Possible Health Benefits and Risks of DeepFake Videos: A Qualitative Study in Nursing Students
Abstract
:1. Introduction
2. Materials and Methods
- A video of an advertising campaign in which the face and voice of a famous person in Spain, now deceased, had been used (including deepface and deepvoice).
- A news item that talked about the need to regulate DeepFakes because of possible legal risks.
- A news item about a new Microsoft technology that would use DeepFakes so that relatives of deceased people could talk to them through a chatbot (including deepface and deepvoice).
3. Results
3.1. Advantages
3.2. Disadvantages
The most important is the dissemination of false information through impersonation of public persons, the dissemination of this content on the Internet is frightening, since the speed of dissemination of information on the Internet is so fast that in a very short time you can reach millions of people.(Participant 18)
In the health field, this is very worrying because it can easily confuse people and put their health at serious risk.(Participant 18)
3.3. Health Applications
3.4. Thoughts on Microsoft’s Chatbot
I don’t think that person can move forward in their grieving stage, it can even create a dependency on it, of having the need to see someone virtually when it’s not the reality, it can even evade your real world because of the need to see someone who has died and you don’t get over the grief.(Participant 44)
3.5. Recommendations from Participants and Future Expectations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Public Involvement Statement
Guidelines and Standards Statement
Use of Artificial Intelligence
Conflicts of Interest
Appendix A
References
- Miloski, B. Opportunities for artificial intelligence in healthcare and in vitro fertilization. Fertil. Steril. 2023, 120, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Hanna, A.; Bender, E.M. Theoretical AI Harms Are a Distraction. Sci. Am. 2024, 330, 69–70. [Google Scholar] [CrossRef] [PubMed]
- Barwise, A.K.; Curtis, S.; Diedrich, D.A.; Pickering, B.W. Using artificial intelligence to promote equitable care for inpatients with language barriers and complex medical needs: Clinical stakeholder perspectives. J. Am. Med. Inform. Assoc. 2024, 31, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Locsin, R. Technological Competency as Caring in Nursing: Co-Creating Moments in Nursing Occurring Within the Universal Technological Domain. J. Theory Constr. Test. 2016, 20, 5–11. [Google Scholar]
- O’Connor, S.; Yan, Y.; Thilo, F.J.; Felzmann, H.; Dowding, D.; Lee, J.J. Artificial intelligence in nursing and midwifery: A systematic review. J. Clin. Nurs. 2023, 32, 2951–2968. [Google Scholar] [CrossRef]
- Fontenot, J. Leadership in the spotlight: What nurse leaders need to know about artificial intelligence. J. Nurs. Adm. 2024, 54, 74–76. [Google Scholar] [CrossRef]
- Aquino, A. Enfermeras se asocian con tecnología para predecir el riesgo de caídas de los pacientes mediante inteligencia artificial. Rev. Inf. Enferm. 2023, 26, 10. [Google Scholar]
- Abdullah, R.; Fakieh, B. Health care employees’ perception of the use of artificial intelligence applications. Survey study. J. Med. Internet Res. 2020, 22, e17620. [Google Scholar] [CrossRef]
- Teng, M.; Singla, R.; Yau, O.; Lamoureux, D.; Gupta, A.; Hu, Z.; Aissiou, A.; Eaton, S.; Hamm, C.; Hu, S.; et al. Health care students’ perspectives on artificial intelligence: Countrywide survey in Canada. JMIR Med. Educ. 2022, 8, e33390. [Google Scholar] [CrossRef]
- Gopichandran, V.; Ganeshkumar, P.; Dash, S.; Ramasamy, A. Ethical challenges of digital health technologies. Bull. World Health Organ. 2020, 98, 277–281. [Google Scholar] [CrossRef]
- Paul, A.K.; Schaefer, M. The real safeguard for artificial intelligence and machine learning in global health: Trustworthy health systems. Bull. World Health Organ. 2020, 98, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Ciberseguridad. Deepfakes. Gobierno de España. 2023. Available online: https://www.incibe.es/aprendeciberseguridad/DeepFakes (accessed on 26 April 2023).
- Mirsky, Y.; Lee, W. The Creation and Detection of Deepfakes. ACM Comput. Surv. 2022, 54, 1–41. [Google Scholar] [CrossRef]
- Maldonado Arcila, M.G.; Ovalles Pabon, F.O. Repercusiones éticas sobre el uso indebido del deepfake en el ámbito de las TIC mediante un análisis cualitativo documental. Reto 2022, 9, 36–47. [Google Scholar] [CrossRef]
- Akhtar, Z. Deepfakes Generation and Detection: A Short Survey. J. Imaging 2023, 9, 18. [Google Scholar] [CrossRef]
- Guarnera, L.; Giudice, O.; Guarnera, F.; Ortis, A.; Puglisi, G.; Paratore, A.; Bui, L.M.Q.; Fontani, M.; Coccomini, D.A.; Caldelli, R.; et al. The Face Deepfake Detection Challenge. J. Imaging 2022, 8, 263. [Google Scholar] [CrossRef]
- Shahzad, H.F.; Rustam, F.; Flores, E.S.; Luís Vidal Mazón, J.; de la Torre Diez, I.; Ashraf, I. A Review of Image Processing Techniques for Deepfakes. Sensors 2022, 22, 4556. [Google Scholar] [CrossRef]
- Lee, Y.; Huang, K.-T.; Blom, R.; Schriner, R.; Ciccarelli, C.A. To Believe or Not to Believe: Framing Analysis of Content and Audience Response of Top 10 Deepfake Videos on YouTube. Cyberpsychol. Behav. Soc. Netw. 2021, 24, 153–158. [Google Scholar] [CrossRef]
- Maras, M.-H.; Alexandrou, A. Determining authenticity of video evidence in the age of artificial intelligence and in the wake of Deepfake videos. Int. J. Evid. Proof 2019, 23, 255–262. [Google Scholar] [CrossRef]
- De keersmaecker, J.; Roets, A. ‘Fake news’: Incorrect, but hard to correct. The role of cognitive ability on the impact of false information on social impressions. Intelligence 2017, 65, 107–110. [Google Scholar] [CrossRef]
- de Ruiter, A. The Distinct Wrong of Deepfakes. Philos. Technol. 2021, 34, 1311–1332. [Google Scholar] [CrossRef]
- Lucas, K.T. Deepfakes and Domestic Violence: Perpetrating Intimate Partner Abuse Using Video Technology. Vict. Offender 2022, 17, 647–659. [Google Scholar] [CrossRef]
- Mania, K. Legal Protection of Revenge and Deepfake Porn Victims in the European Union: Findings From a Comparative Legal Study. Trauma Violence Abus. 2022, 23, 152483802211437. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Elpeltagy, M.; Zaki, M.S.; Eldahshan, K. A New Deep Learning-Based Methodology for Video Deepfake Detection Using XGBoost. Sensors 2021, 21, 5413. [Google Scholar] [CrossRef]
- DeKeseredy, W.S. Image-Based Sexual Abuse: Social and Legal Implications. Curr. Addict. Rep. 2021, 8, 330–335. [Google Scholar] [CrossRef]
- Karasavva, V.; Noorbhai, A. The Real Threat of Deepfake Pornography: A Review of Canadian Policy. Cyberpsychol. Behav. Soc. Netw. 2021, 24, 203–209. [Google Scholar] [CrossRef]
- Hancock, J.T.; Bailenson, J.N. The Social Impact of Deepfakes. Cyberpsychol. Behav. Soc. Netw. 2021, 24, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Prezja, F.; Paloneva, J.; Pölönen, I.; Niinimäki, E.; Äyrämö, S. DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification. Sci. Rep. 2022, 12, 18573. [Google Scholar] [CrossRef]
- Thambawita, V.; Isaksen, J.L.; Hicks, S.A.; Ghouse, J.; Ahlberg, G.; Linneberg, A.; Grarup, N.; Ellervik, C.; Olesen, M.S.; Hansen, T.; et al. DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine. Sci. Rep. 2021, 11, 21896. [Google Scholar] [CrossRef] [PubMed]
- Wiederhold, B.K. Can Deepfakes Improve Therapy? Cyberpsychol. Behav. Soc. Netw. 2021, 24, 147–148. [Google Scholar] [CrossRef]
- Suratkar, S.; Kazi, F. Deep Fake Video Detection Using Transfer Learning Approach. Arab. J. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Menz, B.D.; Modi, N.D.; Sorich, M.J.; Hopkins, A.M. Health Disinformation Use Case Highlighting the Urgent Need for Artificial Intelligence Vigilance: Weapons of Mass Disinformation. JAMA Intern. Med. 2024, 184, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Raman, R.; Kumar Nair, V.; Nedungadi, P.; Kumar Sahu, A.; Kowalski, R.; Ramanathan, S.; Achuthan, K. Fake news research trends, linkages to generative artificial intelligence and sustainable development goals. Heliyon 2024, 10, e24727. [Google Scholar] [CrossRef] [PubMed]
- Kidd, J.; Nieto McAvoy, E. Deep Nostalgia: Remediated memory, algorithmic nostalgia, and technological ambivalence. Convergence 2023, 29, 620–640. [Google Scholar] [CrossRef]
- Yang, H.C.; Rahmanti, A.R.; Huang, C.W.; Jack Li, Y.C. How Can Research on Artificial Empathy Be Enhanced by Applying Deepfakes? J. Med. Internet Res. 2022, 24, e29506. [Google Scholar] [CrossRef] [PubMed]
- Godulla, A.; Hoffmann, C.P.; Seibert, D.M.A. Dealing with deepfakes—An interdisciplinary examination of the state of research and implications for communication studies. Stud. Commun. Media 2021, 10, 73–96. [Google Scholar] [CrossRef]
- Park, C.; Oh, I.; Choi, J.; Ko, S.; Ahn, J. Improved Prediction of Cancer Outcome Using Graph-Embedded Generative Adversarial Networks. IEEE Access 2021, 9, 20076–20088. [Google Scholar] [CrossRef]
- Uzunova, H.; Ehrhardt, J.; Jacob, F.; Frydrychowicz, A.; Handels, H. Multi-scale GANs for Memory-efficient Generation of High-Resolution Medical Images. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Shenzhen, China, 13–17 October 2019. [Google Scholar]
- Falahkheirkhah, K.; Tiwari, S.; Yeh, K.; Gupta, S.; Herrera-Hernandez, L.; McCarthy, M.R.; Jimenez, R.E.; Cheville, J.C.; Bhargava, R. Deepfake Histologic Images for Enhancing Digital Pathology. Lab. Investig. 2023, 103, 100006. [Google Scholar] [CrossRef]
- Chen, J.S.; Coyner, A.S.; Chan, R.V.P.; Hartnett, M.E.; Moshfeghi, D.M.; Owen, L.A.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Deepfakes in Ophthalmology. Ophthalmol. Sci. 2021, 1, 100079. [Google Scholar] [CrossRef] [PubMed]
- Morrow, E.; Zidaru, T.; Ross, F.; Mason, C.; Patel, K.D.; Ream, M.; Stockley, R. Artificial intelligence technologies and compassion in healthcare: A systematic scoping review. Front. Psychol. 2023, 13, 971044. [Google Scholar] [CrossRef]
- Sandelowski, M. What’s in a name? Qualitative description revisited. Res. Nurs. Health. 2010, 33, 77–84. [Google Scholar] [CrossRef]
- Kiles, T.M.; Vishenchuk, J.; Hohmeier, K.C. Implementation of Flipgrid as a Self-Reflection Tool for Student Engagement—A Pilot Study. Innov. Pharm. 2020, 11, 15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sebach, A.M. Exploring the Experiences of Doctor of Nursing Practice Students’ Use of Flipgrid to Create a Community of Inquiry in a Predominantly Online Program. Nurs. Educ. Perspect. 2022, 43, 121–123. [Google Scholar] [CrossRef]
- Kleftodimos, A.; Triantafillidou, A. The use of the Video Platform FlipGrid for Practicing Science Oral Communication. Tech. Trends Lead. Educ. Train. 2023, 2, 294–314. [Google Scholar] [CrossRef] [PubMed]
- Carter, N.; Bryant-Lukosius, D.; DiCenso, A.; Blythe, J.; Neville, A.J. The use of triangulation in qualitative research. Oncol. Nurs. Forum. 2014, 5, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Erlingsson, C.; Brysiewicz, P. A hands-on guide to doing content analysis. Afr. J. Emerg. Med. 2017, 3, 93–99. [Google Scholar] [CrossRef]
- Braun, V.; Clarke, V. Thematic analysis. In APA Handbook of Research Methods in Psychology, Vol 2: Research Designs: Quantitative, Qualitative, Neuropsychological, and Biological; American Psychological Association: Washington, DC, USA, 2012; pp. 57–71. [Google Scholar] [CrossRef]
- Faulkner, S.L.; Trotter, S.P. Theoretical Saturation. In The International Encyclopedia of Communication Research Methods; Wiley: Hoboken, NJ, USA, 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Sandelowski, M. Using Qualitative Research. Qual. Health Res. 2004, 14, 1366–1386. [Google Scholar] [CrossRef]
- Franganillo, J. Contenido generado por inteligencia artificial: Oportunidades y amenazas. Anu. ThinkEPI 2022, 16, e16a24. [Google Scholar] [CrossRef]
- Pavis, M. Rebalancing our regulatory response to Deepfakes with performers’ rights. Convergence 2021, 27, 974–998. [Google Scholar] [CrossRef]
- Köbis, N.C.; Doležalová, B.; Soraperra, I. Fooled twice: People cannot detect deepfakes but think they can. iScience 2021, 24, 103364. [Google Scholar] [CrossRef]
- Simó Soler, E. Retos jurídicos derivados de la inteligencia artificial generativa. InDret 2023, 2, 493–515. [Google Scholar] [CrossRef]
- Crystal, D.T.; Cuccolo, N.G.; Ibrahim, A.M.S.; Furnas, H.; Lin, S.J. Photographic and Video Deepfakes Have Arrived: How Machine Learning May Influence Plastic Surgery. Plast. Reconstr. Surg. 2020, 145, 1079–1086. [Google Scholar] [CrossRef]
- Gu, J.; Wang, X.; Li, C.; Zhao, J.; Fu, W.; Liang, G.; Qiu, J. AI-enabled image fraud in scientific publications. Patterns 2022, 3, 100511. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, L.; Yang, W.; Yu, R. Deepfakes: A new threat to image fabrication in scientific publications? Patterns 2022, 3, 100509. [Google Scholar] [CrossRef] [PubMed]
- Kalpokas, I.; Kalpokiene, J. Regulation: Public, Private, Autonomous? In Artificial Intelligence and Democracy: Risks and Opportunities; Springer: Cham, Switzerland, 2022; pp. 65–71. [Google Scholar] [CrossRef]
- Brooks, C.F. Popular Discourse Around Deepfakes and the Interdisciplinary Challenge of Fake Video Distribution. Cyberpsychol. Behav. Soc. Netw. 2021, 24, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Andersson, H.; Svensson, A.; Frank, C.; Rantala, A.; Holmberg, M.; Bremer, A. Ethics education to support ethical competence learning in healthcare: An integrative systematic review. BMC Med. Ethics 2022, 23, 66. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.; Santos, C.; Duarte, I. Bioethics education and the development of nursing students’ moral competence. Nurse Educ. Today 2020, 95, 104601. [Google Scholar] [CrossRef]
- Martins, V.S.M.; Santos, C.M.N.C.; Bataglia, P.U.R.; Duarte, I.M.R.F. The Teaching of Ethics and the Moral Competence of Medical and Nursing Students. Health Care Anal. 2021, 29, 113–126. [Google Scholar] [CrossRef]
- Thompson, S.M. Health information technology: Ethical concerns in nursing practice and research. Nursing 2022, 52, 40–43. [Google Scholar] [CrossRef]
Themes | Sub-Themes | Codes |
---|---|---|
Advantages | Social and economic benefits | Economic benefits |
Leisure and entertainment | ||
Advertising and marketing | ||
Disadvantages | Information hoaxes | Disinformation Fake or fraudulent news/Manipulation of public information Fake video editing Misuse of social networks |
Cyberbullying and other legal dangers | Tarnishing or discrediting someone’s public image Cyber attacks Unlawful profit-making purposes Identity theft Loss of privacy | |
Health applications | Diagnosis and therapies | Clinical diagnoses Cancer New therapies |
Nursing care | Training and education Influencing change in habits Alzheimer’s and cognitive problems | |
Thoughts on Microsoft’s chatbot | Negative aspects | Failure to cope with grief |
Positive aspects | Improving grief |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro Martínez, O.; Fernández-García, D.; Cuartero Monteagudo, N.; Forero-Rincón, O. Possible Health Benefits and Risks of DeepFake Videos: A Qualitative Study in Nursing Students. Nurs. Rep. 2024, 14, 2746-2757. https://doi.org/10.3390/nursrep14040203
Navarro Martínez O, Fernández-García D, Cuartero Monteagudo N, Forero-Rincón O. Possible Health Benefits and Risks of DeepFake Videos: A Qualitative Study in Nursing Students. Nursing Reports. 2024; 14(4):2746-2757. https://doi.org/10.3390/nursrep14040203
Chicago/Turabian StyleNavarro Martínez, Olga, David Fernández-García, Noemí Cuartero Monteagudo, and Olga Forero-Rincón. 2024. "Possible Health Benefits and Risks of DeepFake Videos: A Qualitative Study in Nursing Students" Nursing Reports 14, no. 4: 2746-2757. https://doi.org/10.3390/nursrep14040203
APA StyleNavarro Martínez, O., Fernández-García, D., Cuartero Monteagudo, N., & Forero-Rincón, O. (2024). Possible Health Benefits and Risks of DeepFake Videos: A Qualitative Study in Nursing Students. Nursing Reports, 14(4), 2746-2757. https://doi.org/10.3390/nursrep14040203