Are Opera Singers Fit or Not?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Body Composition Analysis
2.2.2. Cardiorespiratory Fitness
2.2.3. Physical Effort during Singing
2.2.4. Theory/Calculation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Claiborne Ray, C. Singing and fitness. New York Times, 1 April 2008. Available online: http://www.nytimes.com/2008/04/01/science/01qna.html(accessed on 4 March 2020).
- Vickhoff, B.; Malmgren, H.; Aström, R.; Nyberg, G.; Ekström, S.R.; Engwall, M.; Snygg, J.; Nilsson, M.; Jörnsten, R. Music structure determines heart rate variability of singers. Front. Psychol. 2013, 4, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grape, C.; Sandgren, M.; Hansson, L.O.; Ericson, M.; Theorell, T. Does singing promote well-being?: An empirical study of professional and amateur singers during a singing lesson. Integr. Physiol. Behav. Sci. 2003, 38, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Schorr-Lesnick, B.; Teirstein, A.S.; Brown, L.K.; Miller, A. Pulmonary function in singers and wind-instrument players. Chest 1985, 88, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Mahler, D.A.; Moritz, E.D.; Loke, J. Ventilatory responses at rest and during exercise in marathon runners. J. Appl. Physiol. 1982, 52, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Ksinopoulou, H.; Hatzoglou, C.; Daniil, Z.; Gourgoulianis, K.; Karetsi, H. Ergospirometry Findings in Wind Instrument Players and Opera Singers. Int. J. Occup. Environ. Med. 2017, 8, 60–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascherini, G.; Petri, C.; Galanti, G. Integrated total body composition and localized fat-free mass assessment. Sport Sci. Health 2015, 11, 217–225. [Google Scholar] [CrossRef]
- Marfell-Jones, M.J.; Stewart, A.D.; de Ridder, J.H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Wellington, New Zealand, 2012. [Google Scholar]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gómez, J.; Lilienthal Heitmann, B.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. ESPEN, Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.A.; Coke, L.A.; Fleg, J.L.; Forman, D.E.; Gerber, T.C.; et al. Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef] [PubMed]
- Redlich, C.A.; Tarlo, S.M.; Hankinson, J.L.; Townsend, M.C.; Eschenbacher, W.L.; Von Essen, S.G.; Sigsgaard, T.; Weissman, D.N. American Thoracic Society Committee on Spirometry in the Occupational Setting. Official American Thoracic Society technical standards: Spirometry in the occupational setting. Am. J. Respir. Crit. Care Med. 2014, 189, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Miller, A. Pulmonary Function Test in Clinical and Occupational Disease; Grune & Stratton: Philadelphia, PA, USA, 1986. [Google Scholar]
- Barbosa-Silva, M.C.; Barros, A.J.; Wang, J.; Heymsfield, S.B.; Pierson, R.N., Jr. Bioelectrical impedance analysis: Population reference values for phase angle by age and sex. Am. J. Clin. Nutr. 2005, 82, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.R.; Johns, D.P.; Bailey, M.; Raven, J.; Walters, E.H.; Abramson, M.J. Prediction equations for single breath diffusing capacity (Tlco) in a middle aged caucasian population. Thorax 2008, 63, 889–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiolo, C.; Mohamed, E.I.; Carbonelli, M.G. Body composition and respiratory function. Acta Diabetol. 2003, 40, S32–S38. [Google Scholar] [CrossRef] [PubMed]
- Usaj, A.; Kandare, F. The oxygen uptake threshold during incremental exercise test. Pflugers Arch. 2000, 440, R200–R201. [Google Scholar] [CrossRef] [PubMed]
- Obermeyer, Z.; Samra, J.K.; Mullainathan, S. Individual differences in normal body temperature: Longitudinal big data analysis of patient records. BMJ 2017, 359, j5468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, K.E.; Ganong, W.F. Ganong’s Review of Medical Physiology, 25th ed.; McGraw-Hill Medical: New York, NY, USA, 2012; p. 619. [Google Scholar]
- Franklin, B.A.; Whaley, M.H. ACSM’s Guidelines for Exercise Testing and Prescription, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
- McArdle, W.; Katch, F.I.; Katch, V.L. Exercise Physiology: Nutrition, Energy, and Human Performance, 8th ed.; Wolters Kluwer Health: Riverwoods, IL, USA, 2014. [Google Scholar]
- Eller, N.; Skylv, G.; Ostri, B.; Dahlin, E.; Suadicani, P.; Gyntelberg, F. Health and lifestyle characteristics of professional singers and instrumentalists. Occup. Med. 1992, 42, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Amann, M. Central and peripheral fatigue: Interaction during cycling exercise in humans. Med. Sci. Sports Exerc. 2011, 43, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
Female | Normal Range | Male | Normal Range | |
---|---|---|---|---|
Age (yrs) | 28.1 ± 4.6 | 34.1 ± 6.2 | ||
Height (cm) | 166.5 ± 6.3 | 177.3 ± 6.7 | ||
Weight (kg) | 69.4 ± 16.1 | 86.3 ± 6.1 | ||
BMI (kg/m2) | 25.1 ± 6.4 | 18.5–25 | 28.8 ± 3.2 | 18.5–25 |
Waist c. (cm) | 84.5 ± 11.4 | < 88 | 95.8 ± 13.8 | < 102 |
RZ (Ω) | 555.2 ± 96.7 | 432.9 ± 27.2 | ||
XC (Ω) | 60.8 ± 8.3 | 54.7 ± 8.8 | ||
PA (°) | 6.3 ± 0.7 | 5.8–7.4 | 7.3 ± 1.1 | 6.7–8.3 |
FFM (kg/m) | 30.8 ± 3.6 | 23–28 | 39.2 ± 2.5 | 28–35 |
TBW (L/m) | 22.5 ± 2.7 | 15–22 | 28.8 ± 2.9 | 18–26 |
ECW (%) | 44.4 ± 3.1 | 39–45 | 40.8 ± 3.9 | 38–44 |
BCM (kg/m) | 17.1 ± 2.9 | 10–17 | 23.2 ± 1.9 | 14–21 |
FM (kg/m) | 20.8 ± 4.4 | 7–14 | 11.8 ± 3.2 | 4–9 |
Female | Predict | P value | Male | Predict | P value | |
---|---|---|---|---|---|---|
FVC (L) | 3.9 ± 0.9 | 4.0 | NS | 4.7 ± 0.7 | 5.1 | NS |
FEV1 (L/sec) | 3.3 ± 0.6 | 3.4 | NS | 4.1 ± 0.7 | 4.4 | NS |
FEV1/FVC (%) | 85.1 ± 10.6 | 84.7 | NS | 86.8 ± 5.4 | 82.4 | NS |
FEF25/75 (L/sec) | 3.8 ± 1.3 | 3.6 | NS | 4.4 ± 1.3 | 4.3 | NS |
Female | Values at rest | Male | Values at rest | |
---|---|---|---|---|
HR max (bpm) | 180.0 ± 8.3 | 60–100 | 178.0 ± 13.3 | 60–100 |
RR max (bpm) | 19.8 ± 3.5 | 12–16 | 19.2 ± 4.0 | 12–16 |
T max (°) | 37.9 ± 0.2 | 37 | 37.9 ± 0.1 | 37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branca, J.J.V.; Gulisano, M.; Marella, M.; Mascherini, G. Are Opera Singers Fit or Not? Sustainability 2020, 12, 4213. https://doi.org/10.3390/su12104213
Branca JJV, Gulisano M, Marella M, Mascherini G. Are Opera Singers Fit or Not? Sustainability. 2020; 12(10):4213. https://doi.org/10.3390/su12104213
Chicago/Turabian StyleBranca, Jacopo Junio Valerio, Massimo Gulisano, Mario Marella, and Gabriele Mascherini. 2020. "Are Opera Singers Fit or Not?" Sustainability 12, no. 10: 4213. https://doi.org/10.3390/su12104213
APA StyleBranca, J. J. V., Gulisano, M., Marella, M., & Mascherini, G. (2020). Are Opera Singers Fit or Not? Sustainability, 12(10), 4213. https://doi.org/10.3390/su12104213