. Stroke 2019, 9, 685931. [Google Scholar] [CrossRef]
- Hyakutake, K.; Morishita, T.; Saita, K.; Ogata, T.; Uehara, Y.; Shiota, E.; Inoue, T. Feasibility of Single and Combined with Other Treatments Using Transcranial Direct Current Stimulation for Chronic Stroke: A Pilot Study. SAGE Open Med. 2020, 8, 205031212094054. [Google Scholar] [CrossRef]
- Salazar, A.P.; Cimolin, V.; Schifino, G.P.; Rech, K.D.; Marchese, R.R.; Pagnussat, A.S. Bi-Cephalic Transcranial Direct Current Stimulation Combined with Functional Electrical Stimulation for Upper-Limb Stroke Rehabilitation: A Double-Blind Randomized Controlled Trial. Ann. Phys. Rehabil. Med. 2020, 63, 4–11. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Z.; Sun, Q.; Li, H. Effect of Transcranial Direct Current Stimulation Combined with a Smart Hand Joint Training Device on Hand Dysfunction in Patients with Early Stroke. Randomized Control. Trial 2022, 60, 177–184. [Google Scholar] [CrossRef]
- Leonardi, M.; Lee, H.; Kostanjsek, N.; Fornari, A.; Raggi, A.; Martinuzzi, A.; Yáñez, M.; Almborg, A.-H.; Fresk, M.; Besstrashnova, Y.; et al. 20 Years of ICF—International Classification of Functioning, Disability and Health: Uses and Applications around the World. Int. J. Environ. Res. Public Health 2022, 19, 11321. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Jiang, C.; Zhang, J.; Cheng, K.; Zheng, W.; Zhang, X.; Wu, X.; Chen, Z.; Luo, G.; Zhao, G. Meta-Analysis of Functional Electrical Stimulation Combined with Occupational Therapy on Post-Stroke Limb Functional Recovery and Quality of Life. Cerebrovasc. Dis. 2023, 53, 743–752. [Google Scholar] [CrossRef]
- Teasell, R.; Salbach, N.M.; Foley, N.; Mountain, A.; Cameron, J.I.; de Jong, A.; Acerra, N.E.; Bastasi, D.; Carter, S.L.; Fung, J.; et al. Canadian Stroke Best Practice Recommendations: Rehabilitation, Recovery, and Community Participation Following Stroke. Part One: Rehabilitation and Recovery Following Stroke; 6th Edition Update 2019. Int. J. Stroke 2020, 15, 763–788. [Google Scholar] [CrossRef] [PubMed]
- Tedla, J.S.; Sangadala, D.R.; Reddy, R.S.; Gular, K.; Kakaraparthi, V.N.; Asiri, F. Transcranial Direct Current Stimulation (tDCS) Effects on Upper Limb Motor Function in Stroke: An Overview Review of the Systematic Reviews. Brain Inj. 2023, 37, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Qiao, L.; He, J.; Zhao, X.; Zhang, M. Effects of Repetitive Transcranial Magnetic Stimulation Combined with Functional Electrical Stimulation on Hand Function of Stroke: A Randomized Controlled Trial. NeuroRehabilitation 2022, 51, 283–289. [Google Scholar] [CrossRef]
- Wang, Y.; Fong, K.N.K.; Sui, Y.; Bai, Z.; Zhang, J.J. Repetitive Peripheral Magnetic Stimulation Alone or in Combination with Repetitive Transcranial Magnetic Stimulation in Poststroke Rehabilitation: A Systematic Review and Meta-Analysis. J. Neuroeng. Rehabil. 2024, 21, 181. [Google Scholar] [CrossRef]
- Chang, C.-S.; Chen, C.-L.; Chen, R.-S.; Chen, H.-C.; Chen, C.-Y.; Chung, C.-Y.; Wu, K.P.-H.; Wu, C.-Y.; Lin, K. Synergistic Efficacy of Repetitive Peripheral Magnetic Stimulation on Central Intermittent Theta Burst Stimulation for Upper Limb Function in Patients with Stroke: A Double-Blinded, Randomized Controlled Trial. J. Neuroeng. Rehabil. 2024, 21, 49. [Google Scholar] [CrossRef]
- Everaert, D.G.; Thompson, A.K.; Chong, S.L.; Stein, R.B. Does Functional Electrical Stimulation for Foot Drop Strengthen Corticospinal Connections? Neurorehabil Neural Repair. 2010, 24, 168–177. [Google Scholar] [CrossRef]
- Angius, L.; Mauger, A.R.; Hopker, J.; Pascual-Leone, A.; Santarnecchi, E.; Marcora, S.M. Bilateral Extracephalic Transcranial Direct Current Stimulation Improves Endurance Performance in Healthy Individuals. Brain Stimul. 2018, 11, 108–117. [Google Scholar] [CrossRef]
- Kristiansen, M.; Thomsen, M.J.; Nørgaard, J.; Aaes, J.; Knudsen, D.; Voigt, M. Anodal Transcranial Direct Current Stimulation Increases Corticospinal Excitability, While Performance Is Unchanged. PLoS ONE 2021, 16, e0254888. [Google Scholar] [CrossRef]
- Murase, N.; Duque, J.; Mazzocchio, R.; Cohen, L.G. Influence of Interhemispheric Interactions on Motor Function in Chronic Stroke. Ann. Neurol. 2004, 55, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Di Pino, G.; Pellegrino, G.; Assenza, G.; Capone, F.; Ferreri, F.; Formica, D.; Ranieri, F.; Tombini, M.; Ziemann, U.; Rothwell, J.C.; et al. Modulation of Brain Plasticity in Stroke: A Novel Model for Neurorehabilitation. Nat. Rev. Neurol. 2014, 10, 597–608. [Google Scholar] [CrossRef]
- Shin, H.K.; Cho, S.H.; Jeon, H.; Lee, Y.-H.; Song, J.C.; Jang, S.H.; Lee, C.-H.; Kwon, Y.H. Cortical Effect and Functional Recovery by the Electromyography-Triggered Neuromuscular Stimulation in Chronic Stroke Patients. Neurosci. Lett. 2008, 442, 174–179. [Google Scholar] [CrossRef]
- Sasaki, K.; Matsunaga, T.; Tomite, T.; Yoshikawa, T.; Shimada, Y. Effect of Electrical Stimulation Therapy on Upper Extremity Functional Recovery and Cerebral Cortical Changes in Patients with Chronic Hemiplegia. Biomed. Res. 2012, 33, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Hui-Chan, C.W.Y.; Li, L.S.W. Functional Electrical Stimulation Improves Motor Recovery of the Lower Extremity and Walking Ability of Subjects With First Acute Stroke: A Randomized Placebo-Controlled Trial. Stroke 2005, 36, 80–85. [Google Scholar] [CrossRef]
- Abdullahi, A.; Wong, T.W.L.; Ng, S.S.M. Effects of Home-Based Neurostimulation on Outcomes after Stroke: A Systematic Review and Meta-Analysis. Neurol. Sci. 2024, 45, 5157–5179. [Google Scholar] [CrossRef]
- Debeuf, R.; De Vlieger, D.; Defour, A.; Feyen, K.; Guida, S.; Cuypers, L.; Firouzi, M.; Tassenoy, A.; Swinnen, E.; Beckwée, D.; et al. Electrotherapy in Stroke Rehabilitation Can Improve Lower Limb Muscle Characteristics: A Systematic Review and Meta-Analysis. Disabil. Rehabil. 2024, 47, 16–32. [Google Scholar] [CrossRef]
- Sui, Y.-F.; Tong, L.-Q.; Zhang, X.-Y.; Song, Z.-H.; Guo, T.-C. Effects of Paired Associated Stimulation with Different Stimulation Position on Motor Cortex Excitability and Upper Limb Motor Function in Patients with Cerebral Infarction. J. Clin. Neurosci. 2021, 90, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Pavon, J.C.; San Agustín, A.; Wang, M.C.; Veniero, D.; Pons, J.L. Can We Manipulate Brain Connectivity? A Systematic Review of Cortico-Cortical Paired Associative Stimulation Effects. Clin. Neurophysiol. 2023, 154, 169–193. [Google Scholar] [CrossRef]
- Fok, K.L.; Kaneko, N.; Tajali, S.; Masani, K. Paired Associative Stimulation on the Soleus H-Reflex Using Motor Point and Peripheral Nerve Stimulation. Neurosci. Lett. 2023, 797, 137070. [Google Scholar] [CrossRef]
Authors, Year | Group, Intervention, Sample (Randomized) [Analyzed] | Sample Size (M/F) | Age (Mean ± SD) | Months/Weeks/Days Since Stroke Onset (Mean ± SD) | Type of Stroke (I/H) | Affected Hemisphere (L/R) | Outcome Measures and Follow-Up | Significant Differences Within and Between Groups |
---|---|---|---|---|---|---|---|---|
Shaheiwola et al., 2018 [38] | G1: tDCS + FES [15] G2: Sham tDCS + FES [15] | 30 (27/3) | 50.6 ± 10.14 | 17 ± 10.26 months | NR | 16/14 | FMA-UE; WMFT (function and task time); sEMG; amplitude and latency of motor evoked potential. Post. | G1: ↑ FMA-UE, WMFT function, sEMG (anterior deltoid, extensor carpis radialis, and flexor digitorum superficialis). ↓ WFMT task time. G2: ↑ FMA-UE. G1 vs. G2: ↑ FMA-UE, WMFT (function), and general sEMG were favorable to G1. |
Devi M, Arumugum N, & Midha D., 2019 [39] | G1: tDCS + FES + Physical therapy [10] G2: tDCS + Physical therapy [10] | 20 (NR) | NR | NR | NR | NR | CAHAI, NHPT; FMA-UE; and maximal isometric grip and pinch strength. Post. | G1 and G2: ↑ FMA-UE; CAHAI; hand grip strength; lateral, chuck, and pulp pinch strength. ↓ NHPT. G1 vs. G2: ↑ FMA-UE; CAHAI; Hand grip strength; lateral and chuck pinch; and ↓ NHPT were favorable to G1 |
Hyakutake et al., 2020 [40] | G1: tDCS + FES + Occupational therapy + BTA [2] G2: tDCS + OT [6] | 8 (3/5) | 59.5 ± 9.4 | 54.9 ± 23.2 days | 2/6 | 5/3 | FMA-UE; ARAT; MAL. Post-4 months. | G2: ↑ FMA-UE at post, and ↑ MAL (amount of use and quality) at post and 4 months. |
Salazar et al., 2020 [41] | G1: tDCS + FES [15] G2: Sham tDCS + FES [15] | 30 (20/10) | 58 ± 13.43 | 27.5 ± 12.80 months | 25/5 | 16/14 | FMA-UE; Handgrip strength; kinematic analysis of a reaching movement. Post. | G1: ↑ Mean returning and reaching velocity, hand grip strength, FMA-UE. ↓ Movement time, smoothness, trunk forward inclination. G2: ↑ Mean returning velocity, FMA-UE. ↓ Smoothness, trunk forward inclination. G1 vs. G2: ↑ Mean reaching velocity, grip strength, and ↓ movement time were favorable to G1. |
Zhao et al., 2022 [42] | G1: tDCS + FES [30] G2: FES [30] | 60 (39/21) | 61.22 ± 9.44 | 7.62 ± 2.65 days | NR | 26/34 | Brunnstrom motor function staging; hemiplegic hand and finger function; and FMA-UE. Post. | G1 and G2: ↑ FMA-UE, functional classification of hemiplegic hand and finger function. ↓ Brunnstrom (hand). G1 vs. G2: ↑ FMA-UE; functional classification of hemiplegic hand and finger function; and ↓ Brunnstrom (hand) were favorable to G1. |
Study | Location of Stimulation | Electrode Size (cm2) | Intensity (mA) | Current Density (mA/cm2) | Duration of Session (min) |
---|---|---|---|---|---|
Shaheiwola et al., 2018 [38] | A-ipsilesional M1 C-contralesional M1 | 25 | 2 | 0.08 | 20 |
Devi M, Arumugum N, & Midha D., 2019 [39] | NR | NR | 1.2 | NR | 20 |
Hyakutake et al., 2020 [40] | A-ipsilesional M1 C-contralesional M1 | 35 | 2.5 | 0.071 | 25 |
Salazar et al., 2020 [41] | A-ipsilesional M1 C-contralesional M1 | 25 | 2 | 0.08 | 30 |
Zhao et al., 2022 [42] | A-ipsilesional M1 C-contralesional M1 | NR | 2 | NR | 20 |
Study | Frequency | Pulse width | Intensity | Muscles Stimulated | Training with FES |
---|---|---|---|---|---|
Shaheiwola et al., 2018 [38] | 40 Hz | 250 µs | The amplitude was selected based on the patient’s needs and was adjusted weekly. | - Anterior deltoid; - Biceps; - Posterior deltoid; - Triceps; - Infraspinatus; - Teres minor; - Teres major; - Extensor carpi radialis longus; - Extensor carpi radialis brevis/ulnaris; - Supinator; - Pronator teres; - Pronator quadratus; - Extensor digitorum; - Abductor pollicis brevis; - Abductor pollicis longus; - Flexor digitorum superficialis; - Flexor digitoris profundus; - Flexor pollicis brevis; - Flexor pollicis longus; - Opponens pollicis. | Moving and placing objects of varying thickness from a jug to the mouth and returning them to their original position. Grasping and inserting small objects using a pincer grip (the last one placed). Performing various movements that combine shoulder rotations, reaching, supination–pronation, and finger extension. |
Devi M, Arumugum N, & Midha D., 2019 [39] | 20–40 Hz | 30–500 μs | Below 100 mA. | Wrist extensors. | Stimulation for 10 min during task-oriented training. |
Hyakutake et al., 2020 [40] | 35 Hz | 50 µs | Contractions without discomfort. | - Wrist extensors; - Finger extensors; - Shoulder flexors. | Activities that include gripping or picking up blocks or pegs, varying in size, using a keyboard, and playing cards. |
Salazar et al., 2020 [41] | 40 Hz | 300 µs | Maximum tolerated. | - Anterior deltoid; - Serratus anterior; - Triceps brachii; - Wrist extensors. | Reaching objects; grasping and releasing. |
Zhao et al., 2022 [42] | NR | NR | NR. | Wrist flexors. | Stimulation for 20 min, once per day, 6 days per week, for 2 weeks. |
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total Score | Quality |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Devi M, Arumugum N, & Midha D., 2019 [38] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 5 | Fair |
Hyakutake et al., 2020 [39] | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 3 | Poor |
Salazar et al., 2020 [40] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 9 | Excellent |
Shaheiwola et al., 2018 [41] | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 6 | Good |
Zhao et al., 2022 [42] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lerín-Calvo, A.; Fernández-Pérez, J.J.; Ferrer-Peña, R.; Martín-Odriozola, A. Combined Transcranial Direct Current Stimulation and Functional Electrical Stimulation for Upper Limbs in Individuals with Stroke: A Systematic Review. Neurol. Int. 2025, 17, 89. https://doi.org/10.3390/neurolint17060089
Lerín-Calvo A, Fernández-Pérez JJ, Ferrer-Peña R, Martín-Odriozola A. Combined Transcranial Direct Current Stimulation and Functional Electrical Stimulation for Upper Limbs in Individuals with Stroke: A Systematic Review. Neurology International. 2025; 17(6):89. https://doi.org/10.3390/neurolint17060089
Chicago/Turabian StyleLerín-Calvo, Alfredo, Juan José Fernández-Pérez, Raúl Ferrer-Peña, and Aitor Martín-Odriozola. 2025. "Combined Transcranial Direct Current Stimulation and Functional Electrical Stimulation for Upper Limbs in Individuals with Stroke: A Systematic Review" Neurology International 17, no. 6: 89. https://doi.org/10.3390/neurolint17060089
APA StyleLerín-Calvo, A., Fernández-Pérez, J. J., Ferrer-Peña, R., & Martín-Odriozola, A. (2025). Combined Transcranial Direct Current Stimulation and Functional Electrical Stimulation for Upper Limbs in Individuals with Stroke: A Systematic Review. Neurology International, 17(6), 89. https://doi.org/10.3390/neurolint17060089