Microbial Diversity and Nitrogen Cycling in Peat and Marine Soils: A Review
Abstract
:1. Introduction
Data Analysis
2. Microbial Processes in the Nitrogen Cycle of Peat Soils and the Marine Ecosystem
2.1. Nitrification
2.1.1. Factors Influencing the Niche Differentiation of Nitrifiers in Peat Soils and the Marine Ecosystem
2.1.2. Distribution of Nitrifiers in Peat and Marine Soils
2.2. Anammox
Factors Influencing Niche Differentiation of Anammox-Based Microbial Populations and Their Distribution in Peat Soils and Marine Environments
2.3. Denitrification
Factors Affecting Denitrification-Related Microbial Populations and Their Distribution in Peat Soils and Marine Environments
3. Effects of Human-Induced Activities and Climate Change on Microbial Nitrogen-Cycling Processes in Peat Soils and the Marine Ecosystem
4. Remediation of Degraded Peat Soils
5. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Voss, M.; Bange, H.W.; Dippner, J.W.; Middelburg, J.J.; Montoya, J.P.; Ward, B. The marine nitrogen cycle: Recent discoveries, uncertainties and the potential relevance of climate change. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130121. [Google Scholar] [CrossRef] [PubMed]
- Thamdrup, B. New pathways and processes in the global nitrogen cycle. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 407–428. [Google Scholar] [CrossRef]
- Zehr, J.P.; Jenkins, B.D.; Short, S.M.; Steward, G.F. Nitrogenase gene diversity and microbial community structure: A cross-system comparison. Environ. Microbiol. 2003, 5, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Konneke, M.; Bernhard, A.E.; José, R.; Walker, C.B.; Waterbury, J.B.; Stahl, D.A. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 2005, 437, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Shoun, H.; Fushinobu, S.; Jiang, L.; Kim, S.W.; Wakagi, T. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1186–1194. [Google Scholar] [CrossRef]
- Tiedje, J.M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biol. Anaerob. Microorg. 1988, 717, 179–244. [Google Scholar]
- Mulder, A.; Van de Graaf, A.A.; Robertson, L.A.; Kuenen, J.G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 1995, 16, 177–183. [Google Scholar] [CrossRef]
- Daims, H.; Lebedeva, E.V.; Pjevac, P.; Han, P.; Herbold, C.; Albertsen, M.; Jehmlich, N.; Palatinszky, M.; Vierheilig, J.; Bulaev, A.; et al. Complete nitrification by Nitrospira bacteria. Nature 2015, 528, 504–509. [Google Scholar] [CrossRef]
- Gruber, N.; Galloway, J.N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef]
- Page, S.E.; Rieley, J.O.; Wüst, R. Lowland tropical peatlands of Southeast Asia. Dev. Earth Surf. Process. 2006, 9, 145–172. [Google Scholar]
- Falkowski, P.G.; Fenchel, T.; Delong, E.F. The microbial engines that drive Earth’s biogeochemical cycles. Science 2008, 320, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.R.; Sanders, J.G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K.J.; Prill, R.J.; Tripathi, A.; Gibbons, S.M.; Ackermann, G.; et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017, 551, 457–463. [Google Scholar] [CrossRef]
- Limpens, J.; Berendse, F.; Blodau, C.; Canadell, J.G.; Freeman, C.; Holden, J.; Roulet, N.; Rydin, H.; Schaepman-Strub, G. Peatlands and the carbon cycle: From local processes to global implications? A synthesis. Biogeosciences 2008, 5, 1475–1491. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Naeem, S.; Duffy, J.E.; Zavaleta, E. The functions of biological diversity in an age of extinction. Science 2012, 336, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Danovaro, R.; Pusceddu, A. Biodiversity and ecosystem functioning in coastal lagoons: Does microbial diversity play any role? Estuar. Coast. Shelf Sci. 2007, 75, 4–12. [Google Scholar] [CrossRef]
- Obernosterer, I.; Lami, R.; Larcher, M.; Batailler, N.; Catala, P.; Lebaron, P. Linkage between bacterial carbon processing and the structure of the active bacterial community at a coastal site in the NW Mediterranean Sea. Microb. Ecol. 2010, 59, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Philippot, L.; Spor, A.; Hénault, C.; Bru, D.; Bizouard, F.; Jones, C.M.; Sarr, A.; Maron, P.A. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 2013, 7, 1609–1619. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.B.; Knelman, J.E.; Schindlbacher, A.; Siciliano, S.; Breulmann, M.; Yannarell, A.; Beman, J.M.; Abell, G.; Philippot, L.; Prosser, J.; et al. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes? Front. Microbiol. 2016, 7, 214. [Google Scholar] [CrossRef]
- Lam, P.; Kuypers, M.M. Microbial nitrogen cycling processes in oxygen minimum zones. Annu. Rev. Mar. Sci. 2011, 3, 317–345. [Google Scholar] [CrossRef]
- Pajares, S.; Bohannan, B.J. Ecology of nitrogen-fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front. Microbiol. 2016, 7, 1045. [Google Scholar] [CrossRef] [PubMed]
- Truu, M.; Ostonen, I.; Preem, J.K.; Lõhmus, K.; Nõlvak, H.; Ligi, T.; Rosenvald, K.; Parts, K.; Kupper, P.; Truu, J. Elevated air humidity changes soil bacterial community structure in the silver birch stand. Front. Microbiol. 2017, 8, 557. [Google Scholar] [CrossRef] [PubMed]
- Ligi, T.; Truu, M.; Oopkaup, K.; Nõlvak, H.; Mander, Ü.; Mitsch, W.J.; Truu, J. The genetic potential of N2 emission via denitrification and ANAMMOX from the soils and sediments of a created riverine treatment wetland complex. Ecol. Eng. 2015, 80, 181–190. [Google Scholar] [CrossRef]
- Van Groenigen, J.; Huygens, D.; Boeckx, P.; Kuyper, T.W.; Lubbers, I.M.; Rütting, T.P.; Groffman, P.M. The soil N cycle: New insights and key challenges. Soil 2015, 1, 235–256. [Google Scholar] [CrossRef]
- Sjogersten, S.; Cheesman, A.W.; Lopez, O.; Turner, B.L. Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 2011, 104, 147–163. [Google Scholar] [CrossRef]
- Nurulita, Y.; Adetutu, E.M.; Gunawan, H.; Zul, D.; Ball, A.S. Restoration of tropical peat soils: The application of soil microbiology for monitoring the success of the restoration process. Agric. Ecosyst. Environ. 2016, 216, 293–303. [Google Scholar] [CrossRef]
- Pajares Moreno, S.; Ramos, R. Processes and microorganisms involved in the marine nitrogen cycle: Knowledge and gaps. Front. Mar. Sci. 2019, 6, 739. [Google Scholar] [CrossRef]
- Grossart, H.P.; Massana, R.; McMahon, K.D.; Walsh, D.A. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnol. Oceanogr. 2020, 65, S2–S20. [Google Scholar] [CrossRef]
- Damashek, J.; Casciotti, K.L.; Francis, C.A. Variable nitrification rates across environmental gradients in turbid, nutrient-rich estuary waters of San Francisco Bay. Estuaries Coasts 2016, 39, 1050–1071. [Google Scholar] [CrossRef]
- Damashek, J.; Francis, C.A. Microbial Nitrogen Cycling in Estuaries: From Genes to Ecosystem Processes. Estuaries Coasts 2018, 41, 626–660. [Google Scholar] [CrossRef]
- Canfield, D.E.; Glazer, A.N.; Falkowski, P.G. The evolution and future of Earth’s nitrogen cycle. Science 2010, 330, 92–196. [Google Scholar] [CrossRef] [PubMed]
- Mandic-Mulec, I.; Prosser, J.I. Diversity of Endospore-forming Bacteria in Soil: Characterization and Driving Mechanisms. In Endospore-Forming Soil Bacteria. Soil Biology; Logan, N., Vos, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 27. [Google Scholar] [CrossRef]
- Mandic-Mulec, I.; Ausec, L.; Danevčič, T.; Levičnik-Höfferle, Š.; Jerman, V.; Kraigher, B. Microbial community structure and function in peat soil. Food Technol. Biotechnol. 2014, 52, 180–187. [Google Scholar]
- Hallam, S.J.; Mincer, T.J.; Schleper, C.; Preston, C.M.; Roberts, K.; Richardson, P.M.; DeLong, E.F. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol. 2006, 4, e95. [Google Scholar] [CrossRef] [PubMed]
- Arumugham, T.; Mohamad, S.E. Anammox bacterium ‘Candidatus Kuenenia stuttgartiensis’: A review. IOP Conf. Ser. Earth Environ. Sci. 2022, 1091, 012061. [Google Scholar] [CrossRef]
- Martens-Habbena, W.; Berube, P.M.; Urakawa, H.; José, R.; Stahl, D.A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 2009, 461, 976–979. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, J.A.; Stieglmeier, M.; Schleper, C.; Klotz, M.G.; Stein, L.Y. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J. 2016, 10, 1836–1845. [Google Scholar] [CrossRef] [PubMed]
- Caranto, J.D.; Lancaster, K.M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proc. Natl. Acad. Sci. USA 2017, 114, 8217–8222. [Google Scholar] [CrossRef] [PubMed]
- Carini, P.; Dupont, C.L.; Santoro, A.E. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ. Microbiol. 2018, 20, 2112–2124. [Google Scholar] [CrossRef] [PubMed]
- Rotthauwe, J.H.; Witzel, K.P.; Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997, 63, 4704–4712. [Google Scholar] [CrossRef]
- Levicnik-Hofferle, S.; Nicol, G.W.; Pal, L.; Hacin, J.; Prosser, J.I.; Mandić-Mulec, I. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile. FEMS Microbiol. Ecol. 2010, 74, 302–315. [Google Scholar] [CrossRef]
- Levicnik-Hofferle, S.; Nicol, G.W.; Ausec, L.; Mandić-Mulec, I.; Prosser, J.I. Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiol. Ecol. 2012, 80, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.; Chapman, S.J.; Artz, R.R.E. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem. 2013, 57, 979–994. [Google Scholar] [CrossRef]
- Santoro, A.E.; Casciotti, K.L.; Francis, C.A. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ. Microbiol. 2010, 12, 1989–2006. [Google Scholar] [CrossRef]
- Trimmer, M.; Chronopoulou, P.M.; Maanoja, S.T.; Upstill-Goddard, R.C.; Kitidis, V.; Purdy, K.J. Nitrous oxide as a function of oxygen and archaeal gene abundance in the North Pacific. Nat. Commun. 2016, 7, 13451. [Google Scholar] [CrossRef]
- van Kessel, M.A.; Speth, D.R.; Albertsen, M.; Nielsen, P.H.; den Camp, H.J.O.; Kartal, B.; Jetten, M.S.; Lücker, S. Complete nitrification by a single microorganism. Nature 2015, 528, 555–559. [Google Scholar] [CrossRef]
- Pachiadaki, M.G.; Sintes, E.; Bergauer, K.; Brown, J.M.; Record, N.R.; Swan, B.K.; Mathyer, M.E.; Hallam, S.J.; Lopez-Garcia, P.; Takaki, Y.; et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 2017, 358, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Wang, J.G.; Zhu, T.; Zou, B.; Rhee, S.K.; Quan, Z.X. Ubiquity and diversity of complete ammonia oxidizers (comammox). Appl. Environ. Microbiol. 2018, 84, e01390-18. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, L.; Wang, S.; Ye, F.; Zhu, G. Global distribution of anaerobic ammonia oxidation (anammox) bacteria–field surveys in wetland, dryland, groundwater aquifer and snow. Front. Microbiol. 2019, 10, 2583. [Google Scholar] [CrossRef]
- Opelt, K.; Berg, C.; Schönmann, S.; Eberl, L.; Berg, G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007, 1, 502–516. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, J.A.; Vilgalys, R.; Jackson, R.B. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 2005, 71, 4117–4120. [Google Scholar] [CrossRef]
- Hedin, L.O.; Brookshire, E.N.J.; Menge, D.N.L.; Barron, A.R. The Nitrogen paradox in tropical forest ecosystems. Ann. Rev. Ecol. Evol. Syst. 2009, 40, 613–635. [Google Scholar] [CrossRef]
- Xu, X.; Ran, Y.; Li, Y.; Zhang, Q.; Liu, Y.; Pan, H.; Guan, X.; Li, J.; Shi, J.; Dong, L.; et al. Warmer and drier conditions alter the nitrifier and denitrifier communities and reduce N2O emissions in fertilized vegetable soils. Agric. Ecosyst. Environ. 2016, 231, 133–142. [Google Scholar] [CrossRef]
- Bouskill, N.J.; Lim, H.C.; Borglin, S.; Salve, R.; Wood, T.E.; Silver, W.L.; Brodie, E.L. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 2013, 7, 384–394. [Google Scholar] [CrossRef]
- Zakem, E.J.; Al-Haj, A.; Church, M.J.; van Dijken, G.L.; Dutkiewicz, S.; Foster, S.Q.; Fulweiler, R.W.; Mills, M.M.; Follows, M.J. Ecological control of nitrite in the upper ocean. Nat. Commun. 2018, 9, 1206. [Google Scholar] [CrossRef]
- Sun, Y.F.; Shen, J.P.; Zhang, C.J.; Sun, S.C.; He, J.Z. Effects of water table lowering and mowing on soil ammonia oxidizers and denitrifiers in alpine wetlands. J. Agro-Environ. Sci. 2017, 36, 2356–2364. [Google Scholar]
- Gao, D.-W.; Yu, T. Versatility and application of anaerobic ammonium-oxidizing bacteria. Appl. Microbiol. Biotechnol. 2011, 91, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, S.; Hollibaugh, J.T. Temperature Decouples Ammonium and Nitrite Oxidation in Coastal Waters. Environ. Sci. Technol. 2017, 51, 3157–3164. [Google Scholar] [CrossRef]
- He, H.; Zhen, Y.; Mi, T.; Fu, L.; Yu, Z. Ammonia-oxidizing Archaea and Bacteria differentially contribute to ammonia oxidation in sediments from adjacent waters of Rushan Bay, China. Front. Microbiol. 2018, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Kraigher, B.; Stres, B.; Hacin, J.; Ausec, L.; Mahne, I.; van Elsas, J.D.; Mandic-Mulec, I. Microbial activity and community structure in two drained fen soils in the Ljubljana Marsh. Soil Biol. Biochem. 2006, 38, 2762–2771. [Google Scholar] [CrossRef]
- Ausec, L.; Kraigher, B.; Mandic-Mulec, I. Differences in the activity and bacterial community structure of drained grassland and forest peat soils. Soil Biol. Biochem. 2009, 41, 1874–1881. [Google Scholar] [CrossRef]
- Lin, X.; Green, S.; Tfaily, M.M.; Prakash, O.; Konstantinidis, K.T.; Corbett, J.E.; Chanton, J.P.; Cooper, W.T.; Kostka, J.E. Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. Appl. Environ. Microbiol. 2012, 78, 7023–7031. [Google Scholar] [CrossRef]
- Stopnisek, N.; Gubry-Rangin, C.; Höfferle, Š.; Nicol, G.W.; Mandič-Mulec, I.; Prosser, J.I. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Appl. Environ. Microbiol. 2010, 76, 7626–7634. [Google Scholar] [CrossRef]
- Sims, A.; Zhang, Y.; Gajaraj, S.; Brown, P.B.; Hu, Z. Toward the development of microbial indicators for wetland assessment. Water Res. 2013, 47, 1711–1725. [Google Scholar] [CrossRef] [PubMed]
- Caffrey, J.M.; Bano, N.; Kalanetra, K.; Hollibaugh, J.T. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. ISME J. 2007, 1, 660–662. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Mori, K.; Kato, C.; Takahashi, R.; Tokuyama, T. Distribution of cold-adapted ammonia-oxidizing microorganisms in the deep-ocean of the northeastern Japan Sea. Microbes Environ. 2007, 22, 365–372. [Google Scholar] [CrossRef]
- Li, Y.; Hong, Y.; Wu, J.; Wang, Y.; Ye, F. Spatial variability pattern of the anaerobic ammonia-oxidizing bacterial community across a salinity gradient from river to ocean. Ecotoxicology 2021, 30, 1743–1753. [Google Scholar] [CrossRef]
- DeLong, E.F.; Preston, C.M.; Mincer, T.; Rich, V.; Hallam, S.J.; Frigaard, N.U.; Martinez, A.; Sullivan, M.B.; Edwards, R.; Brito, B.R.; et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 2006, 311, 496–503. [Google Scholar] [CrossRef]
- Reyes, C.; Schneider, D.; Lipka, M.; Thürmer, A.; Böttcher, M.E.; Friedrich, M.W. Nitrogen metabolism genes from temperate marine sediments. Mar. Biotechnol. 2017, 19, 175–190. [Google Scholar] [CrossRef]
- Jin, T.; Zhang, T.; Ye, L.; Lee, O.O.; Wong, Y.H.; Qian, P.Y. Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary, China. Appl. Microbiol. Biotechnol. 2011, 90, 1137–1145. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, X.; Jiao, N.; Hsiao, S.S.-Y.; Kao, S.-J. Diversity and distribution of amoA-type nitrifying and nirS-type denitrifying microbial communities in the Yangtze River estuary. Biogeosciences 2014, 11, 2131. [Google Scholar] [CrossRef]
- Kujala, K.; Mikkonen, A.; Saravesi, K.; Ronkanen, A.K.; Tiirola, M. Microbial diversity along a gradient in peatlands treating mining-affected waters. FEMS Microbiol. Ecol. 2018, 94, 145. [Google Scholar] [CrossRef] [PubMed]
- van De Vossenberg, J.; Rattray, J.E.; Geerts, W.; Kartal, B.; Van Niftrik, L.; Van Donselaar, E.G.; Sinninghe Damsté, J.S.; Strous, M.; Jetten, M.S. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environ. Microbiol. 2008, 10, 3120–3129. [Google Scholar] [CrossRef]
- Wen, X.; Hong, Y.; Wu, J.; Wang, Y. Optimization of a method for diversity analysis of anammox bacteria using high-throughput sequencing of 16S rRNA gene amplicon. J. Microbiol. Methods 2020, 178, 106066. [Google Scholar] [CrossRef]
- Simon, J.; Klotz, M.G. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim. Biophys. Acta (BBA)-Bioenerg. 2013, 1827, 114–135. [Google Scholar] [CrossRef]
- Dale, O.R.; Tobias, C.R.; Song, B. Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environ. Microbiol. 2009, 11, 1194–1207. [Google Scholar] [CrossRef]
- Rios-Del Toro, E.E.; Valenzuela, E.I.; López-Lozano, N.E.; Cortés-Martínez, M.G.; Sánchez-Rodríguez, M.A.; Calvario-Martínez, O.; Sánchez-Carrillo, S.; Cervantes, F.J. Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments. Biodegradation 2018, 29, 429–442. [Google Scholar] [CrossRef]
- Humbert, S.; Tarnawski, S.; Fromin, N.; Mallet, M.P.; Aragno, M.; Zopfi, J. Molecular detection of anammox bacteria in terrestrial ecosystems: Distribution and diversity. ISME J. 2010, 4, 450–454. [Google Scholar] [CrossRef]
- Hu, B.L.; Rush, D.; van der Biezen, E.; Zheng, P.; van Mullekom, M.; Schouten, S.; Damsté, J.S.S.; Smolders, A.J.; Jetten, M.S.; Kartal, B. New anaerobic, ammonium-oxidizing community enriched from peat soil. Appl. Environ. Microbiol. 2011, 77, 966–971. [Google Scholar] [CrossRef]
- Bowen, J.L.; Spivak, A.C.; Bernhard, A.E.; Fulweiler, R.W.; Giblin, A.E. Salt marsh nitrogen cycling: Where land meets sea. Trends Microbiol. 2023. published online. [Google Scholar] [CrossRef]
- Schmid, M.C.; Risgaard-Petersen, N.; van De Vossenberg, V.; Kuypers, M.M.M.; Lavik, G.; Petersen, J.; Hulth, S.; Thamdrup, B.; Canfield, D.; Dalsgaard, T.; et al. Anaerobic ammonium-oxidizing bacteria in marine environments: Widespread occurrence but low diversity. Environ. Microbiol. 2007, 9, 1476–1484. [Google Scholar] [CrossRef]
- Li, J.; Nedwell, D.B.; Beddow, J.; Dumbrell, A.J.; McKew, B.A.; Thorpe, E.L.; Whitby, C. amoA Gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not Archaea dominate N cycling in the Colne Estuary, United Kingdom. Appl Environ. Microbiol. 2015, 81, 159–165. [Google Scholar] [CrossRef]
- Babbin, A.R.; Keil, R.G.; Devol, A.H.; Ward, B.B. Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. Science 2014, 344, 406–408. [Google Scholar] [CrossRef]
- Ganesh, S.; Bertagnolli, A.D.; Bristow, L.A.; Padilla, C.C.; Blackwood, N.; Aldunate, M.; Bourbonnais, A.; Altabet, M.A.; Malmstrom, R.R.; Woyke, T.; et al. Single cell genomic and transcriptomic evidence for the use of alternative nitrogen substrates by anammox bacteria. ISME J. 2018, 12, 2706–2722. [Google Scholar] [CrossRef]
- Sonthiphand, P.; Hall, M.W.; Neufeld, J.D. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front. Microbiol. 2014, 5, 399. [Google Scholar] [CrossRef]
- Qian, G.; Wang, J.; Kan, J.; Zhang, X.; Xia, Z.; Zhang, X.; Miao, Y.; Sun, J. Diversity and distribution of anammox bacteria in water column and sediments of the Eastern Indian Ocean. Int. Biodeterior. Biodegrad. 2018, 133, 52–62. [Google Scholar] [CrossRef]
- Brin, L.D.; Giblin, A.E.; Rich, J.J. Environmental controls of anammox and denitrification in southern New England estuarine and shelf sediments. Limnol. Oceanogr. 2014, 59, 851–860. [Google Scholar] [CrossRef]
- Hou, L.; Zheng, Y.; Liu, M.; Gong, J.; Zhang, X.; Yin, G.; You, L. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. J. Geophys. Res. Biogeosciences 2013, 118, 1237–1246. [Google Scholar] [CrossRef]
- Lisa, J.A.; Song, B.; Tobias, C.R.; Hines, D.E. Genetic and biogeochemical investigation of sedimentary nitrogen cycling communities responding to tidal and seasonal dynamics in Cape Fear River Estuary. Estuar. Coast. Shelf Sci. 2015, 167, A313–A323. [Google Scholar] [CrossRef]
- Bristow, L.A.; Callbeck, C.M.; Larsen, M.; Altabet, M.A.; Dekaezemacker, J.; Forth, M.; Gauns, M.; Glud, R.N.; MM, M.K.; Lavik, G.; et al. N2 production in the Bay of Bengal Oxygen Minimum Zone. Nat. Geosci. 2017, 10, 24–29. [Google Scholar] [CrossRef]
- Jensen, M.M.; Lam, P.; Revsbech, N.P.; Nagel, B.; Gaye, B.; Jetten, M.S.; Kuypers, M.M. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J. 2011, 5, 1660–1670. [Google Scholar] [CrossRef]
- Dang, H.; Zhou, H.; Zhang, Z.; Yu, Z.; Hua, E.; Liu, X.; Jiao, N. Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China. PLoS ONE 2013, 8, e61330. [Google Scholar] [CrossRef] [PubMed]
- Bagnoud, A.; Guye-Humbert, S.; Schloter-Hai, B.; Schloter, M.; Zopfi, J. Environmental factors determining distribution and activity of anammox bacteria in minerotrophic fen soils. FEMS Microbiol. Ecol. 2020, 96, fiz191. [Google Scholar] [CrossRef] [PubMed]
- Graf, D.R.; Jones, C.M.; Hallin, S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS ONE 2014, 9, e114118. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263. [Google Scholar] [CrossRef]
- Mosier, A.C.; Francis, C.A. Denitrifier abundance and activity across the San Francisco Bay estuary. Environ. Microbiol. Rep. 2010, 2, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.; Biasi, C.; Horn, M.A. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J. 2012, 6, 1058–1077. [Google Scholar] [CrossRef] [PubMed]
- Pajares, S.; Merino-Ibarra, M.; Macek, M.; Alcocer, J. Vertical and seasonal distribution of picoplankton and functional nitrogen genes in a high-altitude warm-monomictic tropical lake. Freshw. Biol. 2017, 62, 1180–1193. [Google Scholar] [CrossRef]
- Wittorf, L.; Bonilla-Rosso, G.; Jones, C.M.; Bäckman, O.; Hulth, S.; Hallin, S. Habitat partitioning of marine benthic denitrifier communities in response to oxygen availability. Environ. Microbiol. Rep. 2016, 8, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.M.; Graf, D.R.; Bru, D.; Philippot, L.; Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: A potential nitrous oxide sink. ISME J. 2013, 7, 417–426. [Google Scholar] [CrossRef]
- Bourbonnais, A.; Letscher, R.T.; Bange, H.W.; Echevin, V.; Larkum, J.; Mohn, J.; Yoshida, N.; Altabet, M.A. N2O production and consumption from stable isotopic and concentration data in the Peruvian coastal upwelling system. Glob. Biogeochem. Cycles 2017, 31, 678–698. [Google Scholar] [CrossRef]
- Shu, W.; Zhang, Q.; Audet, J.; Li, Z.; Leng, P.; Qiao, Y.; Tian, C.; Chen, G.; Zhao, J.; Cheng, H.; et al. Non-negligible N2O emission hotspots: Rivers impacted by ion-adsorption rare earth mining. Water Res. 2024, 251, 121124. [Google Scholar] [CrossRef] [PubMed]
- Too, C.C.; Keller, A.; Sickel, W.; Lee, S.M.; Yule, C.M. Microbial community structure in a Malaysian tropical peat swamp forest: The influence of tree species and depth. Front. Microbiol. 2018, 9, 02859. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, J.; Chen, W.; Zhong, W.; Zhu, T.; Cai, Z. Effect of land use on the denitrification, abundance of denitrifiers, and total nitrogen gas production in the subtropical region of China. Biol. Fertil. Soils 2014, 50, 105–113. [Google Scholar] [CrossRef]
- Lammel, D.R.; Feigl, B.J.; Cerri, C.C.; Nüsslein, K. Specific microbial gene abundances and soil parameters contribute to C, N, and greenhouse gas process rates after land use change in Southern Amazonian Soils. Front. Microbiol. 2015, 6, 1057. [Google Scholar] [CrossRef] [PubMed]
- Hanke, A.; Cerli, C.; Muhr, J.; Borken, W.; Kalbitz, K. Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils. Eur. J. Soil Sci. 2013, 64, 476–487. [Google Scholar] [CrossRef]
- Pal, L.; Stres, B.; Danevčič, T.; Leskovec, S.; Mandic-Mulec, I. Transformations of mineral nitrogen applied to peat soil during sequential oxic/anoxic cycling. Soil Biol. Biochem. 2010, 42, 1338–1346. [Google Scholar] [CrossRef]
- Pal, L. The Potential of Ljubljana Marsh Soils for Mineral Nitrogen Removal. Ph.D. Thesis, University of Ljubljana, Ljubljana, Slovenia, 2011. [Google Scholar]
- Stone, M.M.; Kan, J.; Plante, A.F. Parent material and vegetation influence bacterial community structure and nitrogen functional genes along deep tropical soil profiles at the Luquillo Critical Zone Observatory. Soil Biol. Biochem. 2015, 80, 273–282. [Google Scholar] [CrossRef]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130164. [Google Scholar]
- Breitburg, D.; Levin, L.A.; Oschlies, A.; Grégoire, M.; Chavez, F.P.; Conley, D.J.; Garçon, V.; Gilbert, D.; Gutiérrez, D.; Isensee, K.; et al. Declining oxygen in the global ocean and coastal waters. Science 2018, 359, eaam7240. [Google Scholar] [CrossRef]
- Jickells, T.D.; Buitenhuis, E.; Altieri, K.; Baker, A.R.; Capone, D.; Duce, R.A.; Dentener, F.; Fennel, K.; Kanakidou, M.; LaRoche, J.; et al. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Glob. Biogeochem. Cycles 2017, 31, 289–305. [Google Scholar] [CrossRef]
- Bai, E.; Li, S.; Xu, W.; Li, W.; Dai, W.; Jiang, P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol. 2013, 199, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, D.A.; Fu, F. Microorganisms and ocean global change. Nat. Microbiol. 2017, 2, 17058. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Z.; Tian, L.; Li, X.; Tian, C. Microbial communities in peatlands along a chronosequence on the Sanjiang Plain, China. Sci. Rep. 2017, 7, 9567. [Google Scholar] [CrossRef] [PubMed]
- Wannicke, N.; Frey, C.; Law, C.S.; Voss, M. The response of the marine nitrogen cycle to ocean acidification. Glob. Change Biol. 2018, 24, 5031–5043. [Google Scholar] [CrossRef] [PubMed]
- Fasching, C.; Akotoye, C.; Bižić, M.; Fonvielle, J.; Ionescu, D.; Mathavarajah, S.; Zoccarato, L.; Walsh, D.A.; Grossart, H.P.; Xenopoulos, M.A. Linking stream microbial community functional genes to dissolved organic matter and inorganic nutrients. Limnol. Oceanogr. 2020, 65, S71–S87. [Google Scholar] [CrossRef]
- Bintanja, R.; Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 2017, 7, 263–267. [Google Scholar] [CrossRef]
- Carmack, E.C.; Yamamoto-Kawai, M.; Haine, T.W.; Bacon, S.; Bluhm, B.A.; Lique, C.; Melling, H.; Polyakov, I.V.; Straneo, F.; Timmermans, M.L.; et al. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. Geophys. Res. Biogeosciences 2016, 121, 675–717. [Google Scholar] [CrossRef]
- Colatriano, D.; Tran, P.Q.; Guéguen, C.; Williams, W.J.; Lovejoy, C.; Walsh, D.A. Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic Ocean Chloroflexi bacteria. Commun. Biol. 2018, 1, 90. [Google Scholar] [CrossRef] [PubMed]
- Ruuskanen, M.O.; Colby, G.; St. Pierre, K.A.; St. Louis, V.L.; Aris-Brosou, S.; Poulain, A.J. Microbial genomes retrieved from High Arctic Lake sediments encode for adaptation to cold and oligotrophic environments. Limnol. Oceanogr. 2020, 65, S233–S247. [Google Scholar] [CrossRef]
- Lal, R.; Smith, P.; Jungkunst, H.F.; Mitsch, W.J.; Lehmann, J.; Nair, P.R.; McBratney, A.B.; de Moraes Sá, J.C.; Schneider, J.; Zinn, Y.L.; et al. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 2018, 73, 145A–152A. [Google Scholar]
- Leifeld, J.; Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 2018, 9, 1071. [Google Scholar] [CrossRef] [PubMed]
- Loisel, J.; Gallego-Sala, A. Ecological resilience of restored peatlands to climate change. Commun. Earth Environ. 2022, 3, 208. [Google Scholar] [CrossRef]
- Yuwati, T.W.; Rachmanadi, D.; Pratiwi; Turjaman, M.; Indrajaya, Y.; Nugroho, H.Y.S.H.; Qirom, M.A.; Narendra, B.H.; Winarno, B.; Lestari, S.; et al. Restoration of degraded tropical peatland in Indonesia: A review. Land 2021, 10, 1170. [Google Scholar] [CrossRef]
- Menberu, M.W.; Haghighi, A.T.; Ronkanen, A.K.; Marttila, H.; Kløve, B. Effects of drainage and subsequent restoration on peatland hydrological processes at catchment scale. Water Resour. Res. 2018, 54, 4479–4497. [Google Scholar] [CrossRef]
- Dunn, C.; Freeman, C. The role of molecular weight in the enzyme-inhibiting effect of phenolics: The significance in peatland carbon sequestration. Ecol. Eng. 2018, 114, 162–166. [Google Scholar] [CrossRef]
- Alshehri, A.; Dunn, C.; Freeman, C.; Hugron, S.; Jones, T.G.; Rochefort, L. A potential approach for enhancing carbon sequestration during peatland restoration using low-cost, phenolic-rich biomass supplements. Front. Environ. Sci. 2020, 8, 48. [Google Scholar] [CrossRef]
- Liu, B.; Talukder, M.J.H.; Terhonen, E.; Lampela, M.; Vasander, H.; Sun, H.; Asiegbu, F. The microbial diversity and structure in peatland forest in Indonesia. Soil Use Manag. 2020, 36, 123–138. [Google Scholar] [CrossRef]
- Banerjee, S.; Mandal, N.C. Fungal Bioagents in the remediation of degraded soils. In Microbial Services in Restoration Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 191–205. [Google Scholar]
- Jurasinski, G.; Ahmad, S.; Anadon-Rosell, A.; Berendt, J.; Beyer, F.; Bill, R.; Blume-Werry, G.; Couwenberg, J.; Günther, A.; Joosten, H.; et al. From understanding to sustainable use of peatlands: The WETSCAPES approach. Soil Syst. 2020, 4, 14. [Google Scholar] [CrossRef]
Sl. No. | Equations | Names of the Steps | Enzymes |
---|---|---|---|
A | NO3− + 2e− + 2H+ → NO2− + H2O | Denitrification | NAS, NAR, NAP, NXR |
B | NO2− + H2O → NO3− + 2e− + 2H+ | Nitrification | NXR |
C | NO + 2H2O → NO3− + 3e− + 4H+ | Nitrification | NOD |
D | NO + H2O → NO2− + e− + 2H+ | Nitrification | Cu-NIR |
E | NO2− + e− + 2H+ → NO + H2O | Anammox | Cu-NIR, cd1-NIR |
F | 2NO + 2e− + 2H+ → N2O + H2O | Denitrification | cNOR, qNOR, CuaNOR, HCP, P450, NOR |
G | NH2OH → NO + 3e− + 3H+ | Nitrification | HAO, HOX |
H | N2O + 2e− + 2H+ → N2 + H2O | Denitirification | NOS |
I | 2NO → N2 + O2 | Anammox | NO-D |
J | NO2− + 6e− + 8H+ → NH4+ + 2H2O | Assimilation | cNIR, ccNIR, ꜫHAO, ONR, OTR |
K | N2 + 8e− + 8H+ + 16ATP → 2NH3 + H2+ 16ADP + 16Pi | Nitrogen fixation | MoFe, FeFe, VFe |
L | N2 H4 → N2 + 4e− + 4H+ | Anammox | HDH |
M | NO + NH4+ + 3e− + 2H+ → N2H4 + H2O | Nitrification | HZS |
N | NH4+ + O2 + 2e− + H+ → NH2 OH + H2O | Nitrification | AMO, pMMO |
Sl. No. | Enzymes Involved and Their Functions | |
---|---|---|
1 | Assimilatory nitrate reductase (1.7.1.1) | |
2 | Membrane-bound dissimilatory nitrate reductases | NAS, nasA, nirA |
3 | Periplasmic dissimilatory nitrate reductases | NAR, narGH |
4 | Nitrite oxidoreductase (1.7.1.15) | NAP, napA |
5 | Nitric oxide oxidase | NXR, nxrAB |
6 | Haem-containing nitrite reductases | NOD, hmp |
7 | Copper-containing nitrite reductases | cd1-NIR, nirS |
8 | Cytochrome c-dependent nitric oxide reductases | Cu-NIR, nirK |
9 | Quinol-dependent nitric oxide reductases | cNOR, cnorB |
10 | Copper-containing quinol-dependent nitric oxide reductases | qNOR, norZ |
11 | NADH-dependent cytochrome P450 nitric oxide reductase | CuANOR |
12 | Flavo-diiron nitric oxide reductase | P450NOR, p450nor |
13 | Hybrid cluster protein | NORvw, norVW |
14 | Hydroxylamine oxidoreductase | HCP, hcp |
15 | Hydroxylamine oxidase | HAO, hao |
16 | Nitrous oxide reductase | HOX, hox |
17 | Nitric oxide dismutase | NOS, nosZ |
18 | Assimilatory nitrite reductase | NO-D, norZ |
19 | Dissimilatory periplasmic cytochrome c nitrite reductase | cNIR, nasB, nirB |
20 | ε-hydroxylamine oxidoreductase | ccNIR, nrfAH |
21 | Octahaem nitrite reductase | εHAO, haoA |
22 | Octahaem tetrathionate reductase (1.8.99.B2) | ONR |
23 | Molybdenum-iron nitrogenases | OTR |
24 | Iron-iron nitrogenases (1.18.6.1) | MoFe, nifHDK |
25 | Vanadium-iron nitrogenases (1.18.6.2) | FeFe, anfHGDK |
26 | Hydrazine dehydrogenase (1.7.2.8) | VFe, vnfHGDK |
27 | Hydrazine synthase (1.7.2.7) | HDH, hdh |
28 | Ammonia monooxygenase (1.14.99.39) | HZS, hzsCBA |
29 | Particulate methane monooxygenase (1.14.13.25) | AMO, amoCAB |
30 | Cyanase (4.2.1.104) | pMMO, pmoCAB |
31 | Urease (3.5.1.5) | CYN, cynS |
References | Microbial Nitrogen Process | Genes Analyzed in This Study | Ecosystem | Approaches Used | Conditions Studied | Findings |
---|---|---|---|---|---|---|
Bagnoud et al. (2020) [93] | Anammox | 16S rRNA | Fen peat soils | qPCR | Distribution and activity of anammox bacteria | A high diversity of anammox bacteria but a lower dominance over ammonia oxidizers. Denitirification contributed more to the loss of nitrogen. |
Kujala et al. (2018) [72] | Nitrification | narG and nirB | Treated peat soils | qPCR and sequencing | Bacterial and archaeal diversity | The abundance of bacteria and archaea associated with a lower prevalence of nitrification-based activities. |
Too et al. (2018) [103] | Production of ammonia | 16S rRNA | Tropical peat swamp forest | Genomic library and sequencing | Diversity of microbial communities | The relative abundance of microbial diversity at the surface is related to nitrogen, as well as other environmental factors like organic content, oxygen, and pH. |
Bristow et al. (2017) [90] | Denitrification and anammox | amoA, nirS, and 16S rRNA | Oxygen minimum zone (OMZ) | qPCR | Loss of nitrogen | Denitrifier and anammox communities facilitate a significant but low amount of nitrogen loss. |
Li et al. (2015) [82] | Nitrification | amoA and 16S rRNA | River Colne bay sediments | qPCR, pyrosequencing, and denaturing gradient gel electrophoresis (DGGE) | Diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the sediments | Differences in nitrification potential with higher abundance of AOB than AOA. |
Hou et al. (2013) [88] | Anammox and denitrification | 16S rRNA | Yangtze River bay sediments | qPCR and genomic library | Anammox diversity and activity of bacteria | Anammox is related to denitrification and the distribution of anammox denitrifiers is driven by temperature, salinity, and nitrite availability. |
Levicnik-Hofferle et al. (2012) [42] | Nitrification | amoA | Marsh peat soils | qPCR and DGGE | Activity and abundance of nitrifiers | Higher abundance of archaeal amoA, while bacterial amoA is undetectable, which, in turn, is related to nitrification. |
Lin et al. (2012) [62] | Nitrification and denitrification | 16S rRNA | Fen and bog peat soils of Lake Agassiz | qPCR, pyrosequencing, and genomic library | Distribution and activity of the microbial community | Bacterial and archaeal dominance in fen peat soils over bog peat soils. |
Palmer et al. (2012) [97] | Denitrification | narG, nirK, nirS, and nosZ | Permafrost tundra peat soils | qPCR and pyrosequencing | Distribution of denitrifiers | Higher abundance of narG and nirS. |
Jensen et al. (2011) [91] | Anammox and denitrification | nirS and Scalindua-like nirS | OMZ in the Arabian sea | RT-PCR and genomic library | Biological nitrogen production | High activity of anammox and undetectable denitrification. Loss of nitrogen through anammox is related to the organic matter content. |
Levicnik-Hofferle et al. (2010) [41] | Nitrification | amoA | Marsh peat soils in Slovenia with two sample sites (polluted and unpolluted) | qPCR, genomic library, and sequencing | Distribution and activity of ammonia oxidizers | Higher abundance of bacterial amoA in polluted peat soil, which is undetectable in the unpolluted peat soil, and this, in turn, is related to nitrification. Archaeal ammonia oxidizers were stratified in both the peat soils. |
Mosier and Francis (2010) [96] | Denitrification | nirK and nirS | San Franciscobay sediment | qPCR and genomic library | Community dynamics of denitrifiers | Higher abundance of nirS than nirK, which, in turn, is associated with denitrification. |
Santoro et al. (2010) [44] | Nitrification | amoA, 16S rRNA, and Nitrospina | Marine California Current | RT-PCR and genomic library | Activity and occurrence of nitrifiers | Higher abundance of AOA compared with AOB, which is associated with Nitrospina abundance. Prevalence of amoA is not related to nitrification. |
Stopnisek et al. (2010) [63] | Nitrification | amoA and 16S rRNA | Peat soils from Ljubljana marsh | qPCR, RT-PCR, cloning, and sequencing | Diversity and activity of AOA and AOB | Increased abundance of AOA is associated with nitrification and this is not influenced by ammonium addition. |
Ausec et al. (2009) [61] | Nitrification and denitrification | 16S rRNA | Fen and bog peat soils in a temperate marsh | T-RFLP and genomic library | Distribution of microbial community | A high abundance of acidobacteria. |
Dale et al. (2009) [76] | Anammox and denitrification | 16S rRNA | Cape Fear River bay sediments | qPCR, terminal restriction fragment length polymorphism (T-RFLP), and genomic library | Diversity and activity of anammox bacteria | Diversity is affected by salinity and the abundance of anammox bacteria is related to the rate measurements of anammox. |
Caffrey et al. (2007) [65] | Nitrification | amoA and 16S rRNA | Sediments from six bays | qPCR and nitrification potential | The abundance of AOA and AOB | A higher abundance of AOA is related to nitrification. |
Nakagawa et al. (2007) [66] | Nitrification | amoA | Deep-sea sediments | PCR and genomic library | Diversity and activity of nitrifiers | Higher abundance of AOA than AOB, which, in turn, is associated with nitrification. |
Kraigher et al. (2006) [60] | Nitrification and denitrification | 16S rRNA | Fen peat soils from Ljubljana Marsh | T-RFLP | Diversity of microbial community | Higher abundance of proteobacteria and acidobacteria. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soratur, A.; Venmathi Maran, B.A.; Kamarudin, A.S.; Rodrigues, K.F. Microbial Diversity and Nitrogen Cycling in Peat and Marine Soils: A Review. Microbiol. Res. 2024, 15, 806-822. https://doi.org/10.3390/microbiolres15020052
Soratur A, Venmathi Maran BA, Kamarudin AS, Rodrigues KF. Microbial Diversity and Nitrogen Cycling in Peat and Marine Soils: A Review. Microbiology Research. 2024; 15(2):806-822. https://doi.org/10.3390/microbiolres15020052
Chicago/Turabian StyleSoratur, Akshatha, Balu Alagar Venmathi Maran, Ahmad Syazni Kamarudin, and Kenneth Francis Rodrigues. 2024. "Microbial Diversity and Nitrogen Cycling in Peat and Marine Soils: A Review" Microbiology Research 15, no. 2: 806-822. https://doi.org/10.3390/microbiolres15020052
APA StyleSoratur, A., Venmathi Maran, B. A., Kamarudin, A. S., & Rodrigues, K. F. (2024). Microbial Diversity and Nitrogen Cycling in Peat and Marine Soils: A Review. Microbiology Research, 15(2), 806-822. https://doi.org/10.3390/microbiolres15020052