Research on Construction Engineering Project Risk Assessment with Some 2-Tuple Linguistic Neutrosophic Hamy Mean Operators
Abstract
:1. Introduction
2. Preliminaries
2.1. 2TLSs
2.2. SVNSs
2.3. 2TLNSs
- (1)
- if , then
- (2)
- if , then
- (3)
- if , then
- (4)
- if , then
- (5)
- if , then
- (1)
- (2)
- (3)
- (4)
2.4. HM Operator
3. Some 2TLNHM Operators
3.1. 2TLNHM Operator
- ①
- ②
3.2. The 2TLNWHM Operator
- ①
- ②
3.3. The 2TLNDHM Operator
- ①
- ②
3.4. The 2TLNWDHM Operator
- ①
- ②
4. Numerical Example and Comparative Analysis
4.1. Numerical Example
4.2. Influence of the Parameter on the Final Result
4.3. Comparative Analysis
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis; American Research Press: Rehoboth, DE, USA, 1998. [Google Scholar]
- Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics, 3rd ed.; Phoenix: Xiquan, China, 2003. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct. 2010, 4, 410–413. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. General Syst. 2013, 42, 386–394. [Google Scholar] [CrossRef]
- Broumi, S.; Smarandache, F. Correlation coefficient of interval neutrosophic set. Appl. Mech. Mater. 2013, 436, 511–517. [Google Scholar] [CrossRef]
- Biswas, P.; Pramanik, S.; Giri, B.C. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. 2016, 27, 727–737. [Google Scholar] [CrossRef]
- Liu, P.D.; Chu, Y.C.; Li, Y.W.; Chen, Y.B. Some generalized neutrosophic number Hamacher aggregation operators and their application to Group Decision Making. Int. J. Fuzzy Syst. 2014, 16, 242–255. [Google Scholar]
- Sahin, R.; Liu, P.D. Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information. Neural Comput. Appl. 2016, 27, 2017–2029. [Google Scholar] [CrossRef]
- Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. J. Intell. Fuzzy Syst. 2014, 26, 165–172. [Google Scholar]
- Zhang, H.Y.; Wang, J.Q.; Chen, X.H. Interval neutrosophic sets and their application in multicriteria decision making problems. Sci. Word J. 2014, 2014, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
- Peng, J.J.; Wang, J.Q.; Wang, J.; Zhang, H.Y.; Chen, X.H. Simplified neutrosophic sets and their applications in multicriteria group decision-making problems. Int. J. Syst. Sci. 2016, 47, 2342–2358. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336–346. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.Q.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with interval-valued neutrosophic sets. Neural Comput. Appl. 2016, 27, 615–627. [Google Scholar] [CrossRef]
- Liu, P.D.; Xi, L. The neutrosophic number generalized weighted power averaging operator and its application in multiple attribute group decision making. Int. J. Mach. Learn. Cybernet. 2016. [Google Scholar] [CrossRef]
- Deli, I.; Şubaş, Y. A ranking method of single valued neutrosophic numbers and its applications to multiattribute decision making problem. Int. J. Mach. Learn. Cybernet. 2017, 8, 1309–1322. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Wu, X.H.; Wang, J.; Chen, X.H. Multi-valued neutrosophic sets and power aggregation operators with their applications in multi-criteria group decision-making problems. Int. J. Comput. Intell. Syst. 2015, 8, 345–363. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Ji, P.; Wang, J.Q.; Chen, X.H. An improved weighted correlation coefficient based on integrated weight for interval neutrosophic sets and its application in multi-criteria decision-making problems. Int. J. Comput. Intell. Syst. 2015, 8, 1027–1043. [Google Scholar] [CrossRef]
- Chen, J.Q.; Ye, J. Some Single-Valued Neutrosophic Dombi Weighted Aggregation Operators for Multiple Attribute Decision-Making. Symmetry 2017, 9, 82. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, Y.M. Multiple attribute decision making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, J.Q.; Peng, J.J.; Chen, X.H. Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. J. Intell. Fuzzy Syst. 2016, 18, 1104–1116. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.; Chen, Y. Some Single Valued Neutrosophic Number Heronian Mean Operators and Their Application in Multiple Attribute Group Decision Making. Informatica 2016, 27, 85–110. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Bausys, R.; Juodagalviene, B.; Garnyte-Sapranaviciene, I. Model for residential house element and material selection by neutrosophic MULTIMOORA method. Eng. Appl. Artif. Intell. 2017, 64, 315–324. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Bausys, R.; Kaklauskas, A.; Ubarte, I.; Kuzminske, A.; Gudiene, N. Sustainable market valuation of buildings by the single-valued neutrosophic MAMVA method. Appl. Soft Comput. 2017, 57, 74–87. [Google Scholar] [CrossRef]
- Bausys, R.; Juodagalviene, B. Garage location selection for residential house by WASPAS-SVNS method. J. Civ. Eng. Manag. 2017, 23, 421–429. [Google Scholar] [CrossRef]
- Wu, Q.; Wu, P.; Zhou, L.G.; Chen, H.Y.; Guan, X.J. Some new Hamacher aggregation operators under single-valued neutrosophic 2-tuple linguistic environment and their applications to multi-attribute group decision making. Comput. Ind. Eng. 2017, 116. [Google Scholar] [CrossRef]
- Herrera, F.; Martinez, L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 2000, 8, 746–752. [Google Scholar]
- Hara, T.; Uchiyama, M.; Takahasi, S.E. A refinement of various mean inequalities. J. Inequal. Appl. 1998, 2, 387–395. [Google Scholar] [CrossRef]
- Fang, Z.; Ye, J. Multiple Attribute Group Decision-Making Method Based on Linguistic Neutrosophic Numbers. Symmetry 2017, 9, 111. [Google Scholar] [CrossRef]
- Shi, L.; Ye, J. Cosine Measures of Linguistic Neutrosophic Numbers and Their Application in Multiple Attribute Group Decision-Making. Information 2017, 8, 117. [Google Scholar]
- Chen, T. The inclusion-based TOPSIS method with interval-valued intuitionistic fuzzy sets for multiple criteria group decision making. Appl. Soft Comput. 2015, 26, 57–73. [Google Scholar] [CrossRef]
- Pérez-Fernández, R. Monotonicity-based consensus states for the monometric rationalisation of ranking rules with application in decision making. Int. J. Approx. Reason. 2018, 16, 109–110. [Google Scholar] [CrossRef]
- Gao, H.; Wei, G.; Huang, Y. Dual Hesitant Bipolar Fuzzy Hamacher Prioritized Aggregation Operators in Multiple Attribute Decision Making. IEEE Access 2018, 6, 11508–11522. [Google Scholar] [CrossRef]
- Krishnamurthy, M.; Marcinek, P.; Malik, K.M.; Afzal, M. Representing Social Network Patient Data as Evidence-Based Knowledge to Support Decision Making in Disease Progression for Comorbidities. IEEE Access 2018, 6, 12951–12965. [Google Scholar] [CrossRef]
- Rahman, M.A.; Mezhuyev, V.; Bhuiyan, M.Z.A.; Sadat, S.N.; Zakaria, S.A.B.; Refat, N. Reliable Decision Making of Accepting Friend Request on Online Social Networks. IEEE Access 2018, 6, 9484–9491. [Google Scholar] [CrossRef]
- Ma, X.; Zhan, J.; Ali, M.I.; Mehmood, N. A survey of decision making methods based on two classes of hybrid soft set models. Artif. Intell. Rev. 2018, 49, 511–529. [Google Scholar] [CrossRef]
- Garg, H.; Arora, R. Generalized and group-based generalized intuitionistic fuzzy soft sets with applications in decision-making. Appl. Intell. 2018, 48, 343–356. [Google Scholar] [CrossRef]
- Tang, X.Y.; Wei, G.W. Models for green supplier selection in green supply chain management with Pythagorean 2-tuple linguistic information. IEEE Access 2018, 6, 18042–18060. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M. Pythagorean Fuzzy Maclaurin Symmetric Mean Operators in multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 1043–1070. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, Q. Multi-attribute group decision making under probabilistic hesitant fuzzy environment with application to evaluate the transformation efficiency. Appl. Intell. 2018, 48, 953–965. [Google Scholar] [CrossRef]
- Wu, P.; Liu, S.; Zhou, L.; Chen, H. A fuzzy group decision making model with trapezoidal fuzzy preference relations based on compatibility measure and COWGA operator. Appl. Intell. 2018, 48, 46–67. [Google Scholar] [CrossRef]
- Kamacı, H.; Atagün, A.O.; Sönmezoğlu, A. Row-products of soft matrices with applications in multiple-disjoint decision making. Appl. Soft Comput. 2018, 62, 892–914. [Google Scholar] [CrossRef]
- Wei, G.W.; Gao, H.; Wei, Y. Some q-Rung Orthopair Fuzzy Heronian Mean Operators in Multiple Attribute Decision Making. Int. J. Intell. Syst. 2018. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M.; Tang, X.Y.; Wei, Y. Pythagorean Hesitant Fuzzy Hamacher Aggregation Operators and Their Application to Multiple Attribute Decision Making. Int. J. Intell. Syst. 2018, 1–37. [Google Scholar] [CrossRef]
- Liao, H.C.; Yang, L.Y.; Xu, Z.S. Two new approaches based on ELECTRE II to solve the multiple criteria decision making problems with hesitant fuzzy linguistic term sets. Appl. Soft Comput. 2018, 63, 223–234. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Z.-L.; Wu, Y.-H. A group decision making model based on triangular fuzzy additive reciprocal matrices with additive approximation-consistency. Appl. Soft Comput. 2018, 65, 349–359. [Google Scholar] [CrossRef]
- Liang, H.; Xiong, W.; Dong, Y. A prospect theory-based method for fusing the individual preference-approval structures in group decision making. Comput. Ind. Eng. 2018, 117, 237–248. [Google Scholar] [CrossRef]
- Wu, T.; Liu, X.; Qin, J. A linguistic solution for double large-scale group decision-making in E-commerce. Comput. Ind. Eng. 2018, 116, 97–112. [Google Scholar] [CrossRef]
- Wu, H.; Xu, Z.; Ren, P.; Liao, H. Hesitant fuzzy linguistic projection model to multi-criteria decision making for hospital decision support systems. Comput. Ind. Eng. 2018, 115, 449–458. [Google Scholar] [CrossRef]
- Xu, Y.; Wen, X.; Zhang, W. A two-stage consensus method for large-scale multi-attribute group decision making with an application to earthquake shelter selection. Comput. Ind. Eng. 2018, 116, 113–129. [Google Scholar] [CrossRef]
G1 | G2 | G3 | G4 | |
---|---|---|---|---|
A1 | <(s4, 0), (s3, 0) (s2, 0)> | <(s5, 0), (s3, 0) (s1, 0)> | <(s4, 0), (s1, 0) (s2, 0)> | <(s2, 0), (s3, 0) (s2, 0)> |
A2 | <(s3, 0), (s2, 0) (s4, 0)> | <(s4, 0), (s2, 0) (s2, 0)> | <(s3, 0), (s2, 0) (s2, 0)> | <(s4, 0), (s3, 0) (s3, 0)> |
A3 | <(s5, 0), (s4, 0) (s3, 0)> | <(s4, 0), (s4, 0) (s3, 0)> | <(s2, 0), (s1, 0) (s2, 0)> | <(s4, 0), (s3, 0) (s2, 0)> |
A4 | <(s2, 0), (s1, 0) (s2, 0)> | <(s5, 0), (s1, 0) (s2, 0)> | <(s4, 0), (s3, 0) (s5, 0)> | <(s3, 0), (s1, 0) (s1, 0)> |
A5 | <(s4, 0), (s3, 0) (s1, 0)> | <(s5, 0), (s2, 0) (s2, 0)> | <(s3, 0), (s2, 0) (s1, 0)> | <(s3, 0), (s2, 0) (s2, 0)> |
G1 | G2 | G3 | G4 | |
---|---|---|---|---|
A1 | <(s3, 0), (s2, 0) (s3, 0)> | <(s3, 0), (s3, 0) (s2, 0)> | <(s3, 0), (s1, 0) (s2, 0)> | <(s4, 0), (s1, 0) (s3, 0)> |
A2 | <(s2, 0), (s3, 0) (s3, 0)> | <(s3, 0), (s3, 0) (s3, 0)> | <(s3, 0), (s2, 0) (s2, 0)> | <(s3, 0), (s4, 0) (s3, 0)> |
A3 | <(s2, 0), (s3, 0) (s3, 0)> | <(s3, 0), (s2, 0) (s2, 0)> | <(s2, 0), (s3, 0) (s1, 0)> | <(s3, 0), (s2, 0) (s4, 0)> |
A4 | <(s3, 0), (s2, 0) (s2, 0)> | <(s2, 0), (s2, 0) (s3, 0)> | <(s3, 0), (s4, 0) (s2, 0)> | <(s3, 0), (s1, 0) (s2, 0)> |
A5 | <(s3, 0), (s2, 0) (s1, 0)> | <(s3, 0), (s4, 0) (s3, 0)> | <(s4, 0), (s1, 0) (s1, 0)> | <(s2, 0), (s3, 0) (s2, 0)> |
G1 | G2 | G3 | G4 | |
---|---|---|---|---|
A1 | <(s3, 0), (s3, 0) (s1, 0)> | <(s4, 0), (s2, 0) (s1, 0)> | <(s4, 0), (s4, 0) (s3, 0)> | <(s4, 0), (s1, 0) (s3, 0)> |
A2 | <(s2, 0), (s2, 0) (s2, 0)> | <(s4, 0), (s4, 0) (s4, 0)> | <(s3, 0), (s2, 0) (s3, 0)> | <(s2, 0), (s1, 0) (s3, 0)> |
A3 | <(s2, 0), (s1, 0) (s2, 0)> | <(s3, 0), (s2, 0) (s2, 0)> | <(s4, 0), (s5, 0) (s2, 0)> | <(s2, 0), (s4, 0) (s4, 0)> |
A4 | <(s3, 0), (s1, 0) (s2, 0)> | <(s2, 0), (s1, 0) (s2, 0)> | <(s3, 0), (s4, 0) (s5, 0)> | <(s5, 0), (s3, 0) (s1, 0)> |
A5 | <(s3, 0), (s3, 0) (s2, 0)> | <(s3, 0), (s2, 0) (s2, 0)> | <(s3, 0), (s2, 0) (s3, 0)> | <(s5, 0), (s3, 0) (s4, 0)> |
A1 | <(s3, 0.2337), (s3, −0.4492), (s2, −0.2174)> | <(s4, −0.0477), (s3, −0.4492), (s1, 0.3195)> |
A2 | <(s2, 0.2236), (s2, 0.3522), (s3, −0.2981)> | <(s4, −0.3522), (s3, 0.1037),(s3, 0.1037)> |
A3 | <(s3, −0.0314), (s2, 0.0477), (s3, −0.4492)> | <(s3, 0.2337), (s2, 0.2974), (s2, 0.1689)> |
A4 | <(s3, −0.1777), (s1, 0.3195), (s2, 0.0000)> | <(s3, −0.0314), (s1, 0.3195), (s2, 0.3522)> |
A5 | <(s3, 0.2337), (s3, −0.4492), (s1, 0.3195)> | <(s4, −0.4082), (s3, −0.3610), (s2, 0.3522)> |
A1 | <(s4, −0.3522), (s2, −0.2589), (s2, 0.3522)> | <(s4, −0.2974), (s1, 0.2457), (s3, −0.2337)> |
A2 | <(s3, 0.000), (s2, 0.0000), (s2, 0.3522)> | <(s3, −0.1037), (s2,0.1689), (s3, 0.0000)> |
A3 | <(s3, −0.0314), (s3, −0.0458), (s2, −0.4843)> | <(s3, -−0.1037), (s3, −0.1381), (s3,0.4822)> |
A4 | <(s3, 0.2337), (s4, −0.2236), (s3, 0.4657)> | <(s4, 0.0668), (s2, −0.4482), (s1,0.3195)> |
A5 | <(s3, 0.4492), (s2, −0.4843), (s2, −0.4482)> | <(s4, −0.1689), (s3, −0.2337),(s3, −0.3610)> |
2TLNWHM | 2TLNWDHM | |
---|---|---|
A1 | <(s5, 0.3257), (s1, −0.4776), (s1, −0.4012)> | <(s1, 0.1564), (s5, −0.4119), (s5, −0.2877)> |
A2 | <(s5, 0.0468), (s1, −0.3632), (s1, −0.2177)> | <(s1, −0.1456), (s5, −0.2124), (s5, −0.0171)> |
A3 | <(s5, 0.1002), (s1, −0.2491), (s1, −0.3474)> | <(s1, −0.1092), (s5, −0.0603), (s5, −0.1946)> |
A4 | <(s5, 0.2143), (s1, −0.3927), (s1, −0.3263)> | <(s1, 0.0275), (s5, −0.2639), (s5, −0.1713)> |
A5 | <(s5, 0.2941), (s1, −0.3870), (s1, −0.4981)> | <(s1, −0.1127), (s5, −0.2367), (s5, −0.4415)> |
2TLNWHM | 2TLNWDHM | |
---|---|---|
A1 | (s5, 0.4015) | (s1, 0.2853) |
A2 | (s5, 0.2092) | (s1, 0.0280) |
A3 | (s5, 0.2323) | (s1, 0.0486) |
A4 | (s5, 0.3111) | (s1, 0.1542) |
A5 | (s5, 0.3930) | (s1, 0.2636) |
Ordering | |
---|---|
2TLNWHM | A1 > A5 > A4 > A3 > A2 |
2TLNWDHM | A1 > A5 > A4 > A3 > A2 |
s(A1) | s(A2) | s(A3) | s(A4) | s(A5) | Ordering | |
---|---|---|---|---|---|---|
0.9134 | 0.8799 | 0.8865 | 0.9070 | 0.9065 | A1 > A4 > A5 > A3 > A2 | |
0.9003 | 0.8682 | 0.8720 | 0.8852 | 0.8988 | A1 > A5 > A4 > A3 > A2 | |
0.8953 | 0.8642 | 0.8661 | 0.8696 | 0.8958 | A5 > A1 > A4 > A3 > A2 | |
0.8927 | 0.8621 | 0.8627 | 0.8571 | 0.8942 | A5 > A1 > A2 > A3 > A4 |
s(A1) | s(A2) | s(A3) | s(A4) | s(A5) | Ordering | |
---|---|---|---|---|---|---|
0.1922 | 0.1489 | 0.1557 | 0.1796 | 0.1817 | A1 > A5 > A4 > A3 > A2 | |
0.2142 | 0.1713 | 0.1748 | 0.1924 | 0.2106 | A1 > A5 > A4 > A3 > A2 | |
0.2239 | 0.1815 | 0.1852 | 0.1965 | 0.2252 | A5 > A1 > A4 > A3 > A2 | |
0.2293 | 0.1878 | 0.1922 | 0.1985 | 0.2342 | A5 > A1 > A4 > A3 > A2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Wang, J.; Wei, G.; Wei, Y. Research on Construction Engineering Project Risk Assessment with Some 2-Tuple Linguistic Neutrosophic Hamy Mean Operators. Sustainability 2018, 10, 1536. https://doi.org/10.3390/su10051536
Wu S, Wang J, Wei G, Wei Y. Research on Construction Engineering Project Risk Assessment with Some 2-Tuple Linguistic Neutrosophic Hamy Mean Operators. Sustainability. 2018; 10(5):1536. https://doi.org/10.3390/su10051536
Chicago/Turabian StyleWu, Shengjun, Jie Wang, Guiwu Wei, and Yu Wei. 2018. "Research on Construction Engineering Project Risk Assessment with Some 2-Tuple Linguistic Neutrosophic Hamy Mean Operators" Sustainability 10, no. 5: 1536. https://doi.org/10.3390/su10051536
APA StyleWu, S., Wang, J., Wei, G., & Wei, Y. (2018). Research on Construction Engineering Project Risk Assessment with Some 2-Tuple Linguistic Neutrosophic Hamy Mean Operators. Sustainability, 10(5), 1536. https://doi.org/10.3390/su10051536