Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy
Abstract
:1. Introduction
2. Rebound Effects from Policy: Lessons from Past Research
2.1. Explicit and Consistent Scope: from Exogenous to Endogenous Technical Changes
2.2. Changes in Product Attributes: from Fixed Output to Comparable Functionality
2.3. Rebound Mechanisms: from Direct to Macro-Economic Effects
2.4. Indicators: from Direct Energy Use to Multiple Life Cycle Environmental Indicators
3. Resource Efficiency Policies and Rebound Effects
3.1. Energy Services and Mobility
3.2. Buildings
3.3. Food
4. Discussion: How to Address Rebound Effects from Resource Efficiency Policy?
4.1. Scope and Method Design
4.1.1. The Role of LCA in Policy Impact Assessment
4.1.2. Macro-Economic Effects
4.2. Knowledge Gaps and Research Priorities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- OECD. Policy Guidance on Resource Efficiency; OECD: Paris, France, 2016. [Google Scholar]
- European Commision. Roadmap to a Resource Efficient Europe; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- European Commission. Closing the Loop—An EU Action Plan for the Circular Economy; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- European Commision. Analysis Associated with the Roadmap to a Resource Efficient Europe Part II; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Greening, A.; Greene, D.L.; Difiglio, C. Energy efficiency and consumption—The rebound effect—A survey. Energy Policy 2000, 28, 389–401. [Google Scholar] [CrossRef]
- Berbel, J.; Gutiérrez-Martín, C.; Rodríguez-Díaz, J.A.; Camacho, E.; Montesinos, P. Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study. Water Resour. Manag. 2015, 29, 663–678. [Google Scholar] [CrossRef]
- Campbell, H.E.; Johnson, R.M.; Larson, E.H. Prices, Devices, People, or Rules: The Relative Effectiveness of Policy Instruments in Water Conservation1. Rev. Policy Res. 2004, 21, 637–662. [Google Scholar] [CrossRef]
- Jevons, W.S. The Coal Question. An Inquiry Concerning the Progress of the Nation and the Probable Exhaustion of Our Coal-Mines; Macmillan: London, UK, 1865. [Google Scholar]
- Khazzoom, J.D. Economic implications of mandated efficiency in standards for household appliances. Energy J. 1980, 1, 21–40. [Google Scholar]
- Brookes, L. The greenhouse effect: The fallacies in the energy efficiency solution. Energy Policy 1990, 18, 199–201. [Google Scholar] [CrossRef]
- Sorrell, S.; Centre, U.K.E.R. The Rebound Effect: An Assessment of the Evidence for Economy-Wide Energy Savings from Improved Energy Efficiency; Project Report; UKERC: London, UK, 2007. [Google Scholar]
- Font Vivanco, D.; McDowall, W.; Freire-González, J.; Kemp, R.; van der Voet, E. The foundations of the environmental rebound effect and its contribution towards a general framework. Ecol. Econ. 2016, 125, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Font Vivanco, D.; Kemp, R.; van der Voet, E. How to deal with the rebound effect? A policy-oriented approach. Energy Policy 2016, 94. [Google Scholar] [CrossRef]
- Maxwell, D.; Owen, P.; McAndrew, L.; Muehmel, K.; Neubauer, A. Addressing the Rebound Effect, a Report for the European Commission DG Environment; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- DCENR. National Energy Efficiency Action Plan 2014; Department of communications, Energy and Natural Resources: Dublin, Ireland, 2014.
- IRGC. The Rebound Effect: Implications of Consumer Behaviour for Robust Energy Policies; International Risk Governance Council: Lausane, Switzerland, 2013. [Google Scholar]
- Jenkins, J.; Nordhaus, T.; Shellenberger, M. Energy Emergence: Rebound and Backfire as Emergent Phenomena; The Breakthrough Institute: Oakland, CA, USA, 2011. [Google Scholar]
- Walnum, H.; Aall, C.; Løkke, S. Can Rebound Effects Explain Why Sustainable Mobility Has Not Been Achieved? Sustainability 2014, 6, 9510–9537. [Google Scholar] [CrossRef] [Green Version]
- Barker, T.; Ekins, P.; Foxon, T. Macroeconomic effects of efficiency policies for energy-intensive industries: The case of the UK Climate Change Agreements, 2000–2010. Energy Econ. 2007, 29, 760–778. [Google Scholar] [CrossRef]
- Gillingham, K.; Rapson, D.; Wagner, G. The Rebound Effect and Energy Efficiency Policy. Rev. Environ. Econ. Policy 2016, 10, 68–88. [Google Scholar] [CrossRef]
- Font Vivanco, D.; van der Voet, E. The rebound effect through industrial ecology’s eyes: A review of LCA-based studies. Int. J. Life Cycle Assess. 2014, 19. [Google Scholar] [CrossRef]
- EC. Better Regulation “Toolbox”; EC: Brussels, Belgium, 2015. [Google Scholar]
- Bartels, C.P.A.; Nicol, W.R.; van Duijn, J.J. Estimating the impact of regional policy: A review of applied research methods. Reg. Sci. Urban Econ. 1982, 12, 3–41. [Google Scholar] [CrossRef]
- Wood, R.; Moran, D.; Stadler, K.; Ivanova, D.; Steen-Olsen, K.; Tisserant, A.; Hertwich, E.G. Prioritizing Consumption-Based Carbon Policy Based on the Evaluation of Mitigation Potential Using Input-Output Methods. J. Ind. Ecol. 2017. [Google Scholar] [CrossRef]
- Freire-González, J. Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households. Ecol. Model. 2011, 223, 32–40. [Google Scholar] [CrossRef]
- D’Haultfœuille, X.; Givord, P.; Boutin, X. The Environmental Effect of Green Taxation: The Case of the French Bonus/Malus. Econ. J. 2014, 124, F444–F480. [Google Scholar] [CrossRef] [Green Version]
- Saunders, H.D. A view from the macro side: Rebound, backfire, and Khazzoom-Brookes. Energy Policy 2000, 28, 439–449. [Google Scholar] [CrossRef]
- Hennessy, H.; Tol, R.S.J. The impact of tax reform on new car purchases in Ireland. Energy Policy 2011, 39, 7059–7067. [Google Scholar] [CrossRef] [Green Version]
- Davis, L.W. Durable goods and residential demand for energy and water: Evidence from a field trial. RAND J. Econ. 2008, 39, 530–546. [Google Scholar] [CrossRef]
- Davis, L.W.; Fuchs, A.; Gertler, P. Cash for Coolers: Evaluating a Large-Scale Appliance Replacement Program in Mexico. Am. Econ. J. Econ. Policy 2014, 6, 207–238. [Google Scholar] [CrossRef]
- Henly, J.; Ruderman, H.; Levine, M.D. Energy Saving Resulting from the Adoption of More Efficient Appliances: A Follow-up. Energy J. 1988, 9, 163–170. [Google Scholar]
- Mizobuchi, K. An empirical study on the rebound effect considering capital costs. Energy Econ. 2008, 30, 2486–2516. [Google Scholar] [CrossRef]
- Bourrelle, J.S. Zero energy buildings and the rebound effect: A solution to the paradox of energy efficiency? Energy Build. 2014, 84, 633–640. [Google Scholar] [CrossRef]
- Font Vivanco, D.; Freire-González, J.; Kemp, R.; Van Der Voet, E. The remarkable environmental rebound effect of electric cars: A microeconomic approach. Environ. Sci. Technol. 2014, 48, 12063–12072. [Google Scholar] [CrossRef] [PubMed]
- Santarius, T.; Soland, M. How Technological Efficiency Improvements Change Consumer Preferences: Towards a Psychological Theory of Rebound Effects. Ecol. Econ. 2018, 146, 414–424. [Google Scholar] [CrossRef]
- Chitnis, M.; Sorrell, S.; Druckman, A.; Firth, S.K.; Jackson, T. Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups. Ecol. Econ. 2014, 106, 12–32. [Google Scholar] [CrossRef] [Green Version]
- Chitnis, M.; Sorrell, S.; Druckman, A.; Firth, S.K.; Jackson, T. Turning lights into flights: Estimating direct and indirect rebound effects for UK households. Energy Policy 2013, 55, 234–250. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-J.; Liu, Z.; Qin, C.-X.; Tan, T.-D. The direct and indirect CO2 rebound effect for private cars in China. Energy Policy 2017, 100, 149–161. [Google Scholar] [CrossRef]
- Allan, G.; Hanley, N.; McGregor, P.; Swales, K.; Turner, K. The impact of increased efficiency in the industrial use of energy: A computable general equilibrium analysis for the United Kingdom. Energy Econ. 2007, 29, 779–798. [Google Scholar] [CrossRef] [Green Version]
- Turner, K. Negative rebound and disinvestment effects in response to an improvement in energy efficiency in the UK economy. Energy Econ. 2009, 31, 648–666. [Google Scholar] [CrossRef] [Green Version]
- Dandres, T.; Gaudreault, C.; Tirado-Seco, P.; Samson, R. Macroanalysis of the economic and environmental impacts of a 2005–2025 European Union bioenergy policy using the GTAP model and life cycle assessment. Renew. Sustain. Energy Rev. 2012, 16, 1180–1192. [Google Scholar] [CrossRef]
- Barker, T.; Ekins, P.; Foxon, T. The macro-economic rebound effect and the UK economy. Energy Policy 2007, 35, 4935–4946. [Google Scholar] [CrossRef]
- Sorrell, S.; Dimitropoulos, J. The rebound effect: Microeconomic definitions, limitations and extensions. Ecol. Econ. 2008, 65, 636–649. [Google Scholar] [CrossRef] [Green Version]
- Suh, S.; Bergesen, J.; Gibon, T.; Hertwich, E.; Taptich, M. Green Technology Choices:The Environmental and Resource Implications of Low-Carbon Technologies; United Nations Environment Programme: Nairobi, Kenya, 2017. [Google Scholar]
- Sala, S.; Reale, F.; Crostobal Garcia, J.; Marelli, L.; Pant, R. Life Cycle Assessment for the Impact Assessment of Policies—European Commission; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Suh, S.; Huppes, G. Methods for life cycle inventory of a product. J. Clean. Prod. 2005, 13, 687–697. [Google Scholar] [CrossRef]
- Font Vivanco, D.; Kemp, R.; Van Der Voet, E. The relativity of eco-innovation: Environmental rebound effects from past transport innovations in Europe. J. Clean. Prod. 2015, 101. [Google Scholar] [CrossRef]
- Takase, K.; Kondo, Y.; Washizu, A. An Analysis of Sustainable Consumption by the Waste Input-Output Model. J. Ind. Ecol. 2005, 9, 201–219. [Google Scholar] [CrossRef]
- Thiesen, J.; Christensen, T.; Kristensen, T.; Andersen, R.; Brunoe, B.; Gregersen, T.; Thrane, M.; Weidema, B. Rebound effects of price differences. Int. J. Life Cycle Assess. 2008, 13, 104–114. [Google Scholar] [CrossRef]
- Thomas, B.A.; Azevedo, I.L. Estimating direct and indirect rebound effects for U.S. households with input-output analysis. Part 2: Simulation. Ecol. Econ. 2013, 86, 188–198. [Google Scholar] [CrossRef]
- Freire-González, J.; Font Vivanco, D. The influence of energy efficiency on other natural resources use: An input-output perspective. J. Clean. Prod. 2017, 162, 336–345. [Google Scholar] [CrossRef]
- Weidema, B.P.; Wesnaes, J.; Hermansen, J.; Kristensen, T.; Halberg, N. Environmental Improvement Potentials of Meat and Dairy Products; Eder, P., Delgado, L., Eds.; European Commission: Luxembourg, 2008. [Google Scholar]
- Bare, J.; Hofstetter, P.; Pennington, D.; de Haes, H. Midpoints versus endpoints: The sacrifices and benefits. Int. J. Life Cycle Assess. 2000, 5, 319–326. [Google Scholar] [CrossRef]
- Saunders, H.D. Historical evidence for energy efficiency rebound in 30 US sectors and a toolkit for rebound analysts. Technol. Forecast. Soc. Chang. 2013, 80, 1317–1330. [Google Scholar] [CrossRef]
- Sorrell, S. Jevons Paradox revisited: The evidence for backfire from improved energy efficiency. Energy Policy 2009, 37, 1456–1469. [Google Scholar] [CrossRef]
- Saunders, H.D. Fuel conserving (and using) production functions. Energy Econ. 2008, 30, 2184–2235. [Google Scholar] [CrossRef]
- De Haan, P.; Mueller, M.G.; Peters, A. Does the hybrid Toyota Prius lead to rebound effects? Analysis of size and number of cars previously owned by Swiss Prius buyers. Ecol. Econ. 2005, 58, 592–605. [Google Scholar] [CrossRef]
- Hens, H.; Parijs, W.; Deurinck, M. Energy consumption for heating and rebound effects. Energy Build. 2010, 42, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Pehnt, M. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew. Energy 2006, 31, 55–71. [Google Scholar] [CrossRef]
- Santarius, T. Green Growth Unravelled. How Rebound Effects Baffle Sustainability Targets When the Economy Keeps Growing; Heinrich Böll Foundation: Berlin, Germany, 2012. [Google Scholar]
- Dixon, A.M.; McManus, M. An introduction to life cycle and rebound effects in water systems. In Water Demand Management; IWA Publishing: London, UK, 2005. [Google Scholar]
- Næss, P. Urban Planning: Residential Location and Compensatory Behaviour in Three Scandinavian Cities. In Rethinking Climate and Energy Policies; Santarius, T., Walnum, H., Aall, C., Eds.; Springer: New York, NY, USA, 2016; pp. 181–207. [Google Scholar]
- Friedler, E.; Hadari, M. Economic feasibility of on-site greywater reuse in multi-storey buildings. Desalination 2006, 190, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Bahn-Walkowiak, B.; Bleischwitz, R.; Distelkamp, M.; Meyer, M. Taxing construction minerals: A contribution to a resource-efficient Europe. Miner. Econ. 2012, 25, 29–43. [Google Scholar] [CrossRef]
- Dace, E.; Bazbauers, G.; Berzina, A.; Davidsen, P.I. System dynamics model for analyzing effects of eco-design policy on packaging waste management system. Resour. Conserv. Recycl. 2014, 87, 175–190. [Google Scholar] [CrossRef]
- Scheierling, S.M.; Young, R.A.; Cardon, G.E. Public subsidies for water-conserving irrigation investments: Hydrologic, agronomic, and economic assessment. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Ward, F.A.; Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA 2008, 105, 18215–18220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contor, B.A.; Taylor, R.G. Why Improving Irrigation Efficiency Increases Total Volume of Consumptive Use. Irrig. Drain. 2013, 62, 273–280. [Google Scholar] [CrossRef]
- Tukker, A.; Goldbohm, R.A.; de Koning, A.; Verheijden, M.; Kleijn, R.; Wolf, O.; Pérez-Domínguez, I.; Rueda-Cantuche, J.M. Environmental impacts of changes to healthier diets in Europe. Ecol. Econ. 2011, 70, 1776–1788. [Google Scholar] [CrossRef]
- Grabs, J. The rebound effects of switching to vegetarianism. A microeconomic analysis of Swedish consumption behavior. Ecol. Econ. 2015, 116, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Bernstad Saraiva Schott, A.; Andersson, T. Food waste minimization from a life-cycle perspective. J. Environ. Manag. 2015, 147, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Papargyropoulou, E.; Lozano, R.K.; Steinberger, J.; Wright, N.; Ujang, Z. bin The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 2014, 76, 106–115. [Google Scholar] [CrossRef]
- Salemdeeb, R.; Font Vivanco, D.; Al-Tabbaa, A.; zu Ermgassen, E.K.H.J. A holistic approach to the environmental evaluation of food waste prevention. Waste Manag. 2017, 59. [Google Scholar] [CrossRef] [PubMed]
- Druckman, A.; Chitnis, M.; Sorrell, S.; Jackson, T. Missing carbon reductions? Exploring rebound and backfire effects in UK households. Energy Policy 2011, 39, 3572–3581. [Google Scholar] [CrossRef] [Green Version]
- Reale, F.; Cinelli, M.; Sala, S. Towards a research agenda for the use of LCA in the impact assessment of policies. Int. J. Life Cycle Assess. 2017, 22, 1477–1481. [Google Scholar] [CrossRef]
- EC. Better Regulation for Better Results—An EU Agenda. Communication from the Commission COM (2015) 215; EC: Brussels, Belgium, 2015. [Google Scholar]
- Earles, J.M.; Halog, A. Consequential life cycle assessment: A review. Int. J. Life Cycle Assess. 2011, 16, 445–453. [Google Scholar] [CrossRef]
- Wood, R.; Hertwich, E.G. Economic modelling and indicators in life cycle sustainability assessment. Int. J. Life Cycle Assess. 2013, 18, 1710–1721. [Google Scholar] [CrossRef]
- Suh, S.; Yang, Y. On the uncanny capabilities of consequential LCA. Int. J. Life Cycle Assess. 2014, 19, 1179–1184. [Google Scholar] [CrossRef]
- Girod, B.; Haan, P.; Scholz, R. Consumption-as-usual instead of ceteris paribus assumption for demand. Int. J. Life Cycle Assess. 2011, 16, 3–11. [Google Scholar] [CrossRef]
- Frischknecht, R.; Benetto, E.; Dandres, T.; Heijungs, R.; Roux, C.; Schrijvers, D.; Wernet, G.; Yang, Y.; Messmer, A.; Tschuemperlin, L. LCA and decision making: When and how to use consequential LCA; 62nd LCA forum, Swiss Federal Institute of Technology, Zürich, 9 September 2016. Int. J. Life Cycle Assess. 2017, 22, 296–301. [Google Scholar] [CrossRef]
- EC-JRC. International Reference Life Cycle Data System (ILCD) Handbook—General Guide for Life Cycle Assessment—Detailed Guidance; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Font Vivanco, D.; Tukker, A.; Kemp, R. Do methodological choices in environmental modeling bias rebound effects? A case study on electric cars. Environ. Sci. Technol. 2016. [Google Scholar] [CrossRef] [PubMed]
- EPA. Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis; EPA: Washington, DC, USA, 2010.
- Tukker, A.; de Koning, A.; Wood, R.; Hawkins, T.; Lutter, S.; Acosta, J.; Rueda Cantuche, J.M.; Bouwmeester, M.; Oosterhaven, J.; Drosdowski, T.; et al. Exiopol—Development and Illustrative Analyses of A Detailed Global Mr Ee Sut/Iot. Econ. Syst. Res. 2013, 25, 50–70. [Google Scholar] [CrossRef]
- De Camillis, C.; Brandão, M.; Zamagni, A.; Pennington, D. Sustainability Assessment of Future-Oriented Scenarios: A Review of Data Modelling Approaches in Life Cycle Assessment; Publications Office of the European Union: Luxemburg, 2013. [Google Scholar]
- Wender, B.A.; Foley, R.W.; Hottle, T.A.; Sadowski, J.; Prado-Lopez, V.; Eisenberg, D.A.; Laurin, L.; Seager, T.P. Anticipatory life-cycle assessment for responsible research and innovation. J. Responsib. Innov. 2014, 1, 200–207. [Google Scholar] [CrossRef]
- Miller, S.A.; Keoleian, G.A. A Framework for Analyzing Transformative Technologies in Life Cycle Assessment. Environ. Sci. Technol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Barker, T.; Dagoumas, A.; Rubin, J. The macroeconomic rebound effect and the world economy. Energy Effic. 2009, 2, 411–427. [Google Scholar] [CrossRef]
- Dimitropoulos, J. Energy productivity improvements and the rebound effect: An overview of the state of knowledge. Energy Policy 2007, 35, 6354–6363. [Google Scholar] [CrossRef]
- Burfisher, M.E. Introduction to Computable General Equilibrium Models; Cambridge University Press: Cambridge, UK, 2017; ISBN 1316889378. [Google Scholar]
- Somé, A.; Dandres, T.; Gaudreault, C.; Majeau-Bettez, G.; Wood, R.; Samson, R. Coupling Input-Output Tables with Macro-Life Cycle Assessment to Assess Worldwide Impacts of Biofuels Transport Policies. J. Ind. Ecol. 2017. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Corson, M.S.; Doreau, M.; Eugène, M.; van der Werf, H.M.G. Consequential LCA of switching from maize silage-based to grass-based dairy systems. Int. J. Life Cycle Assess. 2013, 18, 1470–1484. [Google Scholar] [CrossRef]
- Lee, D.H. Development and environmental impact of hydrogen supply chain in Japan: Assessment by the CGE-LCA method in Japan with a discussion of the importance of biohydrogen. Int. J. Hydrog. Energy 2014, 39, 19294–19310. [Google Scholar] [CrossRef]
- Jokinen, P.; Malaska, P.; Kaivo-Oja, J. The environment in an “information society”—A transition stage towards more sustainable development? Futures 1998, 30, 485–498. [Google Scholar] [CrossRef]
- Mattila, T.; Lehtoranta, S.; Sokka, L.; Melanen, M.; Nissinen, A. Methodological Aspects of Applying Life Cycle Assessment to Industrial Symbioses. J. Ind. Ecol. 2012, 16, 51–60. [Google Scholar] [CrossRef]
- Ruuska, A.; Häkkinen, T. Material Efficiency of Building Construction. Buildings 2014, 4, 266–294. [Google Scholar] [CrossRef] [Green Version]
- Buyle, M.; Braet, J.; Audenaert, A. Life cycle assessment in the construction sector: A review. Renew. Sustain. Energy Rev. 2013, 26, 379–388. [Google Scholar] [CrossRef]
- Zink, T.; Geyer, R. Circular Economy Rebound. J. Ind. Ecol. 2017, 21, 593–602. [Google Scholar] [CrossRef]
- Makov, T.; Font Vivanco, D. Does the Circular Economy Grow the Pie? The Case of Rebound Effects From Smartphone Reuse. Front. Energy Res. 2018, 6, 39. [Google Scholar] [CrossRef]
- Larson, W.; Liu, F.; Yezer, A. Energy footprint of the city: Effects of urban land use and transportation policies. J. Urban Econ. 2012, 72, 147–159. [Google Scholar] [CrossRef]
- Mohtar, R.H.; Lawford, R. Present and future of the water-energy-food nexus and the role of the community of practice. J. Environ. Stud. Sci. 2016, 6, 192–199. [Google Scholar] [CrossRef]
- Wakeford, J.J.; Lagrange, S.M.; Kelly, C. Managing the Energy-Food-Water-Nexus in Developing Countries: Case Studies of Transition Governance; Stellenbosch University: Stellenbosch, South Africa, 2016. [Google Scholar]
- Jacobsen, B. Energy Use in Water Utilities. Available online: http://ec.europa.eu/environment/archives/greenweek2012/sites/default/files/3-1_jacobsen.pdf (accessed on 29 May 2018).
- Maestre Andrés, S.; Calvet Mir, L.; van den Bergh, J.C.J.M.; Ring, I.; Verburg, P.H. Ineffective biodiversity policy due to five rebound effects. Ecosyst. Serv. 2012, 1, 101–110. [Google Scholar] [CrossRef]
- Girod, B.; de Haan, P. Mental Rebound (Rebound Research Report No. 3); ETH: Zürich, Switzerland, 2009. [Google Scholar]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C.; et al. Systems integration for global sustainability. Science 2015, 347. [Google Scholar] [CrossRef] [PubMed]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Andrews-Speed, P.; Bleischwitz, R.; Boersma, T.; Johnson, C.; Kemp, G.; VanDeveer, S.D. Want, Waste or War?: The Global Resource Nexus and the Struggle for Land, Energy, Food, Water and Minerals; Routledge: London, UK, 2014; ISBN 1317665864. [Google Scholar]
- Font Vivanco, D.; Wang, R.; Hertwich, E. Nexus Strength: A Novel Metric for Assessing the Global Resource Nexus. J. Ind. Ecol. 2017. [Google Scholar] [CrossRef]
- Karabulut, A.A.; Crenna, E.; Sala, S.; Udias, A. A proposal for integration of the ecosystem-water-food-land-energy (EWFLE) nexus concept into life cycle assessment: A synthesis matrix system for food security. J. Clean. Prod. 2018, 172, 3874–3889. [Google Scholar] [CrossRef]
- Cooper, D.R.; Gutowski, T.G. The Environmental Impacts of Reuse: A Review. J. Ind. Ecol. 2017, 21, 38–56. [Google Scholar] [CrossRef]
Type of Effect | Consumption Side | Production Side | |
---|---|---|---|
Micro-economic | Direct | Income effect: Consumers respond to the increase in effective income by increasing the demand for EV. | Output effect: Producers that require EV as production factors (e.g., delivery companies) respond to the decrease in production costs by increasing the demand for EV. |
Substitution effect: The lower driving costs make consumers prioritize driving EV over other goods and services. | Substitution effect: The lower driving costs make producers prioritize the demand for EV over other production factors, e.g., capital and/or labour. | ||
Indirect | Re-spending effect: Saturation in the demand for EV cause consumers to spend the remaining effective income in other goods and services. | Re-investment effect: Limits to the use of EV as a production factor lead producers to investments in other production factors. | |
Macroeconomic | Market price effect: Aggregate increases in demand for EV at the microeconomic level can cause a decrease in EV’s market price, e.g., because of economies of scale, inducing extra demand for them from both consumers and producers. Composition effect: Economic sectors using EV as a production factor can decrease its production costs, resulting in a decrease in the market price and subsequent increased demand for their goods and services. Growth effect: Increases in productivity can, ceteris paribus, spur greater economic output and growth, either through sectorial reallocation of growth or overall growth via an increase in total factor productivity. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Font Vivanco, D.; Sala, S.; McDowall, W. Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy. Sustainability 2018, 10, 2009. https://doi.org/10.3390/su10062009
Font Vivanco D, Sala S, McDowall W. Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy. Sustainability. 2018; 10(6):2009. https://doi.org/10.3390/su10062009
Chicago/Turabian StyleFont Vivanco, David, Serenella Sala, and Will McDowall. 2018. "Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy" Sustainability 10, no. 6: 2009. https://doi.org/10.3390/su10062009
APA StyleFont Vivanco, D., Sala, S., & McDowall, W. (2018). Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy. Sustainability, 10(6), 2009. https://doi.org/10.3390/su10062009