Soil Gaseous Emissions and Partial C and N Balances of Small-Scale Farmer Fields in a River Oasis of Western Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Setup and Sampling Procedure
2.3. Data Processing and Statistical Analyses
2.4. Sample Processing and Calculation of Partial C and N Balances
3. Results
3.1. Soil Characteristics
3.2. Gaseous Emissions Rates of C and N and Influencing Factors
3.3. Cumulative C and N Losses
4. Discussion
4.1. Emission Rates of C and N
4.2. Cumulative C and N Emissions
4.3. Importance of Gaseous C and N Losses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bruelheide, H.; Jandt, U.; Gries, D.; Thomas, F.M.; Foetzki, A.; Buerkert, A.; Gang, W.; Zhang, X.M.; Runge, M. Vegetation changes in a river oasis on the southern rim of the Taklamakan Desert in China between 1956 and 2000. Phytocoenologia 2003, 33, 801–818. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y. Impact of population growth and land-use change on water resources and ecosystems of the arid Tarim River Basin in Western China. Int. J. Sustain. Dev. World Ecol. 2006, 13, 295–305. [Google Scholar] [CrossRef]
- Feike, T.; Mamitimin, Y.; Li, L.; Doluschitz, R. Development of agricultural land and water use and its driving forces along the Aksu and Tarim River, P.R. China. Environ. Earth Sci. 2015, 73, 517–531. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Wang, S. Land use/cover change impacts on water table change over 25 Years in a desert-oasis transition zone of the Heihe River Basin, China. Water 2016, 8, 11. [Google Scholar] [CrossRef]
- Dittrich, A.; Buerkert, A.; Brinkmann, K. Assessment of land use and land cover changes during the last 50 years in oases and surrounding rangelands of Xinjiang, NW China. J. Agric. Rural Dev. Trop. 2010, 111, 129–142. [Google Scholar]
- Lai, H.H. China’s Western Development Program. Mod. China 2016, 28, 432–466. [Google Scholar] [CrossRef]
- Becquelin, N. Xinjiang in the Nineties. China J. 2000, 44, 65–90. [Google Scholar] [CrossRef]
- Jordan, G.; Goenster-Jordan, S.; Lamparter, G.-J.; Ulziisuren, B.; Soninkishig, N.; Schlecht, E.; Buerkert, A. Water use in agro-pastoral livelihood systems within the Bulgan River watershed of the Altay Mountains, Western Mongolia. Agric. Ecosyst. Environ. 2018, 251, 180–193. [Google Scholar] [CrossRef]
- Hofmann, J.; Tuul, D.; Enkhtuya, B. Agriculture in Mongolia under pressure of agronomic nutrient imbalances and food security demands: A case study of stakeholder participation for future nutrient and water resource management. In Integrated Water Resources Management: Concept, Research and Implementation; Borchardt, D., Bogardi, J.J., Ibisch, R.B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 471–514. [Google Scholar]
- Predotova, M.; Gebauer, J.; Diogo, R.V.C.; Schlecht, E.; Buerkert, A. Emissions of ammonia, nitrous oxide and carbon dioxide from urban gardens in Niamey, Niger. Field Crops Res. 2010, 115, 1–8. [Google Scholar] [CrossRef]
- Siegfried, K.; Dietz, H.; Schlecht, E.; Buerkert, A. Nutrient and carbon balances in organic vegetable production on an irrigated, sandy soil in northern Oman. J. Plant Nutr. Soil Sci. 2011, 174, 678–689. [Google Scholar] [CrossRef]
- Goenster, S.; Wiehle, M.; Gebauer, J.; Ali, A.M.; Buerkert, A. Carbon and nutrient fluxes and balances in Nuba Mountains homegardens, Sudan. Nutr. Cycl. Agroecosyst. 2013, 100, 35–51. [Google Scholar] [CrossRef]
- Velthof, G.L.; Oenema, O. Nitrous oxide fluxes from grassland in the Netherlands: I. Statistical analysis of flux-chamber measurements. Eur. J. Soil Sci. 1995, 46, 533–540. [Google Scholar] [CrossRef]
- Davidson, E.A.; Savage, K.; Verchot, L.V.; Navarro, R. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric. For. Meteorol. 2002, 113, 21–37. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Chem. Erde Geochem. 2016, 76, 327–352. [Google Scholar] [CrossRef]
- Goenster-Jordan, S.; Jannoura, R.; Jordan, G.; Buerkert, A.; Joergensen, R.G. Spatial variability of soil properties in the floodplain of a river oasis in the Mongolian Altay Mountains. Geoderma 2018, 330, 99–106. [Google Scholar] [CrossRef]
- Christensen, J. Optical filters and their use with the type 1302 & type 1306 photoacoustic gas monitors. Brüel Kjær Tech. Rev. 1990, 2, 1–50. [Google Scholar]
- Christensen, J. The Brüel & Kjær photoacoustic transducer system and its physical properties. Brüel Kjær Tech. Rev. 1990, 1, 1–39. [Google Scholar]
- Debouk, H.; Altimir, N.; Sebastià, M.-T. Maximizing the information obtained from chamber-based greenhouse gas exchange measurements in remote areas. MethodsX 2018, 5, 973–983. [Google Scholar] [CrossRef]
- Goenster, S.; Wiehle, M.; Predotova, M.; Gebauer, J.; Ali, A.M.; Buerkert, A. Gaseous emissions and soil fertility of homegardens in the Nuba Mountains, Sudan. J. Plant Nutr. Soil Sci. 2015, 178, 413–424. [Google Scholar] [CrossRef]
- Buerkert, A.; Jahn, H.; Golombek, S.D.; Al Rawahi, M.N.; Gebauer, J. Carbon and nitrogen emissions from stored manure and cropped fields in irrigated mountain oases of Oman. J. Agric. Rural Dev. Trop. 2010, 111, 55–63. [Google Scholar]
- Iqbal, J.; Castellano, M.J.; Parkin, T.B. Evaluation of photoacoustic infrared spectroscopy for simultaneous measurement of N2O and CO2 gas concentrations and fluxes at the soil surface. Glob. Chang. Biol. 2013, 19, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, T.S.; Diaz-Pines, E.; Zuazo, P.; Jordan, G.; Predotova, M.; Mutuo, P.; Abwanda, S.; Thiong’o, M.; Buerkert, A.; Rufino, M.C.; et al. Accuracy and precision of photoacoustic spectroscopy not guaranteed. Glob. Chang. Biol. 2013, 19, 3565–3567. [Google Scholar] [CrossRef] [PubMed]
- Cobo, J.G.; Dercon, G.; Cadisch, G. Nutrient balances in African land use systems across different spatial scales: A review of approaches, challenges and progress. Agric. Ecosyst. Environ. 2010, 136, 1–15. [Google Scholar] [CrossRef]
- Smaling, E.M.A.; Stoorvogel, J.J.; Windmeijer, P.N. Calculating soil nutrient balances in Africa at different scales—II. District Scale. Fert. Res. 1993, 35, 237–250. [Google Scholar] [CrossRef]
- Stoorvogel, J.J.; Smaling, E.M.A.; Janssen, B.H. Calculating soil nutrient balances in Africa at different scales—I. Supra-national scale. Fert. Res. 1993, 35, 227–235. [Google Scholar] [CrossRef]
- Abdalla, S.B.; Predotova, M.; Gebauer, J.; Buerkert, A. Horizontal nutrient flows and balances in irrigated urban gardens of Khartoum, Sudan. Nutr. Cycl. Agroecosyst. 2012, 92, 119–132. [Google Scholar] [CrossRef]
- Diogo, R.V.C.; Buerkert, A.; Schlecht, E. Horizontal nutrient fluxes and food safety in urban and peri-urban vegetable and millet cultivation of Niamey, Niger. Nutr. Cycl. Agroecosyst. 2010, 87, 81–102. [Google Scholar] [CrossRef]
- Safi, Z.; Predotova, M.; Schlecht, E.; Buerkert, A. Horizontal matter fluxes and leaching losses in urban and peri-urban agriculture of Kabul, Afghanistan. J. Plant Nutr. Soil Sci. 2011, 174, 942–951. [Google Scholar] [CrossRef]
- Goenster, S.; Gründler, C.; Buerkert, A.; Joergensen, R.G. Soil microbial indicators across land use types in the river oasis Bulgan sum center, Western Mongolia. Ecol. Indic. 2017, 76, 111–118. [Google Scholar] [CrossRef]
- Jordan, G.; Goenster, S.; Munkhnasan, T.; Shabier, A.; Buerkert, A.; Schlecht, E. Spatio-temporal patterns of herbage availability and livestock movements: A cross-border analysis in the Chinese-Mongolian Altay. Pastoralism 2016, 6, 1–17. [Google Scholar] [CrossRef]
- Tsvegemed, M.; Shabier, A.; Schlecht, E.; Jordan, G.; Wiehle, M. Evolution of rural livelihood strategies in a remote Sino-Mongolian border area: A cross-country analysis. Sustainability 2018, 10, 1011. [Google Scholar] [CrossRef]
- Hutchinson, G.L.; Livingston, G.P. Vents and seals in non-steady-state chambers used for measuring gas exchange between soil and the atmosphere. Eur. J. Soil Sci. 2001, 52, 675–682. [Google Scholar] [CrossRef]
- Rochette, P.; Ellert, B.; Gregorich, E.G.; Desjardins, R.L.; Pattey, E.; Lessard, R.; Johnson, B.G. Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can. J. Soil Sci. 1997, 77, 195–203. [Google Scholar] [CrossRef]
- Thomson, P.E.; Parker, J.P.; Arah, J.R.M.; Clayton, H.; Smith, K.A. Automated soil monolith-flux chamber system for the study of trace gas fluxes. Soil Sci. Soc. Am. J. 1997, 61, 1323–1330. [Google Scholar] [CrossRef]
- Robertson, G.P.; Groffman, P.M. Nitrogen transformations. In Soil Microbiology, Ecology, and Biochemistry, 3rd ed.; Paul, E.A., Ed.; Academic Press: Oxford, UK, 2007; pp. 341–364. [Google Scholar]
- Šimek, M.; Brůček, P.; Hynšt, J. Diurnal fluxes of CO2 and N2O from cattle-impacted soil and implications for emission estimates. Plant Soil Environ. 2010, 56, 451–457. [Google Scholar] [CrossRef]
- Conen, F.; Smith, K.A. An explanation of linear increases in gas concentration under closed chambers used to measure gas exchange between soil and the atmosphere. Eur. J. Soil Sci. 2000, 51, 111–117. [Google Scholar] [CrossRef]
- Jordan, G.; Predotova, M.; Ingold, M.; Goenster, S.; Dietz, H.; Joergensen, R.G.; Buerkert, A. Effects of activated charcoal and tannin added to compost and to soil on carbon dioxide, nitrous oxide and ammonia volatilization. J. Plant Nutr. Soil Sci. 2015, 178, 218–228. [Google Scholar] [CrossRef]
- Sangare, S.K.; Compaore, E.; Buerkert, A.; Vanclooster, M.; Sedogo, M.P.; Bielders, C.L. Field-scale analysis of water and nutrient use efficiency for vegetable production in a West African urban agricultural system. Nutr. Cycl. Agroecosyst. 2012, 92, 207–224. [Google Scholar] [CrossRef]
- Lv, J.; Buerkert, A.; Benedict, K.B.; Liu, G.; Lv, C.; Liu, X. Comparison of nitrogen deposition across different land use types in agro-pastoral catchments of western China and Mongolia. Atmos. Environ. 2019, 199, 313–322. [Google Scholar] [CrossRef]
- Siegfried, K.; Dietz, H.; Amthauer Gallardo, D.; Schlecht, E.; Buerkert, A. Effects of manure with different C/N ratios on yields, yield components and matter balances of organically grown vegetables on a sandy soil of northern Oman. Org. Agric. 2013, 3, 9–12. [Google Scholar] [CrossRef]
- Ludwig, J.; Meixner, F.X.; Vogel, B.; Förstner, J. Soil-air exchange of nitric oxide: An overview of processes, environmental factors, and modeling studies. Biogeochemistry 2001, 52, 225–257. [Google Scholar] [CrossRef]
- Qi, Y.; Xu, M. Separating the effects of moisture and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada mountains. Plant Soil 2001, 237, 15–23. [Google Scholar] [CrossRef]
- Shao, C.; Chen, J.; Chu, H.; Lafortezza, R.; Dong, G.; Abraha, M.; Batkhishig, O.; John, R.; Ouyang, Z.; Zhang, Y.; et al. Grassland productivity and carbon sequestration in Mongolian grasslands: The underlying mechanisms and nomadic implications. Environ. Res. 2017, 159, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Moyano, F.E.; Atkin, O.K.; Bahn, M.; Bruhn, D.; Burton, A.J.; Heinemeyer, A.; Kutsch, W.L.; Wieser, G. Respiration from roots and the mycorrhizosphere. In Soil Carbon Dynamics: An Integrated Methodology; Heinemeyer, A., Bahn, M., Kutsch, W., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 127–156. [Google Scholar]
- Raich, J.W.; Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Ceccon, C.; Tagliavini, M.; Schmitt, A.O.; Eissenstat, D.M. Untangling the effects of root age and tissue nitrogen on root respiration in Populus tremuloides at different nitrogen supply. Tree Physiol. 2016, 36, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Kuzyakov, Y.; Cheng, W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol. Biochem. 2001, 33, 1915–1925. [Google Scholar] [CrossRef]
- Schindlbacher, A. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J. Geophys. Res. 2004, 109, 1137. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Gordon, R.; Burton, D.; Smith, E.; Madani, A. The impact of management practices and meteorological conditions on ammonia and nitrous oxide emissions following application of hog slurry to forage grass in Nova Scotia. Agric. Ecosyst. Environ. 2009, 130, 41–49. [Google Scholar] [CrossRef]
- Brooks, P.D.; Schmidt, S.K.; Williams, M.W. Winter production of CO2 and N2O from alpine tundra: Environmental controls and relationship to inter-system C and N fluxes. Oecologia 1997, 110, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.; Webb, J. A review of the effect of N fertilizer type on gaseous emissions. Adv. Agron. 2001, 73, 65–108. [Google Scholar] [CrossRef]
- Tsevegmed, M. Herd Management and Livestock Productivity in the Altai Region of Western Mongolia. Ph.D. Thesis, University of Kassel, Witzenhausen, Germany, 2016. [Google Scholar]
- Jones, D.L.; Cross, P.; Withers, P.J.A.; DeLuca, T.H.; Robinson, D.A.; Quilliam, R.S.; Harris, I.M.; Chadwick, D.R.; Edwards-Jones, G.; Kardol, P. Nutrient stripping: The global disparity between food security and soil nutrient stocks. J. Appl. Ecol. 2013, 50, 851–862. [Google Scholar] [CrossRef]
- Su, Y.Z. Soil carbon and nitrogen sequestration following the conversion of cropland to alfalfa forage land in northwest China. Soil Tillage Res. 2007, 92, 181–189. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, X.; Gan, Z. Changes in soil organic carbon and nitrogen after 26 years of farmland management on the Loess Plateau of China. J. Arid Land 2015, 7, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Burity, H.A.; Ta, T.C.; Faris, M.A.; Coulman, B.E. Estimation of nitrogen fixation and transfer from alfalfa to associated grasses in mixed swards under field conditions. Plant Soil 1989, 114, 249–255. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, B.; Xie, Y.; Li, J.; Yang, Z.; Zhang, G. Legume-cereal intercropping improves forage yield, quality and degradability. PLoS ONE 2015, 10, e0144813. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.-Y.; Li, X.-L.; He, F.; Zhang, Y.-J.; Wan, L.-Q.; David, B.H.; Wang, D.; Qin, Y.; Gamal, M.A.F. Effect of nitrogen fertilization on yield, N content, and nitrogen fixation of alfalfa and smooth bromegrass grown alone or in mixture in greenhouse pots. J. Integr. Agric. 2015, 14, 1864–1876. [Google Scholar] [CrossRef]
- Higginbotham, G.E.; Stull, C.L.; Peterson, N.G.; Rodiek, A.V.; Reed, B.A.; Guerrero, J.N. Alfalfa utilization by livestock. In Irrigated Alfalfa Management in Mediterranean and Desert Zones; Summers, C.G., Putnam, D.H., Eds.; University of California: Oakland, CA, USA, 2008. [Google Scholar]
- Sommer, S.G.; Hutchings, N.J. Ammonia emission from field applied manure and its reduction—Invited paper. Eur. J. Agron. 2001, 15, 1–15. [Google Scholar] [CrossRef]
- Webb, J.; Pain, B.; Bittman, S.; Morgan, J. The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—A review. Agric. Ecosyst. Environ. 2010, 137, 39–46. [Google Scholar] [CrossRef]
- Su, Y.-Z.; Wang, F.; Suo, D.-R.; Zhang, Z.-H.; Du, M.-W. Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat–wheat–maize cropping system in northwest China. Nutr. Cycl. Agroecosyst. 2006, 75, 285–295. [Google Scholar] [CrossRef]
- Kay, B.D. Soil structure and organic carbon: A review. In Soil Processes and the Carbon Cycle; Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 169–197. [Google Scholar]
- Jiao, Y.; Whalen, J.K.; Hendershot, W.H. No-tillage and manure applications increase aggregation and improve nutrient retention in a sandy-loam soil. Geoderma 2006, 134, 24–33. [Google Scholar] [CrossRef]
- Biyensa, G.; Demissie, A.; Lemma, B. Susceptibility of soil to wind erosion in arid area of the Central Rift Valley of Ethiopia. Environ. Syst. Res. 2015, 4, 10. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Wang, S.; Zhu, X.; Vereecken, H.; Brüggemann, N. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: A global meta-analysis. Glob. Chang. Biol. 2017, 23, 4068–4083. [Google Scholar] [CrossRef] [PubMed]
- Mariko, S.; Urano, T.; Asanuma, J. Effects of irrigation on CO2 and CH4 fluxes from Mongolian steppe soil. J. Hydrol. 2007, 333, 118–123. [Google Scholar] [CrossRef]
- Jamali, H.; Quayle, W.C.; Baldock, J. Reducing nitrous oxide emissions and nitrogen leaching losses from irrigated arable cropping in Australia through optimized irrigation scheduling. Agric. For. Meteorol. 2015, 208, 32–39. [Google Scholar] [CrossRef]
- Holcomb, J.C.; Sullivan, D.M.; Horneck, D.A.; Clough, G.H. Effect of irrigation rate on ammonia volatilization. Soil Sci. Soc. Am. J. 2011, 75, 2341. [Google Scholar] [CrossRef]
- Guo, S.; Qi, Y.; Peng, Q.; Dong, Y.; He, Y.; Yan, Z.; Wang, L. Influences of drip and flood irrigation on soil carbon dioxide emission and soil carbon sequestration of maize cropland in the North China Plain. J. Arid Land 2017, 9, 222–233. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jordan, G.; Goenster-Jordan, S.; Ulziisuren, B.; Buerkert, A. Soil Gaseous Emissions and Partial C and N Balances of Small-Scale Farmer Fields in a River Oasis of Western Mongolia. Sustainability 2019, 11, 3362. https://doi.org/10.3390/su11123362
Jordan G, Goenster-Jordan S, Ulziisuren B, Buerkert A. Soil Gaseous Emissions and Partial C and N Balances of Small-Scale Farmer Fields in a River Oasis of Western Mongolia. Sustainability. 2019; 11(12):3362. https://doi.org/10.3390/su11123362
Chicago/Turabian StyleJordan, Greta, Sven Goenster-Jordan, Baigal Ulziisuren, and Andreas Buerkert. 2019. "Soil Gaseous Emissions and Partial C and N Balances of Small-Scale Farmer Fields in a River Oasis of Western Mongolia" Sustainability 11, no. 12: 3362. https://doi.org/10.3390/su11123362
APA StyleJordan, G., Goenster-Jordan, S., Ulziisuren, B., & Buerkert, A. (2019). Soil Gaseous Emissions and Partial C and N Balances of Small-Scale Farmer Fields in a River Oasis of Western Mongolia. Sustainability, 11(12), 3362. https://doi.org/10.3390/su11123362