Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability
Abstract
:1. Introduction
1.1. Fertilization Methods and Excessive Use of Fertilizer
1.2. How Does Traditional Fertilizer Broadcasting Affect the Excessive Use of Fertilizers?
2. Methods and Materials
2.1. Data Collection
2.1.1. Sampling and Study Sites
2.1.2. Data Process and Analysis
3. Results
3.1. Descriptive Statistics
3.2. Discussion and Conclusions
- (1)
- How to adopt an integrated placement method in Bangladesh?
- (2)
- How to develop and adopt earthworm organic manure at an optimum level?
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- FAO (Food and Agriculture Organization of the United Nations). FAOSTAT Database: Agriculture Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Hasler, K.; Olfs, H.-W.; Omta, O.; Bröring, S. Drivers for the Adoption of Different Eco-Innovation Types in the Fertilizer Sector: A Review. Sustainability 2017, 9, 2216. [Google Scholar] [CrossRef]
- United Nations. Key Findings and Advance Tables. In World Population Prospects: The 2015 Revision, ESA/P/WP.241; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Hazell, P.; Wood, S. Drivers of change in global agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 495–515. [Google Scholar] [CrossRef] [PubMed]
- Pretty, J.; Hine, R. Reducing Food Poverty with Sustainable Agriculture: A Summary of New Evidence; University of Essex: Essex, UK, 2011. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D. The ecological consequences in changes in biodiversity: A search for general principles. Ecology 1999, 80, 1455–1474. [Google Scholar] [CrossRef]
- Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T.; Lehman, C. Diversity and productivity in a long-term grassland experiment. Science 2001, 294, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.Q.; Lyu, Y.; Wu, X.B.; Li, H.G.; Cheng, L.Y.; Zhang, C.C.; Yuan, L.X.; Jiang, R.F.; Jiang, B.W.; Rengel, Z.; et al. Grain production versus resource and environmental costs: Towards increasing sustainability of nutrient use in China. J. Exp. Bot. 2016, 67, 4935–4949. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bu, H.; Denton, A.; Franzen, D.W. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A. Sensors 2015, 15, 27832–27853. [Google Scholar] [CrossRef] [PubMed]
- Paustian, M.; Theuvsen, L. Adoption of Precision Agriculture technologies by German crop Farmers. Precis. Agric. 2017, 18, 701. [Google Scholar] [CrossRef]
- Yan, D.; Zhu, Y.; Wang, S.; Cao, W. A quantitative knowledge-based model for designing suitable growth dynamics in rice. Plant Prod. Sci. 2006, 9, 93–105. [Google Scholar] [CrossRef]
- Zhu, Y.; Cao, W.; Dai, T.; Tian, Y.; Yao, X. A knowledge model system for wheat production management. Pedosphere 2007, 17, 172–181. [Google Scholar] [CrossRef]
- Dobermann, A.; Cassman, K.G. Plant nutrient management for enhance productivity in intensive grain production systems of the United States and Asia. Plant Soil 2002, 247, 153–175. [Google Scholar] [CrossRef]
- Swietlik, D. Causes and Consequences of Overfertilization in Orchards. HortTechnology 1992, 2, 112–132. [Google Scholar]
- International Fertililizer Development Centre (IFDC). Fertilizer Deep Placement (FDP); IFDC: Muscle Shoals, AL, USA, 2013; Available online: https://ifdc.org/fertilizer-deep-placement/ (accessed on 14 August 2017).
- Bakhtiari, M.R.; Ghahraei, O.; Ahmad, D.; Yazdanpanah, A.R.; Jafari, A.M. Selection of fertilization method and fertilizer application rate on corn yield. Agric. Eng. Int. CIGR J. 2014, 16, 10–14. [Google Scholar]
- Alam, M.J.; Van Huylenbroeck, G.; Buysse, J.; Begum, I.A.; Rahman, S. Technical efficiency changes at the farm-level: A panel data analysis of rice farms in Bangladesh. Afr. J. Bus. Manag. 2011, 5, 5559–5566. [Google Scholar]
- Anam, T. Bangladesh’s Rotten-Mango Crisis. The New York Times, Sec.: The Opinion Pages. Web. Available online: http://www.nytimes.com/2014/07/03/opinion/tahmima-anam-bangladeshs-rotten-mango-crisis.html (accessed on 16 June 2017).
- Bangladesh Bureau of Statistics (BBS). Preliminary Report on the Agricultural Census of Bangladesh 2009; Bangladesh Bureau of Statistics (BBS): Dhaka, Bangladesh; Available online: http://www.bbs.gov.bd/dataindex/Pre-report-Agri-census-2008-Final.pdf (accessed on 11 May 2017).
- Sultana, J.; Siddique, M.N.A.; Abdullah, M.R. Fertilizer recommendation for Agriculture: Practice, practicalities and adaptation in Bangladesh and Netherlands. Int. J. Bus. Manag. Soc. Res. 2014, 1, 21–40. [Google Scholar] [CrossRef]
- Fertilizer Research Institute (FRI). Fertilizer Recommendation Guide; Bangladesh Agricultural Research Council (BARC): Dhaka, Bangladesh, 2012; p. 275. [Google Scholar]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Hossain, M.Z.; Islam, M.R. Response of transplanted rice to different application methods of urea fertilizer. Am.-Eur. J. Sustain. Agric. 2009, 5, 01–05. [Google Scholar]
- BRRI (Bangladesh Rice Research Institute). Nitrogen Fertilizer on Morpho-Physiological Adhunik Dhaner Chash (In Bengali), 14th ed.; Bangladesh Rice Research Institure: Gazipur, Bnagladesh, 2008; p. 39. [Google Scholar]
- Manono, B.O. Carbon dioxide, nitrous oxide and methane emissions from the Waimate District (New Zealand) pasture soils as influenced by irrigation, effluent dispersal and earthworms. Cogent Environ. Sci. 2016, 2, 1256564. [Google Scholar] [CrossRef]
- Kasraei, R. Plant Nutrition Science Abstract, 2nd ed.; Tabriz University Press: Tibriz, Iran, 1993. (In Farsi) [Google Scholar]
- Malakoti, M.J. Sustainable Agriculture and Yield Increase through Optimization of Fertilizer Usage in Iran, 2nd ed.; Agricultural Education: Tibriz, Iran, 1999. (In Farsi) [Google Scholar]
- Chen, J.; Tang, C.; Sakura, Y.; Yu, J.; Fukushima, J. Nitrate Pollution from Agriculture in Different Hydrogeological Zones of the Regional Groundwater Flow System in the North China Plain. Hydrogeol. J. 2005, 13, 481–492. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle, Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Aber, C.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H. Tilman, D.G. Human Alterations of the Global Nitrogen Cycyle: Sources and Consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar]
- Serpil, S. Investigation of effect of chemical fertilizers on environment. APCBEE Proc. 2012, 1, 287–292. [Google Scholar] [CrossRef]
- Bangladesh Agricultural Research Council (BARC). Fertilizer Recommendation Guide—2005; Soil Publications: Gazipur, Bangladesh, 2005. [Google Scholar]
- Good, A.G.; Beatty, P.H. Fertilizing Nature: A Tragedy of Excess in the Commons. PLoS Biol. 2011, 9, e1001124. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Hypoxia in the Northern Gulf of Mexico: An Update by the EPA Science Advisory Board; EPA-SAB-08-00; U.S. Environmental Protection Agency: Washington, DC, USA, 2007.
- East Pakistan Bureau of Statistics (EPBS). Statistical Abstract for East Pakistan (1950–51 to 1959–60); Govt. of East Pakistan, Bureau of Statistics: Dhaka, Pakistan, 1964.
- Quasem, M.A. Fertilizer Use in Bangladesh: 1965–66 to 1975–76; Bangladesh Institute of Development Studies: Dhaka, Bangladesh, 1978. [Google Scholar]
- Rahman, K.M.A. Agrochemical use, environmental and health hazards in Bangladesh. Int. Res. J. Interdis. Multidis. Stud. 2015, 1, 757–759. Available online: http://www.irjims.com/files/K_5xhsw1pt.M-Atiqur-Rahaman.pdf (accessed on 27 December 2017).
- Bruce, K. The Great Lakes. An Environmental Atlas and Resource Book, 1st ed.; US EPA & Environment Canada: Chicago, IL, USA, 1988; ISBN-13 978-0662234418. [Google Scholar]
- Karim, R.; Aktar, M.A. Fertilizer use pattern on agriculture in Salua area of Chougachha Upazila, Jessore, Bangladesh. J. Biosci. Agric. Res. 2016, 3, 96–103. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). Case Studies on Policies and Strategies for Sustainable Soil Fertility and Fertilizer Management in South Asia; Office of Knowledge Exchange, Research and Extension: Bangkok, Thailand, 2011; pp. 1–3. ISBN 978-92-5-106914-1. [Google Scholar]
- Singh, B.; Gupta, R.K.; Singh, Y.; Gupta, S.K.; Singh, J.; Bains, J.S.; Vashishta, M. Need-Based Nitrogen Management Using Leaf Color Chart in Wet Direct-Seeded Rice in Northwestern India. J. New Seeds 2006, 8, 35–47. [Google Scholar] [CrossRef]
- Kiran, J.K.; Khanif, Y.M.; Amminuddin, H.; Anuar, A.R. Effects of Controlled Release Urea on the Yield and Nitrogen Nutrition of Flooded Rice. Commun. Soil Sci. Plant Anal. 2010, 41, 811–819. [Google Scholar] [CrossRef]
- Cao, J.; Jing, Q.; Zhu, Y.; Liu, X.; Zhuang, S.; Chen, Q.; Cao, W. A Knowledge-Based Model for Nitrogen Management in Rice and Wheat. Plant Prod. Sci. 2009, 12, 100–108. [Google Scholar] [CrossRef]
- Schumann, A.W. Precise placement and variable rate fertilizer application technologies for horticultural crops. HortTechnology 2010, 20, 34–40. [Google Scholar]
- Szulc, P.; Waligóra, H.; Michalski, T.; Rybus-Zając, M.; Olejarski, P. Efficiency of nitrogen fertilization based on the fertilizer application method and type of maize cultivar (Zea mays L.). Plant Soil Environ. 2016, 62, 135–142. [Google Scholar] [CrossRef]
- Bangladesh Agricultural Research Council (BARC). Agricultural Technology Transfer Report—2015; BARC Press: Gazipur, Bangladesh, 2016. [Google Scholar]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003; p. 576. [Google Scholar]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Latawiec, A.E.; Królczyk, J.B.; Kuboń, M.; Szwedziak, K.; Drosik, A.; Polańczyk, E.; Grotkiewicz, K.; Strassburg, B.B.N. Willingness to Adopt Biochar in Agriculture: The Producer’s Perspective. Sustainability 2017, 9, 654. [Google Scholar] [CrossRef]
- Rose, A.M.C.; Grais, R.F.; Columbier, D.; Ritter, H. A comparison of cluster and systematic sampling methods for measuring crude mortality. Bull. World Health Organ. 2006, 84, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Pfeffermann, D.C.; Rao, R. Handbook of Statistics Vol.29 A Sample Surveys: Theory, Methods and Infernece; Elsevier B.V.: Amsterdam, The Netherlands, 2009; ISBN 978-0-444-53124-7. [Google Scholar]
- Ahmed, S. Methods in Sample Surveys; The Johns Hopkins University Press: Baltimore, MD, USA, 2009. [Google Scholar]
- Gardside, P.S.; Glueck, C.J. The Important Role of Modifiable Dietary and Behaviour Characteristic in the Causation and Prevention of Coronary Heart Disease Hospitalization and Mortality. J. Am. Coll. Nutr. 1955, 14, 717–719. [Google Scholar]
- Wang, P.; Putterman, M.L. Mixed logistic regression models. J. Agric. Biol. Environ. Stat. 1998, 3, 175–200. [Google Scholar] [CrossRef]
- Korkmaz, M.; Guney, S.; Yigiter, S.Y. The Importance of Logistic Regression Implementations in the Turkish Livestock Sector and Logistic Regression Implementations/Fields. Harran Tarim Ve Gida Bilimleri Dergisi. 2012, 16, 25–36. [Google Scholar]
- The World Bank (WB). World Development Indicators: Agricultural Inputs—2014; Data Bank: Washington, DC, USA, 2015. [Google Scholar]
- West, P.C.; Gerber, J.S.; Engstrom, P.M.; Mueller, N.D.; Brauman, K.A.; Carlson, K.M.; Cassidy, E.S.; Johnston, M.; MacDonald, G.K.; Ray, D.K.; et al. Leverage points for improving global food security and the environment. Science 2014, 345, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Chianu, J.N.; Tsujii, H. Determinants of farmers’ decision to adopt or not adopt inorganic fertilizer in the savannas of northern Nigeria. Nutr. Cycl. Agroecosyst. 2004, 70, 293–301. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, H.; Mosler, H.-J.; Abbaspour, K.C. Factors affecting farmers decisions on fertilizer use: A case study for the Chaobai watershed in Northern China. Consil. J. Sustain. Dev. 2010, 4, 80–102. [Google Scholar] [CrossRef]
- Pan, D.; Kong, F.; Zhang, N.; Ying, R. Knowledge training and the change of fertilizer use intensity: Evidence from wheat farmers in China. J. Environ. Manag. 2017, 197, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Huq, S.I.; Shoaib, J.M. The Soils of Bangladesh; Springer: Dordrecht, The Netharland, 2013; Volume 1, ISBN 978-94-007-1128-0. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Yamao, M.; Alam, M. Barriers faced by small farmers in adopting the integrated plant nutrient system for sustainable farming development. Sabaragamuwa Univ. J. 2007, 7, 3–21. [Google Scholar] [CrossRef]
- Hawkins, A. Time, Method of Application, and Placement of Fertilizer for Efficient Production of Potatoes in New England. Am. Potato J. 1954, 31, 106–113. [Google Scholar] [CrossRef]
- Hofman, G.; Verstegen, P.; Demyttenaere, P.; Van Meirvenne, M.; Delanote, P.; Ampe, G. Comparison of row and broadcast N application on N efficiency and yield of potatoes. In Optimization of Plant Nutrition. Developments in Plant and Soil Sciences; Fragoso, M.A.C., Van Beusichem, M.L., Houwers, A., Eds.; Springer: Dordrecht, The Netherland, 1993; Volume 53. [Google Scholar] [CrossRef]
- Lacerda, M.C.; Nascente, A.S.; Carvalho, M.C.S.; Mondo, V.H.V. Broadcast fertilizer rate impacts common bean grain yield in a no-tillage system. Afr. J. Agric. Res. 2015, 10, 1773–1779. [Google Scholar] [CrossRef]
- Kurihara, C.H.; Hernani, L.C. Adubação Antecipada da soja em Plantio Direto Requer Observação de Alguns Critérios. Available online: http://www.diadecampo.com.br/zpublisher/materias/Materia.asp?secao=Artigos%20Especiais&id=25155 (accessed on 21 July 2013).
- Fountas, S.; Blackmore, S.; Ess, D.; Hawkins, S.; Blumhoff, G.; Lowenberg-De Boer, J.; Sorenson, C.G. Farmers experience with precision agriculture in Denmark and the US eastern corn belt. Precis. Agric. 2005, 6, 121–141. [Google Scholar] [CrossRef]
- Stafford, J.V. Implementing precision agriculture in the 21st century. J. Agric. Eng. Res. 2000, 76, 267–275. [Google Scholar] [CrossRef]
- Reichardt, M.; Jürgens, C.; Klöble, U.; Hüter, J.; Moser, K. Dissemination of precision farming in Germany: Acceptance, adoption, obstacles, knowledge transfer and training activities. Precis. Agric. 2009, 10, 525–545. [Google Scholar] [CrossRef]
- Aubert, B.A.; Schroeder, A.; Grimaudo, J. IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 2012, 54, 510–520. [Google Scholar] [CrossRef]
- McBride, W.D.; Daberkow, S.G. Information and the adoption of precision farming technologies. J. Agribus. 2003, 21, 21–38. [Google Scholar]
- Ju, X.; Gu, B.; Wu, Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Chang. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Department of Agricultural Extension (DAE). Technology Transfer Report, 2008; DAE: Dhaka, Bangladesh, 2013. [Google Scholar]
- Randall, G.W.; Hoeft, R.G. Placement Methods for Improved Efficiency of P and K Fertilizers: A Review. J. Prod. Agric. 1988, 1, 70–79. [Google Scholar] [CrossRef]
Variables | Attributes | Percentage | SD | V |
---|---|---|---|---|
Age | <30 years | 36.4 | 0.49 | 0.24 |
>31 years | 63.6 | |||
Income | <BDT 6000.00 | 84.8 | 0.73 | 0.54 |
>BDT 6000.00 | 15.2 | |||
Education | Informally Educated | 47.4 | 0.5 | 0.25 |
Literate (up to12th grade) | 52.6 | |||
Amount of Fertilization | Excessive Use (YES) | 63.3 | 0.48 | 0.24 |
Small Amount (NO) | 36.7 | |||
Agro training Adoption | YES | 34.3 | 0.48 | 0.23 |
NO | 65.7 | |||
Fertilizer Broadcasting | YES | 62.9 | 0.72 | 0.60 |
NO | 19.5 | |||
Land Ownership | Landless (YES) | 61.0 | 0.49 | 0.24 |
Non-rental landowners (NO) | 39.0 | |||
Environmental Consciousness | YES | 25.7 | 0.44 | 0.19 |
NO | 74.3 | |||
Rental Land Farming | YES | 32.4 | 0.47 | 0.22 |
NO | 67.6 | |||
Cooperation of Ext. Agency | YES | 36.2 | 0.67 | 0.45 |
NO | 63.8 |
Chi-Square | df | Significance | |
---|---|---|---|
Step 1 Step | 16.875 | 10 | 0.047 |
Block | 16.875 | 10 | 0.047 |
Model | 16.875 | 10 | 0.047 |
−2 Log Likelihood | Cox & Snell R Square | Nagelkerte R Square | |
261.13 | 0.047 | 0.103 |
Predicted | ||||
---|---|---|---|---|
Observed | Excessive Use of Fert. | |||
Excessive Use of Fertilizers (1) | Small or Rational Amounts (0) | Percentage Corrected | ||
Step 1 Excessive Use of Fertilizer | Excessive Use of Fert. | 115 | 18 | 86.5 |
Small or Rational Use | 54 | 24 | 30.8 | |
Overall Percentage | 65.9 |
Step1 | β | Standard Error | Wald | Significance |
---|---|---|---|---|
Male | 0.237 | 0.391 | 0.368 | 0.544 |
Farmers Younger than 30 | 0.588 | 0.376 | 2.451 | 0.084 * |
Informally Educated | 0.563 | 0.312 | 3.25 | 0.071 * |
Farmers of Low Income | 0.144 | 0.329 | 0.192 | 0.661 |
Untrained | −0.297 | 0.328 | 0.819 | 0.365 |
Traditional Broadcasting Method | 0.891 | 0.309 | 8.333 | 0.004 *** |
Landlessness | 0.194 | 0.317 | 0.375 | 0.540 |
Environmentally Unconscious | 0.000 | 0.343 | 0.000 | 1.000 |
Rental Land Farming | 0.168 | 0.345 | 0.237 | 0.627 |
Non-cooperative Extension Agency | −0.132 | 0.336 | 0.154 | 0.695 |
Constant | −2.252 | 1.261 | 3.188 | 0.074 |
Variables | β | Exponential (β) | 95.0% C.I for Exponential(β) | |
---|---|---|---|---|
Lower | Upper | |||
Male (0) | 0.237 | 1.268 | 0.589 | 2.73 |
Farmers under 30 (1) | 0.588 | 1.891 | 0.662 | 3.763 |
Informally Educated (0) | 0.563 | 1.756 | 0.952 | 3.237 |
Low Income (0) | 0.144 | 1.155 | 0.607 | 2.199 |
Untrained (1) | −0.297 | 0.743 | 0.391 | 1.414 |
Traditional Broadcasting Method (0) | 0.891 | 2.438 | 1.331 | 4.465 |
Landless (0) | 0.194 | 1.214 | 0.652 | 2.262 |
Environmentally Unconscious (1) | 0.000 | 1.000 | 0.510 | 1.96 |
Rental Land Farming (0) | 0.168 | 1.183 | 0.601 | 2.326 |
Non-cooperative Extension Agency (1) | −0.132 | 0.877 | 0.454 | 1.693 |
Constant | −2.252 | 0.105 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, K.M.A.; Zhang, D. Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability. Sustainability 2018, 10, 759. https://doi.org/10.3390/su10030759
Rahman KMA, Zhang D. Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability. Sustainability. 2018; 10(3):759. https://doi.org/10.3390/su10030759
Chicago/Turabian StyleRahman, K. M. Atikur, and Dunfu Zhang. 2018. "Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability" Sustainability 10, no. 3: 759. https://doi.org/10.3390/su10030759
APA StyleRahman, K. M. A., & Zhang, D. (2018). Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability. Sustainability, 10(3), 759. https://doi.org/10.3390/su10030759