Coupling Coordination Relationships between Urban-industrial Land Use Efficiency and Accessibility of Highway Networks: Evidence from Beijing-Tianjin-Hebei Urban Agglomeration, China
Abstract
:1. Introduction
2. Literature Review
2.1. The Effects of Urban Land Use on Urban Traffic
2.2. The Effects of Urban Traffic on Urban Land Use
2.3. The Interaction between Urban Land Use and Urban Traffic
3. Data and Materials
3.1. Study Area
3.2. Data Collection
4. Establishment of the Coupling Coordination Model
4.1. Coupling Coordination Model
4.1.1. Coupling Degree
4.1.2. Coordination Degree
4.1.3. Coupling Coordination Degree
4.2. Urban-Industrial Land Use Efficiency Evaluation System Design
4.2.1. Data Processing and Weight Determination
4.2.2. Urban-Industrial Land Use Efficiency Evaluation
4.2.3. Evaluation Indicators
4.3. Accessibility of Highway Networks Evaluation System Design
4.3.1. Regional Accessibility Evaluation Method
4.3.2. Improved Accessibility Evaluation Method
5. Results and Discussion
5.1. Urban–Industrial Land Use Efficiency
5.2. Accessibility of Highway Networks
5.3. Coupling Coordination Relationship between the Urban–Industrial Land Use Efficiency System and Accessibility of Highway Networks System
6. Research Implications and Limitations
6.1. Research Implications
6.2. Research Limitations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xiong, C.; Tan, R. Will the land supply structure affect the urban expansion form? Habitat Int. 2018, 75, 25–37. [Google Scholar] [CrossRef]
- He, B.; Zhu, J. Constructing community gardens? Residents’ attitude and behaviour towards edible landscapes in emerging urban communities of China. Urban For. Urban Green. 2018, 34, 154–165. [Google Scholar] [CrossRef]
- Hrelja, R. Integrating transport and land-use planning? How steering cultures in local authorities affect implementation of integrated public transport and land-use planning. Transp. Res. Part A Policy Pract. 2015, 74, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wu, K.; Wu, J. A bibliometric analysis of research on haze during 2000–2016. Environ. Sci. Pollut. Res. 2017, 24, 24733–24742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Sun, J.; Ge, Q.; Li, X. Assessing the impacts of urbanization-associated green space on urban land surface temperature: A case study of Dalian, China. Urban For. Urban Green. 2017, 22, 1–10. [Google Scholar] [CrossRef]
- Lin, H.; Hülsbergen, K. A new method for analyzing agricultural land-use efficiency, and its application in organic and conventional farming systems in southern Germany. Eur. J. Agron. 2017, 83, 15–27. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, X.; Khongnawang, T.; Arshad, M.; Triantafilis, J. A Vis-NIR spectral library to predict clay in Australian cotton growing soil. Soil Sci. Soc. Am. J. 2018, 82, 1347–1357. [Google Scholar] [CrossRef]
- Yang, J.; Guo, A.; Li, Y.; Zhang, Y.; Li, X. Simulation of landscape spatial layout evolution in rural-urban fringe areas: A case study of Ganjingzi District. GISci. Remote Sens. 2019, 56, 388–405. [Google Scholar] [CrossRef]
- He, B.-J.; Zhao, D.-X.; Zhu, J.; Darko, A.; Gou, Z.-H. Promoting and implementing urban sustainability in China: An integration of sustainable initiatives at different urban scales. Habitat Int. 2018, 82, 83–93. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of China. Code for Classification of Urban Land Use and Planning Standards of Development Land (GB 50137–2011); China Architecture & Building Press: Beijing, China, 2011.
- Lin, J. Urban Rural Construction Land Growth in China; The Commercial Press: Beijing, China, 2009. [Google Scholar]
- Xiao, D. Research on Factors of Urban and Industrial-Mining Land Growth and Its Spatial Variation Based on Spatial Quantitative Model: An Empirical Analysis on Prefectural-Level Units in the Southeastern Part of Hu’s Line of China; Peking University: Beijing, China, 2012. [Google Scholar]
- Xie, B.; Chen, Y.; Bai, Z.; Pei, T. A quantitative study on the interaction between urban industrial land use changes and economic development in Gansu Province. J. Arid Land Resour. Environ. 2014, 28, 7–13. [Google Scholar]
- Zheng, D.; Shi, M. Industrial land policy, firm heterogeneity and firm location choice: Evidence from China. Land Use Policy 2018, 76, 58–67. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, X.; Wang, H.; Zhang, C.; Li, J.; Lv, Y. Interoperable scenario simulation of land-use policy for Beijing–Tianjin–Hebei region, China. Land Use Policy 2018, 75, 155–165. [Google Scholar] [CrossRef]
- NDRC. National Development and Reform Commission: National Highway Network Plan (2013–2030). Available online: https://max.book118.com/html/2016/0414/40410692.shtm (accessed on 15 June 2013).
- Wang, F.; Han, X. Research on the Optimal Density of Highway Network. Procedia Soc. Behav. Sci. 2013, 96, 1556–1565. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Li, X.; Wu, B. Scale Forecast Method for Regional Highway Network Based on BPNN-MOP. Transp. Res. Procedia 2017, 25, 3840–3854. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.; Wang, R.; Liu, Z.; Wang, L. Siting and sizing of fast charging stations in highway network with budget constraint. Appl. Energy 2018, 228, 1255–1271. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, M.; Li, Y. The Operating Efficiency Evaluation of the Highway Network Under Accident Conditions. Procedia Soc. Behav. Sci. 2013, 96, 574–581. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Mo, H.; Wang, F.; Jin, F. Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach. J. Transp. Geogr. 2011, 19, 712–721. [Google Scholar] [CrossRef]
- Hansen, W.G. How accessibility shapes land use. J. Am. Inst. Lanners 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Javier, G. Location, economic potential and daily accessibility: An analysis of the accessibility impact of the high-speed line Madrid-Barcelona-French border. J. Transp. Geogr. 2001, 9, 229–242. [Google Scholar]
- Li, C.; Wu, K.; Wu, J. Urban land use change and its socio-economic driving forces in China: A case study in Beijing, Tianjin and Hebei region. Environ. Dev. Sustain. 2018, 20, 1405–1419. [Google Scholar] [CrossRef]
- Li, C.; Wu, K.; Gao, X. Manufacturing industry agglomeration and spatial clustering: Evidence from Hebei Province, China. Environ. Dev. Sustain. 2019, 1–25. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, B.; Zou, L.; Wang, Y. Beijing-Tianjin-Hebei Industrial Transfer Land Survey, in China. Nat. Resour. News 2017, 22–23. [Google Scholar]
- Beijing Municipal People’s Government. Beijing Clean Air Action Plan (2013–2017) Key Task Decomposition Measures. Available online: http://www.bjepb.gov.cn/bjhrb/xxgk/ywdt/dqhjgl/qjkqxdjh16/307624/index.html (accessed on 9 February 2015).
- Peng, J.; Chen, X.; Liu, Y.; Lü, H.; Hu, X. Spatial identification of multifunctional landscapes and associated influencing factors in the Beijing-Tianjin-Hebei region, China. Appl. Geogr. 2016, 74, 170–181. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, L.; Huang, X.; Zhao, Y.; Zhang, Y. Evolution of the Spatiotemporal Pattern of Urban Industrial Land Use Efficiency in China. Sustainability 2018, 10, 2174. [Google Scholar] [CrossRef]
- Nasri, A.; Zhang, L. Assessing the impact of metropolitan-level, county-level, and local-level built environment on travel behavior: Evidence from 19 U.S. urban areas. J. Urban Plan. Dev. 2014, 141, 04014031. [Google Scholar] [CrossRef]
- Ayazli, I.E.; Kilic, F.; Lauf, S.; Demir, H.; Kleinschmit, B. Simulating urban growth driven by transportation networks: A case study of the Istanbul third bridge. Land Use Policy 2015, 49, 332–340. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.R.; Wu, C.; Blackburn, G.A.; Zheng, Q.; Huang, L.; Shortridge, A.; Shahtahmassebi, G.; Jiang, R.; He, S.; Wang, K.; et al. How do modern transportation projects impact on development of impervious surfaces via new urban area and urban intensification? Evidence from Hangzhou Bay Bridge, China. Land Use Policy 2018, 77, 479–497. [Google Scholar] [CrossRef]
- Zhang, P.; Qin, G.; Wang, Y. Optimal Maintenance Decision Method for Urban Gas Pipelines Based on as Low as Reasonably Practicable Principle. Sustainability 2019, 11, 153. [Google Scholar] [CrossRef]
- Geurs, K.T.; Wee, B.V. Accessibility evaluation of land-use and transport strategies: Review and research directions. J. Transp. Geogr. 2004, 12, 127–140. [Google Scholar] [CrossRef]
- Bertolini, L.; Clercq, F.L.; Kapoen, L.L. Sustainable accessibility: A conceptual framework to integrate transport and land use plan-making. Two test-applications in the Netherlands and a reflection on the way forward. Transp. Policy 2008, 12, 207–220. [Google Scholar] [CrossRef]
- Atash, F. Reorienting metropolitan land use and transportation policies in the USA. Land Use Policy 1996, 13, 37–49. [Google Scholar] [CrossRef]
- Lavee, D. Land use for transport projects: Estimating land value. Land Use Policy 2015, 42, 594–601. [Google Scholar] [CrossRef]
- Nasri, A.; Zhang, L. A multi-dimensional multi-level approach to measuring the spatial structure of U.S. metropolitan areas. J. Transp. Land Use 2018, 11, 49–65. [Google Scholar] [CrossRef]
- Mansourianfar, M.H.; Haghshenas, H. Micro-scale sustainability assessment of infrastructure projects on urban transportation systems: Case study of Azadi district, Isfahan, Iran. Cities 2018, 72, 149–159. [Google Scholar] [CrossRef]
- Chen, W.; Shen, Y.; Wang, Y. Does industrial land price lead to industrial diffusion in China? An empirical study from a spatial perspective. Sustain. Cities Soc. 2018, 40, 307–316. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Q.; Tan, K.; Zhang, L.; Zhang, Y. Experimental investigation on the influence of evaporative cooling of permeable pavements on outdoor thermal environment. Build. Environ. 2018, 140, 184–193. [Google Scholar] [CrossRef]
- Tan, C.Q.; Huang, X.J. Research Progress and Prospect on Urban Land Use-Transport Interaction (LUTI). China Land Sci. 2018, 32, 81–89. (In Chinese) [Google Scholar]
- Rockwood, D.; Garmire, D. A new transportation system for efficient and sustainable cities: Development of a next generation variable speed moving walkway. Sustain. Cities Soc. 2015, 14, 209–214. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, B.; Luo, D. Effects of land use and transportation on carbon sources and carbon sinks: A case study in Shenzhen, China. Landsc. Urban Plan. 2014, 122, 175–185. [Google Scholar] [CrossRef]
- Reilly, M.K.; O’Mara, M.P.; Seto, K.C. From Bangalore to the Bay Area: Comparing transportation and activity accessibility as drivers of urban growth. Landsc. Urban Plan. 2009, 92, 24–33. [Google Scholar] [CrossRef]
- Chen, J.; Chang, Z. Rethinking urban green space accessibility: Evaluating and optimizing public transportation system through social network analysis in megacities. Landsc. Urban Plan. 2015, 143, 150–159. [Google Scholar] [CrossRef]
- Wei, Y.D.; Li, H.; Yue, W. Urban land expansion and regional inequality in transitional China. Landsc. Urban Plan. 2017, 163, 17–31. [Google Scholar] [CrossRef]
- Fan, C.; Johnston, M.; Darling, L.; Scott, L.; Liao, F.H. Land use and socio-economic determinants of urban forest structure and diversity. Landsc. Urban Plan. 2019, 181, 10–21. [Google Scholar] [CrossRef]
- Ye, L.; Huang, X.; Yang, H.; Chen, Z.; Zhong, T.; Xie, Z. Effects of dual land ownerships and different land lease terms on industrial land use efficiency in Wuxi City, East China. Habitat Int. 2018, 78, 21–28. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Q.; Lu, F.; Wu, Q.; Wang, W. Spatial-temporal disparities, saving potential and influential factors of industrial land use efficiency: A case study in urban agglomeration in the middle reaches of the Yangtze River. Land Use Policy 2018, 75, 518–529. [Google Scholar] [CrossRef]
- Tu, F.; Yu, X.; Ruan, J. Industrial land use efficiency under government intervention: Evidence from Hangzhou, China. Habitat Int. 2014, 43, 1–10. [Google Scholar] [CrossRef]
- Gao, J.; Chen, W.; Liu, Y. Spatial restructuring and the logic of industrial land redevelopment in urban China: II. A case study of the redevelopment of a local state-owned enterprise in Nanjing. Land Use Policy 2018, 72, 372–380. [Google Scholar] [CrossRef]
- Zhao, D.X.; He, B.J.; Johnson, C.; Mou, B. Social problems of green buildings: From the humanistic needs to social acceptance. Renew. Sustain. Energy Rev. 2015, 51, 1594–1609. [Google Scholar] [CrossRef]
- Rokicki, B.; Stępniak, M. Major transport infrastructure investment and regional economic development–An accessibility-based approach. J. Transp. Geogr. 2018, 72, 36–49. [Google Scholar] [CrossRef]
- Banister, D.; Berechman, Y. Transport investment and the promotion of economic growth. J. Transp. Geogr. 2001, 9, 209–218. [Google Scholar] [CrossRef]
- Wey, W.; Huang, J. Urban sustainable transportation planning strategies for livable City’s quality of life. Habitat Int. 2018, 82, 9–27. [Google Scholar]
- Errampalli, M.; Patil, K.S.; Prasad, C.S.R.K. Evaluation of integration between public transportation modes by developing sustainability index for Indian cities. Case Stud. Transp. Policy 2018, in press. [Google Scholar] [CrossRef]
- Nasri, A.; Zhang, L. Multi-level urban form and commuting mode share in rail station areas across the United States; a seemingly unrelated regression approach. Transp. Policy 2018, in press. [Google Scholar] [CrossRef]
- Tayarani, M.; Poorfakhraei, A.; Nadafianshahamabadi, R.; Rowangould, G. Can regional transportation and land-use planning achieve deep reductions in GHG emissions from vehicles? Transp. Res. Part D Transp. Environ. 2018, 63, 222–235. [Google Scholar] [CrossRef]
- Zhou, H.; Gao, H. The impact of urban morphology on urban transportation mode: A case study of Tokyo. Case Stud. Transp. Policy 2018, in press. [Google Scholar] [CrossRef]
- Engebretsen, Ø.; Christiansen, P.; Strand, A. Bergen light rail–Effects on travel behavior. J. Transp. Geogr. 2017, 62, 111–121. [Google Scholar] [CrossRef]
- Aditjandra, P.; Galatioto, F.; Bell, M.; Zunder, T. Evaluating the impacts of urban freight traffic: Application of micro-simulation at a large establishment. Eur. J. Transp. Infrastruct. Res. 2016, 16, 4. [Google Scholar]
- Handley, J.C.; Fu, L.; Tupper, L.L. A case study in spatial-temporal accessibility for a transit system. J. Transp. Geogr. 2019, 75, 25–36. [Google Scholar] [CrossRef]
- Holl, A.; Mariotti, I. Highways and firm performance in the logistics industry. J. Transp. Geogr. 2018, 72, 139–150. [Google Scholar] [CrossRef]
- Ji, W.; Wang, Y.; Zhuang, D.; Song, D.; Shen, X.; Wang, W.; Li, G. Spatial and temporal distribution of expressway and its relationships to land cover and population: A case study of Beijing, China. Transp. Res. Part D Transp. Environ. 2014, 32, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Kim, H.; Lee, K.; Ahn, K. Subway network expansion and transit equity: A case study of Gwangju metropolitan area, South Korea. Transp. Policy 2018, 72, 148–158. [Google Scholar] [CrossRef]
- Aditjandra, P. Europe′s Freight Transport Policy: Analysis, Synthesis and Evaluation. Adv. Transp. Policy Plan. 2018, 1, 197–243. [Google Scholar]
- Rosa, D.L.; Takatori, C.; Shimizu, H.; Privitera, R. A planning framework to evaluate demands and preferences by different social groups for accessibility to urban greenspaces. Sustain. Cities Soc. 2018, 36, 346–362. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y. Land use, mobility and accessibility in dualistic urban China: A case study of Guangzhou. Cities 2017, 71, 59–69. [Google Scholar] [CrossRef]
- Niu, F.; Wang, F.; Chen, M.J. Modelling urban spatial impacts of land-use/ transport policies. Geogr. Sci. 2019, 29, 197–212. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Yu, Z.; Tian, G. Amenity, accessibility and housing values in metropolitan USA: A study of Salt Lake County, Utah. Cities 2016, 59, 113–125. [Google Scholar] [CrossRef]
- Shen, Y.; Karimi, K. Urban function connectivity: Characterisation of functional urban streets with social media check-in data. Cities 2016, 55, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Shao, C.; Nie, W.; Zhao, Y. Evaluation on Relationship Between Urban Transportation and Land Use Based on TOD. J. Beijing Jiaotong Univ. 2007, 31, 6–9. [Google Scholar]
- Luo, M.; Chen, Y.; Liu, X. Study on Coordination Deg ree Model Between Urban Transport and Land Use. J. Wuhan Univ. Technol. (Transp. Sci. Eng.) 2008, 4, 585–588. [Google Scholar]
- Wei, D.; Liu, W.; Dong, J. Evaluation of coupling coordination degree between urban rail transit and land use: A case study of Shanghai city. J. Tianjin Norm. Univ. (Nat. Sci. Ed.) 2013, 2, 51–55. [Google Scholar]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef] [PubMed]
- NBSC. National Bureau of Statistics PRC: China Statistical Yearbook 2016 (Chinese-English Edition); China Statistics Press: Beijing, China, 2016.
- Beijing Bureau of Statistics. Beijing Statistical Yearbooks 2016; China Statistical Press: Beijing, China, 2016.
- Tianjin Bureau of Statistics. Tianjin Statistical Yearbooks 2016; China Statistical Press: Tianjin, China, 2016.
- Hebei Bureau of Statistics. Hebei Statistical Yearbooks 2016; China Statistical Press: Shijiazhuang, China, 2016.
- National Bureau of Statistics of China. China Statistical Yearbook for Regional Economy 2016; China Statistical Press: Beijing, China, 2016.
- Ministry of Communications. Highway Engineering Technique Standards; China Communications Press: Beijing, China, 2003.
- Hui, E.C.M.; Wu, Y.; Deng, L.; Zheng, B. Analysis on coupling relationship of urban scale and intensive use of land in China. Cities 2015, 42, 63–69. [Google Scholar] [CrossRef]
- Liu, W.; Jiao, F.; Ren, L.; Xu, X.; Wang, J.; Wang, X. Coupling coordination relationship between urbanization and atmospheric environment security in Jinan City. J. Clean. Prod. 2018, 204, 1–11. [Google Scholar] [CrossRef]
- Shen, L.; Huang, Y.; Huang, Z.; Lou, Y.; Ye, G.; Wong, S.W. Improved coupling analysis on the coordination between socio-economy and carbon emission. Ecol. Indic. 2018, 94, 357–366. [Google Scholar] [CrossRef]
- Wang, L.; Wu, R.; Gao, J. Spatial coupling relationship between settlement and land and water resources–based on irrigation scale–A case study of Zhangye Oasis. In Advanced Engineering and Technology, Proceedings of the 2014 Annual Congress on Advanced Engineering and Technology (CAET 2014), Hong Kong, China, 19–20 April 2014; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Li, S. The analysis of coupling coordination degree in the interactive development of manufacturing industry and logistics in the eastern coastal economic zone of China. In Proceedings of the 2015 12th International Conference on Service Systems and Service Management (ICSSSM), Guangzhou, China, 22–24 June 2015. [Google Scholar]
- Song, Q.; Zhou, N.; Liu, T.; Siehr, S.A.; Qi, Y. Investigation of a “coupling model” of coordination between low-carbon development and urbanization in China. Energy Policy 2018, 121, 346–354. [Google Scholar] [CrossRef]
- Su, Y.; Li, W.; Liu, F.; Wang, Y. Research on Coupling Coordination Degree Model between Multimedia System and Electrical Engineering Teaching. In Proceedings of the 2010 International Conference on Machine Vision and Human-machine Interface, Kaifeng, China, 24–25 April 2010. [Google Scholar]
- Wang, H.; Xu, J.; Liu, X.; Sheng, L.; Zhang, D.; Li, L.; Wang, A. Study on the pollution status and control measures for the livestock and poultry breeding industry in northeastern China. Environ. Sci. Pollut. Res. 2018, 25, 4435–4445. [Google Scholar] [CrossRef]
- Gutierrez, J.; Gomez, G. The impact of orbital motorways on intra-metropolitan accessibility: The case of Madrid’s M-40. J. Transp. Geogr. 1999, 7, 1–15. [Google Scholar] [CrossRef]
- Tang, E.; Zhang, M. Urban Rail Accessibility and Interurban Spatial Effects on the Background of High-Speed rail in Jiangxi Province. Resour. Environ. Yangtze Basin 2018, 27, 2241–2249. [Google Scholar]
- Li, C. Urban Accessibility and Its Economic Linkage Analysis: A Case Study in Beijing, Tianjin and Hebei Region, China, in Exploring the Nexus of Geoecology, Geography, Geoarcheology and Geotourism: Advances and Applications for Sustainable Development in Environmental Sciences and Agroforestry Research; Springer: Cham, Switzerland, 2019; pp. 95–97. [Google Scholar]
- Wang, Z.; Chen, J.; Zheng, W.; Deng, X. Dynamics of land use efficiency with ecological intercorrelation in regional development. Landsc. Urban Plan. 2018, 177, 303–316. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Wu, J.; Xu, T.; Gao, L.; Zhao, X. Mapping spatial accessibility of public transportation network in an urban area—A case study of Shanghai Hongqiao Transportation Hub. Transp. Res. Part D Transp Environ. 2018, 59, 478–495. [Google Scholar] [CrossRef]
- Ministry of Land and Resources. Overall Planning on Land Use for Coordinated Development of Beijing-Tianjin-Hebei Region (2015–2020). Available online: http://www.mnr.gov.cn/dt/zb/2016/tdlysj/beijingziliao/201605/t20160505_2127839.html (accessed on 5 May 2016).
- Ministry of Transport. Transportation Integration Planning for Coordinated Development of Beijing-Tianjin-Hebei Region. Available online: http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/2015/33893/xgzc33899/Document/1458659/1458659.htm (accessed on 8 August 2015).
- Zhao, P.; Yang, H.; Kong, L.; Liu, Y.; Liu, D. Disintegration of metro and land development in transition China: A dynamic analysis in Beijing. Transp. Res. Part A Policy Pract. 2018, 116, 290–307. [Google Scholar] [CrossRef]
Coordination Evaluation Model | Land Use Indicators | Urban Traffic Indicators | References |
---|---|---|---|
FUZZY-AHP (Analytic Hierarchy Process) multilayer evaluation model | Residential land area, population density and employment density, land use layout | Road land area, public transport ratio during rush hour, vehicle ownership | [73] |
Data envelopment analysis (DEA) model | Average population density, area of land for transport, proportion of employment and resident population | Bus passenger capacity, bus share rate, transit mileage, rail transit mileage, travel distance per person | [74] |
Coupling coordination model | Land use density, land use scale, land use layout | Length of road network, length of rail transit operation, number of means of transport | [75] |
City | Urban-Industrial Land/(km2) | Area of City Paved Roads (ha) | Number of Industrial Enterprises | Composition of Gross Regional Product (%) | ||
---|---|---|---|---|---|---|
Primary | Secondary | Tertiary | ||||
Beijing | 1747.33 | 10029 | 3548 | 0.61 | 19.74 | 79.7 |
Tianjin | 1974.67 | 14019 | 5525 | 1.26 | 46.58 | 52.2 |
Shijiazhuang | 586.00 | 5366 | 2752 | 9.09 | 45.08 | 45.8 |
Tangshan | 1452.00 | 3098 | 1595 | 9.32 | 55.13 | 35.6 |
Qinhuangdao | 244.00 | 2137 | 395 | 14.21 | 35.59 | 50.2 |
Handan | 454.00 | 3161 | 1378 | 12.81 | 47.16 | 40.0 |
Xingtai | 354.00 | 1519 | 1309 | 15.62 | 44.97 | 39.4 |
Baoding | 586.00 | 3878 | 1665 | 11.78 | 50.02 | 38.2 |
Zhangjiakou | 456.67 | 1375 | 564 | 17.87 | 40.01 | 42.1 |
Chengde | 289.33 | 734 | 549 | 17.34 | 46.84 | 35.8 |
Cangzhou | 858.67 | 968 | 2380 | 9.62 | 49.58 | 40.8 |
Langfang | 363.33 | 937 | 1255 | 8.33 | 44.56 | 47.1 |
Hengshui | 253.33 | 742 | 1234 | 13.84 | 46.15 | 40.0 |
Coupling Coordination Type | Value | Coupling Coordination Level |
---|---|---|
Low coupling coordination | 0.00 < D ≤ 0.09 | Extreme imbalance |
0.10 ≤ D ≤ 0.19 | Serious imbalance | |
0.20 ≤ D ≤ 0.29 | Moderate imbalance | |
0.30 ≤ D ≤ 0.39 | Mild imbalance | |
Moderate coupling coordination | 0.40 ≤ D ≤ 0.49 | Imbalance |
0.50 ≤ D ≤ 0.59 | Coordinate | |
Good coupling coordination | 0.60 ≤ D ≤ 0.69 | Basic coordinate |
0.70 ≤ D ≤ 0.79 | Moderate coordinate | |
High quality coupling coordination | 0.80 ≤ D ≤ 0.89 | Good coordinate |
0.90 ≤ D < 1.00 | High quality coordinate |
Primary Indicators | Subsystem Weight | Secondary Indicators | Index Type | Entropy Weight |
---|---|---|---|---|
Economic efficiency (U1) | 0.4586 | Added value of the second and third industries (14.77 million dollars/km2) (U11) | + | 0.0245 |
Average revenue (14.77 million dollars/km2) (U12) | + | 0.2578 | ||
Average total retail sales of consumer goods (14.77 million dollars/km2) (U13) | + | 0.0629 | ||
Return on fixed assets (%) (U14) | + | 0.1134 | ||
Social efficiency (U2) | 0.3655 | Per capita area of urban-industrial land (m2/people) (U21) | − | 0.0186 |
Number of employees in the second and third industries (10000 people/km2) (U22) | + | 0.1438 | ||
Per capita disposable income of urban residents (dollars) (U23) | + | 0.0211 | ||
Number of beds per health institution per 1000 population (U24) | + | 0.1764 | ||
Road area per capita (m2/person) (U25) | + | 0.0057 | ||
Ecological efficiency (U3) | 0.1758 | Green coverage rate of built area (%) (U31) | + | 0.001 |
Green area rate of built area (%) (U32) | + | 0.0013 | ||
Energy consumption per unit of industrial output (t/dollars) (U33) | − | 0.1052 | ||
Treatment capacity of industrial wastewater (t/km2) (U34) | + | 0.0002 | ||
Treatment capacity of industrial solid waste (t/km2) (U35) | + | 0.0681 |
Grade | Economic Development Characteristics | Cities |
---|---|---|
1 | Economic radiation center | Beijing, Tianjin |
2 | Advanced economic agglomeration | Shijiazhuang, Tangshan |
3 | Intermediate economic agglomeration | Baoding, Handan |
4 | Primary economic agglomeration | Cangzhou, Langfang, Qinhuangdao, Xingtai, Zhangjiakou |
5 | Economically backward areas | Chengde, Hengshui |
City | Coupling and Coordination Types between U1 and U2 | Hysteresis Status | |||
---|---|---|---|---|---|
C | Coupling Status | D | Coupling Coordination Level | ||
Beijing | 0.5314 | Running-in stage | 0.3597 | Mild imbalance | U1 |
Tianjin | 0.5063 | Running-in stage | 0.2554 | Moderate imbalance | U1 |
Shijiazhuang | 0.4764 | Antagonism stage | 0.1590 | Serious imbalance | U1 |
Qinhunagdao | 0.5415 | Running-in stage | 0.1525 | Serious imbalance | U1 |
Tangshan | 0.2562 | Low coupling | 0.0872 | Extreme imbalance | U2 |
Handan | 0.4648 | Antagonism stage | 0.1196 | Serious imbalance | U1 |
Baoding | 0.4755 | Antagonism stage | 0.1203 | Serious imbalance | U1 |
Hengshui | 0.3254 | Antagonism stage | 0.0821 | Extreme imbalance | U1 |
Xingtai | 0.3894 | Antagonism stage | 0.0910 | Serious imbalance | U1 |
Chengde | 0.3478 | Antagonism stage | 0.0803 | Extreme imbalance | U1 |
Langfang | 0.6189 | Running-in stage | 0.1243 | Serious imbalance | U1 |
Zhangjiakou | 0.3610 | Antagonism stage | 0.0770 | Extreme imbalance | U1 |
Cangzhou | 0.5846 | Running-in stage | 0.1037 | Serious imbalance | U1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Gao, X.; He, B.-J.; Wu, J.; Wu, K. Coupling Coordination Relationships between Urban-industrial Land Use Efficiency and Accessibility of Highway Networks: Evidence from Beijing-Tianjin-Hebei Urban Agglomeration, China. Sustainability 2019, 11, 1446. https://doi.org/10.3390/su11051446
Li C, Gao X, He B-J, Wu J, Wu K. Coupling Coordination Relationships between Urban-industrial Land Use Efficiency and Accessibility of Highway Networks: Evidence from Beijing-Tianjin-Hebei Urban Agglomeration, China. Sustainability. 2019; 11(5):1446. https://doi.org/10.3390/su11051446
Chicago/Turabian StyleLi, Chenxi, Xing Gao, Bao-Jie He, Jingyao Wu, and Kening Wu. 2019. "Coupling Coordination Relationships between Urban-industrial Land Use Efficiency and Accessibility of Highway Networks: Evidence from Beijing-Tianjin-Hebei Urban Agglomeration, China" Sustainability 11, no. 5: 1446. https://doi.org/10.3390/su11051446
APA StyleLi, C., Gao, X., He, B. -J., Wu, J., & Wu, K. (2019). Coupling Coordination Relationships between Urban-industrial Land Use Efficiency and Accessibility of Highway Networks: Evidence from Beijing-Tianjin-Hebei Urban Agglomeration, China. Sustainability, 11(5), 1446. https://doi.org/10.3390/su11051446