Nitrogen Deficiency-Dependent Abiotic Stress Enhances Carotenoid Production in Indigenous Green Microalga Scenedesmus rubescens KNUA042, for Use as a Potential Resource of High Value Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of S. rubescens KNUA042 from Freshwater
2.2. Microalgal Cultivation Conditions
2.3. Algal Growth Kinetics, Biomass Productivity, and N Consumption
2.4. Characterization of Microalgal Biomass
2.5. Thin Layer Chromatography and BODIPY Staining
2.6. Pigment Analysis
2.7. Fatty acid Analysis
2.8. Assessment of Biodiesel Quality
2.9. Statistical Analysis
3. Results
3.1. Identification of S. rubescens KNUA042
3.2. The Effect of Nitrate on S. rubescens KNUA042
3.3. Productivity of Lipids and Biomass under Abiotic Stress Plus N Deficiency
3.4. BODIPY Staining, Cell Size and Triacylglycerol Accumulation at Different Environmental Conditions
3.5. Proximate Analysis
3.6. Ultimate Analysis
3.7. Analysis of the Fatty Acid Composition to Abiotic Stress
3.8. Biodiesel Quality Assessment
3.9. Pigment Analysis
4. Discussion
4.1. Morphological and Molecular Characteristics of S. rubescens KNUA042
4.2. Nutrient Consumption of S. rubescens KNUA042
4.3. Lipid and Biomass Productivity under Abiotic Stress in the Presence of N Deficiency
4.4. Lipid Accumulation as a Biofuel Feedstock
4.5. Proximate and Ultimate Analysis
4.6. Fatty acid Profiling
4.7. Biodiesel Quality Estimation as a Biofuel Feedstock
4.8. Pigment Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ho, S.H.; Chen, C.Y.; Chang, J.S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 2012, 113, 244–252. [Google Scholar] [CrossRef]
- Guedes, A.G.P.; Morisseau, C.; Sole, A.; Soares, J.H.N.; Ulu, A.; Dong, H.; Hammock, B.D. Use of a soluble epoxide hydrolase inhibitor as an adjunctive analgesic in a horse with laminitis. Vet. Anaesth. Analg. 2013, 40, 440–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riccio, G.; Lauritano, C. Microalgae with immunomodulatory activities. Mar. Drugs 2020, 18, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patnaik, R.; Singh, N.K.; Bagchi, S.K.; Rao, P.S.; Mallick, N. Utilization of Scenedesmus obliquus protein as a replacement of the commercially available fish meal under an algal refinery approach. Front. Microbiol. 2019, 10, 2114. [Google Scholar] [CrossRef] [PubMed]
- Patil, L.; Kaliwal, B.B. Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioprocess Biosyst. Eng. 2019, 42, 979–994. [Google Scholar] [CrossRef] [PubMed]
- Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as sources of carotenoids. Mar. Drugs 2011, 9, 625–644. [Google Scholar] [CrossRef]
- Boussiba, S. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiol. Plant. 2000, 108, 111–117. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Adams, W.W. Food and photosynthesis: Antioxidants in photosynthesis and human nutrition. Science 2002, 298, 2149–2153. [Google Scholar] [CrossRef]
- Chisti, Y. Constraints to commercialization of algal fuels. J. Biotechnol. 2013, 167, 201–214. [Google Scholar] [CrossRef]
- Jebali, A.; Acién, F.G.; Jiménez-Ruiz, N.; Gómez, C.; Fernández-Sevilla, J.M.; Mhiri, N.; Karray, F.; Sayadi, S.; Molina-Grima, E. Evaluation of native microalgae from Tunisia using the pulse-amplitude-modulation measurement of chlorophyll fluorescence and a performance study in semi-continuous mode for biofuel production. Biotechnol. Biofuels 2019, 12, 119. [Google Scholar] [CrossRef] [Green Version]
- Gong, M.; Bassi, A. Carotenoids from microalgae: A review of recent developments. Biotechnol. Adv. 2016, 34, 1396–1412. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Kumari, S.; Guldhe, A.; Misra, R.; Rawat, I.; Bux, F. Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew. Sustain. Energy Rev. 2016, 55, 1–16. [Google Scholar] [CrossRef]
- Duan, X. Salt-induced osmotic stress for lipid overproduction in batch culture of Chlorella vulgaris. African J. Biotechnol. 2012, 11, 7072–7078. [Google Scholar] [CrossRef]
- Takagi, M.; Karseno; Yoshida, T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 2006, 101, 223–226. [Google Scholar] [CrossRef] [Green Version]
- Coesel, S.N.; Baumgartner, A.C.; Teles, L.M.; Ramos, A.A.; Henriques, N.M.; Cancela, L.; Varela, J.C.S. Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar. Biotechnol. 2008, 10, 602–611. [Google Scholar] [CrossRef]
- Ra, C.H.; Kang, C.H.; Kim, N.K.; Lee, C.G.; Kim, S.K. Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress. Renew. Energy 2015, 80, 117–122. [Google Scholar] [CrossRef]
- Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stanier, R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 1979, 111, 1–61. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Department of Biological Sciences Louisiana State University: Baton Rouge, LA, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Verbruggen, H.; Ashworth, M.; LoDuca, S.T.; Vlaeminck, C.; Cocquyt, E.; Sauvage, T.; Zechman, F.W.; Littler, D.S.; Littler, M.M.; Leliaert, F.; et al. A multi-locus time-calibrated phylogeny of the siphonous green algae. Mol. Phylogenet. Evol. 2009, 50, 642–653. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.; Kim, B.H.; Ramanan, R.; Choi, J.E.; Yang, J.W.; Oh, H.M.; Kim, H.S. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J. Microbiol. Biotechnol. 2015, 25, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Suh, W.I.; Farooq, W.; Moon, M.; Shrivastav, A.; Park, M.S.; Yang, J.W. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol. 2014, 155, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Given, P.H.; Weldon, D.; Zoeller, J.H. Calculation of calorific values of coals from ultimate analyses: Theoretical basis and geochemical implications. Fuel 1986, 65, 849–854. [Google Scholar] [CrossRef]
- Breuer, G.; Evers, W.A.C.; de Vree, J.H.; Kleinegris, D.M.M.; Martens, D.E.; Wijffels, R.H.; Lamers, P.P. Analysis of fatty acid content and composition in microalgae. J. Vis. Exp. 2013, 80, e50628. [Google Scholar] [CrossRef] [Green Version]
- Govender, T.; Ramanna, L.; Rawat, I.; Bux, F. BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour. Technol. 2012, 114, 507–511. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids measurement and UV-VIS characterization. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Ed.; John Wiley and Sons Inc.: New York, NY, USA, 2001; pp. F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Zapata, M.; Garrido, J.L. Influence of injection conditions in reversed-phase high-performance liquid chromatography of chlorophylls and carotenoids. Chromatographia 1991, 31, 589–594. [Google Scholar] [CrossRef]
- Sanz, N.; García-Blanco, A.; Gavalás-Olea, A.; Loures, P.; Garrido, J.L. Phytoplankton pigment biomarkers: HPLC separation using a pentafluorophenyloctadecyl silica column. Methods Ecol. Evol. 2015, 6, 1199–1209. [Google Scholar] [CrossRef] [Green Version]
- Aussant, J.; Guihéneuf, F.; Stengel, D.B. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae. Appl. Microbiol. Biotechnol. 2018, 102, 5279–5297. [Google Scholar] [CrossRef]
- Osundeko, O.; Davies, H.; Pittman, J.K. Oxidative stress-tolerant microalgae strains are highly efficient for biofuel feedstock production onwastewater. Biomass Bioenergy 2013, 56, 284–294. [Google Scholar] [CrossRef]
- Yang, I.-S.; Salama, E.-S.; Kim, J.-O.; Govindwar, S.P.; Kurade, M.B.; Lee, M.; Roh, H.-S.; Jeon, B.-H. Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal. Energy Convers. Manag. 2016, 117, 54–62. [Google Scholar] [CrossRef]
- Kessler, E.; Schäfer, M.; Hümmer, C.; Kloboucek, A.; Huss, V.A.R. Physiological, biochemical, and molecular characters for the taxonomy of the subgenera of Scenedesmus (Chlorococcales, Chlorophyta). Bot. Acta 1997, 110, 244–250. [Google Scholar] [CrossRef]
- Awaluddin, S.A.; Thiruvenkadam, S.; Izhar, S.; Hiroyuki, Y.; Danquah, M.K.; Harun, R. Subcritical water technology for enhanced extraction of biochemical compounds from Chlorella vulgaris. Biomed Res. Int. 2016, 5816974. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.W.; Kim, O.H.; Jo, S.W.; Do, J.M.; Yoon, H.S. Microalgal biomass productivity and dominant species transition in a Korean mass cultivation system. Algal Res. 2017, 26, 365–370. [Google Scholar] [CrossRef]
- Choi, G.G.; Kim, B.H.; Ahn, C.Y.; Oh, H.M. Effect of nitrogen limitation on oleic acid biosynthesis in Botryococcus braunii. J. Appl. Phycol. 2011, 23, 1031–1037. [Google Scholar] [CrossRef]
- Hegewald, E.H. Taxonomy and phylogeny of Scenedesmus. Algae 1997, 12, 235–246. [Google Scholar]
- Tan, Y.; Lin, J. Biomass production and fatty acid profile of a Scenedesmus rubescens-like microalga. Bioresour. Technol. 2011, 102, 10131–10135. [Google Scholar] [CrossRef]
- Yilancioglu, K.; Cokol, M.; Pastirmaci, I.; Erman, B.; Cetiner, S. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS ONE 2014, 9, e91957. [Google Scholar] [CrossRef]
- Orosa, M.; Torres, E.; Fidalgo, P.; Abalde, J. Production and analysis of secondary carotenoids in green algae. J. Appl. Phycol. 2000, 12, 553–556. [Google Scholar] [CrossRef] [Green Version]
- Alishah Aratboni, H.; Rafiei, N.; Garcia-Granados, R.; Alemzadeh, A.; Morones-Ramírez, J.R. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb. Cell Fact. 2019, 18, 178. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Hattori, H.; Hirano, M. Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chem. 2007, 100, 656–661. [Google Scholar] [CrossRef]
- Simionato, D.; Block, M.A.; La Rocca, N.; Jouhet, J.; Maréchal, E.; Finazzi, G.; Morosinotto, T. The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot. Cell 2013, 12, 665–676. [Google Scholar] [CrossRef] [Green Version]
- Arguelles, E.D.; Laurena, A.C.; Monsalud, R.G.; Martinez-Goss, M.R. Fatty acid profile and fuel-derived physico-chemical properties of biodiesel obtained from an indigenous green microalga, Desmodesmus sp. (I-AU1), as potential source of renewable lipid and high quality biodiesel. J. Appl. Phycol. 2018, 30, 411–419. [Google Scholar] [CrossRef]
- Sureshkumar, P.; Thomas, J. Strategic growth of limnic green microalgae with phycoremediation potential for enhanced production of biomass and biomolecules for sustainable environment. Environ. Sci. Pollut. Res. 2019, 34, 34702–34712. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.M.; Ren, L.J.; Zhao, Q.Y.; Ji, X.J.; Huang, H. Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation. Biotechnol. Biofuels 2018, 11, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, M.; Suh, W.I.; Chang, Y.K.; Lee, B. Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2. Bioresour. Technol. 2019, 276, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Juan, P.; Kai, Y.; Jian Ping, Y.; Guang Xia, C.; Min, X.; Chou Fei, W.; Jiang Hai, W. Characterization of a newly isolated green microalga Scenedesmus sp. as a potential source of biodiesel. African J. Biotechnol. 2012, 11, 16083–16094. [Google Scholar] [CrossRef] [Green Version]
- Sharma, T.; Gour, R.S.; Kant, A.; Chauhan, R.S. Lipid content in Scenedesmus species correlates with multiple genes of fatty acid and triacylglycerol biosynthetic pathways. Algal Res. 2015, 12, 341–349. [Google Scholar] [CrossRef]
- Chokshi, K.; Pancha, I.; Ghosh, A.; Mishra, S. Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresour. Technol. 2017, 244, 1376–1383. [Google Scholar] [CrossRef]
- Sun, H.; Mao, X.; Wu, T.; Ren, Y.; Chen, F.; Liu, B. Novel insight of carotenoid and lipid biosynthesis and their roles in storage carbon metabolism in Chlamydomonas reinhardtii. Bioresour. Technol. 2018, 263, 450–457. [Google Scholar] [CrossRef]
- Salama, E.S.; Kim, H.C.; Abou-Shanab, R.A.I.; Ji, M.K.; Oh, Y.K.; Kim, S.H.; Jeon, B.H. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst. Eng. 2013, 36, 827–833. [Google Scholar] [CrossRef]
- Sun, X.; Cao, Y.; Xu, H.; Liu, Y.; Sun, J.; Qiao, D.; Cao, Y. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour. Technol. 2014, 155, 204–212. [Google Scholar] [CrossRef]
- Steinbrenner, J.; Linden, H. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol. 2001, 125, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Rumin, J.; Bonnefond, H.; Saint-Jean, B.; Rouxel, C.; Sciandra, A.; Bernard, O.; Cadoret, J.-P.; Bougaran, G. The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnol. Biofuels 2015, 8, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Affenzeller, M.J.; Darehshouri, A.; Andosch, A.; Lütz, C.; Lütz-Meindl, U. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J. Exp. Bot. 2009, 60, 939–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, Z.; Zhang, Q.; Peng, Z.; Miao, X. Lipid droplets mediate salt stress tolerance in parachlorella kessleri. Plant Physiol. 2019, 181, 510–526. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef]
- Rodolfi, L.; Zittelli, G.C.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112. [Google Scholar] [CrossRef]
- Khozin-Goldberg, I.; Cohen, Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 2006, 67, 696–701. [Google Scholar] [CrossRef]
- Kent, M.; Welladsen, H.M.; Mangott, A.; Li, Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE 2015, 10, e0118985. [Google Scholar] [CrossRef]
- Bi, Z.; He, B.B. Characterization of microalgae for the purpose of biofuel production. ASABE 2013, 56, 1529–1539. [Google Scholar]
- Sukarni; Sudjito; Hamidi, N.; Yanuhar, U.; Wardana, I.N.G. Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock. Int. J. Energy Environ. Eng. 2014, 5, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.B.; Jones, J.M.; Kubacki, M.L.; Bridgeman, T. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 2008, 99, 6494–6504. [Google Scholar] [CrossRef] [PubMed]
- Halim, R.; Gladman, B.; Danquah, M.K.; Webley, P.A. Oil extraction from microalgae for biodiesel production. Bioresour. Technol. 2011, 102, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-H.; Nakanishi, A.; Ye, X.; Chang, J.-S.; Hara, K.; Hasunuma, T.; Kondo, A. Optimizing biodiesel production in marine Chlamydomonas sp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy. Biotechnol. Biofuels 2014, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Solovchenko, A.E.; Khozin-Goldberg, I.; Didi-Cohen, S.; Cohen, Z.; Merzlyak, M.N. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J. Appl. Phycol. 2007, 20, 245–251. [Google Scholar] [CrossRef]
- Lin, Q.; Lin, J. Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga. Bioresour. Technol. 2011, 102, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Mandotra, S.K.; Kumar, P.; Suseela, M.R.; Ramteke, P.W. Fresh water green microalga Scenedesmus abundans: A potential feedstock for high quality biodiesel production. Bioresour. Technol. 2014, 156, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.L.; Wang, H.T.; Pan, Y.F.; Meng, Y.Y.; Wu, P.C.; Xue, S. Identification of characteristic fatty acids to quantify triacylglycerols in microalgae. Front. Plant Sci. 2016, 7, 162. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yuan, C.; Hu, G.; Li, F. Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Appl. Biochem. Biotechnol. 2012, 166, 2127–2137. [Google Scholar] [CrossRef]
- Xia, L.; Ge, H.; Zhou, X.; Zhang, D.; Hu, C. Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15. Bioresour. Technol. 2013, 144, 261–267. [Google Scholar] [CrossRef]
- Minhas, A.K.; Hodgson, P.; Barrow, C.J.; Adholeya, A. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front. Microbiol. 2016, 7, 546. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Yang, H.; Hu, C. Effects of temperature and its combination with high light intensity on lipid production of Monoraphidium dybowskii Y2 from semi-arid desert areas. Bioresour. Technol. 2018, 265, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Talebi, A.F.; Mohtashami, S.K.; Tabatabaei, M.; Tohidfar, M.; Bagheri, A.; Zeinalabedini, M.; Hadavand Mirzaei, H.; Mirzajanzadeh, M.; Malekzadeh Shafaroudi, S.; Bakhtiari, S. Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Res. 2013, 2, 258–267. [Google Scholar] [CrossRef]
- Pal, D.; Khozin-Goldberg, I.; Cohen, Z.; Boussiba, S. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl. Microbiol. Biotechnol. 2011, 90, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Yang, H.; Wu, L.; Hu, C. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour. Technol. 2015, 191, 219–228. [Google Scholar] [CrossRef]
0 Day | 7 Day | 14 Day | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | S | L | LS | C | S | L | LS | C | S | L | LS | |
Proximate analysis (wt %) | ||||||||||||
Moisture | 6.6 ± 0.2 | 6.3 ± 0.1 | 6.5 ± 0.1 | 6.4 ± 0.1 | 6.6 ± 0.5 | 5.7 ± 0.1 | 7.0 ± 0.1 | 6.2 ± 0.0 | 5.1 ± 0.3 | 4.9 ± 0.2 | 5.7 ± 0.4 | 5.0 ± 0.3 |
Volatile matter | 77.2 ± 0.4 | 75.5 ± 0.5 | 75.6 ± 0.4 | 75.9 ± 0.4 | 84.5 ± 0.3 | 87.5 ± 0.7 | 84.1 ± 0.4 | 85.8 ± 0.3 | 88.2 ± 0.1 | 90.5 ± 0.0 | 87.9 ± 0.4 | 89.2 ± 1.2 |
Ash | 16.2 ± 0.2 | 18.2 ± 0.4 | 17.9 ± 0.6 | 17.7 ± 0.6 | 9.0 ± 0.2 | 6.8 ± 0.7 | 8.9 ± 0.4 | 8.0 ± 0.2 | 6.6 ± 0.2 | 4.6 ± 0.2 | 6.4 ± 0.8 | 5.8 ± 0.9 |
Ultimate analysis (wt %) | ||||||||||||
Carbon (C) | 42.2 ± 0.2 | 42.5 ± 0.4 | 42.7 ± 0.5 | 42.9 ± 0.3 | 48.0 ± 0.7 | 49.5 ± 0.3 | 47.4 ± 0.2 | 49.7 ± 0.2 | 54.1 ± 0.2 | 54.2 ± 0.1 | 53.1 ± 0.1 | 55.1 ± 0.4 |
Hydrogen (H) | 6.4 ± 0.1 | 6.3 ± 0.1 | 6.4 ± 0.1 | 6.4 ± 0.1 | 7.3 ± 0.1 | 7.4 ± 0.0 | 7.2 ± 0.1 | 7.5 ± 0.0 | 8.2 ± 0.0 | 8.2 ± 0.0 | 8.1 ± 0.0 | 8.4 ± 0.1 |
Nitrogen (N) | 6.6 ± 0.1 | 6.6 ± 0.0 | 6.6 ± 0.2 | 6.6 ± 0.0 | 4.2 ± 0.1 | 4.6 ± 0.0 | 4.1 ± 0.0 | 4.1 ± 0.0 | 3.0 ± 0.1 | 3.1 ± 0.0 | 3.2 ± 0.1 | 2.9 ± 0.0 |
Sulfur (S) | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.4 ± 0.0 | 0.4 ± 0.0 | 0.4 ± 0.0 | 0.4 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.0 |
Oxygen (O) (by difference) | 25.9 ± 0.2 | 25.9 ± 0.2 | 25.9 ± 0.2 | 25.9 ± 0.2 | 27.1 ± 0.1 | 28.7 ± 0.1 | 28.9 ± 0.0 | 25.9 ± 0.2 | 24.1 ± 0.5 | 24.7 ± 0.1 | 26.3 ± 0.4 | 25.2 ± 0.2 |
HHV (MJ/kg) | 20.0 ± 0.0 | 20.1 ± 0.3 | 20.2 ± 0.2 | 20.2 ± 0.2 | 23.0 ± 0.4 | 23.5 ± 0.1 | 22.4 ± 0.2 | 24.0 ± 0.1 | 26.7 ± 0.2 | 26.7 ± 0.1 | 25.9 ± 0.0 | 27.2 ± 0.3 |
0 Day | 7 Day | 14 Day | EN 14214 | ASTM D6751 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | S | L | LS | C | S | L | LS | C | S | L | LS | |||
SV | 162.2 | 164.3 | 161.4 | 162.4 | 183.8 | 188.6 | 188.5 | 191.8 | 188.8 | 191.3 | 191.7 | 194.1 | ||
IV | 164.4 | 165.6 | 163.1 | 164.5 | 118.9 | 124.5 | 112.1 | 108.4 | 103.6 | 106.6 | 102.2 | 105.3 | ≤120 | |
CN | 33.4 | 33.5 | 33.5 | 33.4 | 50.0 | 49.6 | 51.7 | 53.4 | 54.4 | 54.1 | 54.7 | 54.4 | ≥51 | ≥47 |
DU | 120 | 121 | 119 | 120 | 110 | 115 | 101 | 104 | 101 | 104 | 96 | 101 | ||
CFPP | –10.2 | –10.3 | –10.2 | –10.2 | –5.7 | –7.8 | –4.3 | –6.2 | –5.4 | –7.2 | –3.6 | –5.9 | ≤5/≤–20 | |
OS | 5.6 | 5.6 | 5.6 | 5.6 | 7.2 | 7.3 | 7.0 | 7.7 | 8.6 | 8.8 | 7.7 | 8.2 | ≥6 | ≥3 |
υ | 3.4 | 3.4 | 3.4 | 3.4 | 4.0 | 4.0 | 4.0 | 4.1 | 4.1 | 4.1 | 4.1 | 4.1 | 3.5–5.0 | 1.9–6.0 |
ρ | 0.89 | 0.89 | 0.89 | 0.89 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.86–0.90 | 0.82–0.90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, S.-W.; Hong, J.W.; Do, J.-M.; Na, H.; Kim, J.-J.; Park, S.-I.; Kim, Y.-S.; Kim, I.-S.; Yoon, H.-S. Nitrogen Deficiency-Dependent Abiotic Stress Enhances Carotenoid Production in Indigenous Green Microalga Scenedesmus rubescens KNUA042, for Use as a Potential Resource of High Value Products. Sustainability 2020, 12, 5445. https://doi.org/10.3390/su12135445
Jo S-W, Hong JW, Do J-M, Na H, Kim J-J, Park S-I, Kim Y-S, Kim I-S, Yoon H-S. Nitrogen Deficiency-Dependent Abiotic Stress Enhances Carotenoid Production in Indigenous Green Microalga Scenedesmus rubescens KNUA042, for Use as a Potential Resource of High Value Products. Sustainability. 2020; 12(13):5445. https://doi.org/10.3390/su12135445
Chicago/Turabian StyleJo, Seung-Woo, Ji Won Hong, Jeong-Mi Do, Ho Na, Jin-Ju Kim, Seong-Im Park, Young-Saeng Kim, Il-Sup Kim, and Ho-Sung Yoon. 2020. "Nitrogen Deficiency-Dependent Abiotic Stress Enhances Carotenoid Production in Indigenous Green Microalga Scenedesmus rubescens KNUA042, for Use as a Potential Resource of High Value Products" Sustainability 12, no. 13: 5445. https://doi.org/10.3390/su12135445
APA StyleJo, S. -W., Hong, J. W., Do, J. -M., Na, H., Kim, J. -J., Park, S. -I., Kim, Y. -S., Kim, I. -S., & Yoon, H. -S. (2020). Nitrogen Deficiency-Dependent Abiotic Stress Enhances Carotenoid Production in Indigenous Green Microalga Scenedesmus rubescens KNUA042, for Use as a Potential Resource of High Value Products. Sustainability, 12(13), 5445. https://doi.org/10.3390/su12135445