A Review of Dry Sanitation Systems
Abstract
:1. Introduction
2. Types of Dry Sanitation Systems
2.1. Self-Contained or Central
2.2. Single or Multi-Chambered Tank
2.3. Electric and Non-Electric Toilets
2.4. Urine Separating and Combined Collection Toilets
3. Factors Affecting Aerobic Composting Toilets
3.1. Carbon/Nitrogen Ratio
3.2. Aeration
3.3. pH
3.4. Temperature
3.5. Particle Size and Porosity
3.6. Moisture Content
4. Microbial Risks of Faecal Matter Manipulation
5. Commercial Dry Sanitation Systems Currently on the Market
Commercially Available Dry Sanitation Systems Intended for Remote Areas (National Parks, Rural Areas)
6. Future of Dry Sanitation Systems
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
References
- Maher, M.; Lustig, T. Sustainable water cycle design for urban areas. Water Sci. Technol. 2003, 47, 25. [Google Scholar] [CrossRef]
- Zhao, S. Re-Bathroom_Thermal and Grey Water Reuse System in a Domestic Bathroom. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2019. [Google Scholar]
- Kitaoka, S. Sustainable development goals and Japan’s official development assistance policy: Human security, national interest, and a more proactive contribution to peace. Asia Pac. Rev. 2016, 23, 32–41. [Google Scholar] [CrossRef]
- Lourenço, N.; Nunes, L.M. Review of Dry and Wet Decentralized Sanitation Technologies for Rural Areas: Applicability, Challenges and Opportunities. Environ. Manag. 2020, 65, 642–664. [Google Scholar] [CrossRef]
- Nasri, B.; Brun, F.; Fouché, O. Evaluation of the quality and quantity of compost and leachate from household waterless toilets in France. Environ. Sci. Pollut. Res. 2019, 26, 2062–2078. [Google Scholar] [CrossRef] [Green Version]
- Drangert, J.-O. Nutrient Recycling: Waste Hierarchy, Recycling Cities and Eco-houses. In Sustainable Agriculture Reviews 32; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2018; Volume 32, pp. 1–17. [Google Scholar]
- Crennan, L. Sustainable sanitation manual and construction guidelines for a waterless composting toilet. IWP Pac. Tech. Rep. 2007, 52, 1–31. [Google Scholar]
- Rebollido, R.; Martinez, J.; Aguilera, Y.; Melchor, K.; Koerner, I.; Stegmann, R. Microbial populations during composting process of organic fraction of municipal solid waste. Appl. Ecol. Environ. Res. 2008, 6, 61–67. [Google Scholar] [CrossRef]
- Cordova, A.; Knuth, B.A. Barriers and strategies for dry sanitation in large-scale and urban settings. Urban Water J. 2005, 2, 245–262. [Google Scholar] [CrossRef]
- Fittschen, I.; Niemczynowicz, J. Experiences with dry sanitation and greywater treatment in the ecovillage Toarp, Sweden. Water Sci. Technol. 1997, 35, 161. [Google Scholar] [CrossRef]
- Kaczala, F. A Review of Dry Toilet Systems; Department of Technology, University of Kalmar: Kalmar, Sweden, 2006. [Google Scholar]
- Zavala, M.A.L.; Funamizu, N.; Takakuwa, T. Biological activity in the composting reactor of the bio-toilet system. Bioresour. Technol. 2005, 96, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Hallegatte, S.; Rentschler, J.; Nicolas, C.; Fox, C. Strengthening New Infrastructure Assets: A Cost-Benefit Analysis; The World Bank: Washington, DC, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- Anand, C.; Apul, D.S. Economic and environmental analysis of standard, high efficiency, rainwater flushed, and composting toilets. J. Environ. Manag. 2011, 92, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Berger, W. Basic overview of composting toilets (with or without urine diversion). In Technology Review “Composting Toilets”; Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH: Eschborn, Alemanha, 2010. [Google Scholar]
- Del Porto, D.; Steinfeld, C. Operating and Maintaining your Composting Toilet System. In The Composting Toilet System Book; Center for Ecological Pollution Prevention: Concord, MA, USA, 2000; pp. 1–234. [Google Scholar]
- Drangert, J. Fighting the urine blindness to provide more sanitation options. Water SA-Pretoria 1998, 24, 157–164. [Google Scholar]
- Jönsson, H.; Vinnerås, B. Experiences and suggestions for collection systems for source-separated urine and faeces. Water Sci. Technol. 2007, 56, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randall, D.; Naidoo, V. Urine: The liquid gold of wastewater. J. Environ. Chem. Eng. 2018, 6, 2627–2635. [Google Scholar] [CrossRef]
- Hill, G.B.; Baldwin, S.A. Vermicomposting toilets, an alternative to latrine style microbial composting toilets, prove far superior in mass reduction, pathogen destruction, compost quality, and operational cost. Waste Manag. 2012, 32, 1811–1820. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, A.C.; Barlaz, M.A. Microbiology of Solid Waste; CRC Press: Boca Raton, FL, USA, 1996; Volume 3, pp. 71–104. [Google Scholar]
- Beffa, T.; Blanc, M.; Marilley, L.; Fischer, J.L.; Lyon, P.-F.; Aragno, M. Taxonomic and Metabolic Microbial Diversity during Composting. In The Science of Composting; de Bertoldi, M., Sequi, P., Lemmes, B., Papi, T., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 149–161. [Google Scholar] [CrossRef]
- Jenkins, J. The humanure handbook. In A Guide, 3rd ed.; Chelsea Green Publishing: Grove City, PA, USA, 2005. [Google Scholar]
- Schönning, C.; Westrell, T.; Stenström, T.A.; Arnbjerg-Nielsen, K.; Hasling, A.B.; Høibye, L.; Carlsen, A. Microbial risk assessment of local handling and use of human faeces. J. Water Health 2007, 5, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Dees, P.M.; Ghiorse, W.C. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol. Ecol. 2001, 35, 207–216. [Google Scholar] [CrossRef]
- Hotta, S.; Noguchi, T.; Funamizu, N. Experimental study on nitrogen components during composting process of feces. Water Sci. Technol. 2007, 55, 181. [Google Scholar] [CrossRef]
- Orner, K.D.; Mihelcic, J.R. A review of sanitation technologies to achieve multiple sustainable development goals that promote resource recovery. Environ. Sci. Water Res. Technol. 2018, 4, 16–32. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Roig, A.; Paredes, C.; Bernal, M.P. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour. Technol. 2001, 78, 301–308. [Google Scholar] [CrossRef]
- De Bertoldi, M.D.; Vallini, G.E.; Pera, A. The biology of composting: A review. Waste Manag. Res. 1983, 1, 157–176. [Google Scholar] [CrossRef]
- Depledge, D. Design Examples of Waterless Composting Toilets; South Pacific Applied Geoscience Commission (SOPAC): Miscellaneous Report 249. Available online: http://www.pacificwater.org/userfiles/file/MR0249.pdf (accessed on 18 July 2020).
- Miller, F.C. Composting as a process based on the control of ecologically selective factors. Microb. Ecol. 1993, 515–544. [Google Scholar]
- Lopez Zavala, M.A.; Funamizu, N.; Takakuwa, T. Characterization of Feces for Describing the Aerobic Biodegradation of Feces. Doboku Gakkai Ronbunshu 2002, 720, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Nataka, S.; Lopez Zavala, M.; Funamizu, N.; Otaki, M.; Takakuwa, T. Temperature effect on pathogens decline in the bio-toilet system. In Proceedings of the 1st International Dry Toilet Conference: Dry Toilet, Tampere, Finland, 20–23 August 2003. [Google Scholar]
- Lopez Zavala, M.A.; Funamizu, N. Design and operation of the bio-toilet system. Water Sci. Technol. 2006, 53, 55. [Google Scholar] [CrossRef] [PubMed]
- Germer, J.; Boh, M.Y.; Schoeffler, M.; Amoah, P. Temperature and deactivation of microbial faecal indicators during small scale co-composting of faecal matter. Waste Manag. 2010, 30, 185–191. [Google Scholar] [CrossRef]
- Epstein, E. The Science of Composting; CRC Press: Lancaster, PA, USA, 1996; p. 487. [Google Scholar]
- Haug, R.T. The Practical Handbook of Compost Engineering; CRC Press/Routhledge: Boca Raton, FL, USA, 2018; p. 717. [Google Scholar]
- Yamada, Y.; Kawase, Y. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption. Waste Manag. 2006, 26, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Poincelot, R.P. Scientific examination of principles and practice of composting. Compost Sci. 1974, 15, 24–31. [Google Scholar]
- Richert, A.; Gensch, R.; Jönsson, H.; Stenström, T.A.; Dagerskog, L. Practical Guidance on the Use of Urine in Crop Production; SEI: Stockholm, Sweden, 2010. [Google Scholar]
- Hennigs, J.; Parker, A.; Collins, M.; Jiang, Y.; Kolios, A.; McAdam, E.; Williams, L.; Tyrrel, S. Planning and communicating prototype tests for the Nano Membrane Toilet: A critical review and proposed strategy. Gates Open Res. 2019, 3, 1532. [Google Scholar] [CrossRef]
- Simha, P.; Ganesapillai, M. Ecological Sanitation and nutrient recovery from human urine: How far have we come? A review. Sustain. Environ. Res. 2017, 27, 107–116. [Google Scholar] [CrossRef]
- Cruddas, P.; Parker, A.; Gormley, A. User perspectives to direct water reuse from the Nano Membrane Toilet. In Proceedings of the 38th International WEDC Conference: Water, Sanitation and Hygiene Services Beyond 2015-Improving Access and Sustainability, Loughborough, UK, 27–31 July 2015; p. 6. [Google Scholar]
- Perez Lopez, E. Design and Testing of a Novel Human-Powered Generator Device as a Backup Solution to Power Cranfield’s Nano-Membrane Toilet. Master’s Thesis, Cranfield University, Bedford, UK, 2014. [Google Scholar]
Type | Energy | Chamber Tank | Water Usage | Bulking Agent |
---|---|---|---|---|
Self-contained | Solar | Single layer | Waterless | Needed |
Central | Electric | Multi-layer | Low water usage | Not needed |
Actinomycetes | Fungi | Bacteria |
---|---|---|
Actinobifida chromogena Microbispora bispora Micropolyspora faeni Nocardia sp. Pseudonocardia thermophilia Streptomyces rectus S. thermofuscus S. thermoviolaceus S. thermovulgaris S. violaceus-ruber Thermoactinomyces sac chari T. vulgaris Thermomonospora curvata T. viridis | Aspergillus fumigatus Humicola grisea H. insolens H. lanuginosa Malbranchea pulchella Myriococcum themophilum Paecilomyces variotti Papulaspora thermophila Scytalidium thermophilim Sporotrichum thermophile | Alcaligenes faecalis Bacillus brevis B. circulans complex B. coagulans type A B. coagulans type B B. licheniformis B. megaterium B. pumilus B. sphaericus B. stearothermophilus B. subtilis Clostridium thermocellum Escherichia coli Flavobacterium sp. Pseudomonas sp. Serratia sp. Thermus sp. |
Carbon/Nitrogen Ratio | Aeration | pH | Temperature | Particle Size and Porosity | Moisture Content |
---|---|---|---|---|---|
25–35 | 15% to 20% range | 5.5 to 8.0. | 19–65 °C | 35%–50% porosity | 50%–60% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aburto-Medina, A.; Shahsavari, E.; Khudur, L.S.; Brown, S.; Ball, A.S. A Review of Dry Sanitation Systems. Sustainability 2020, 12, 5812. https://doi.org/10.3390/su12145812
Aburto-Medina A, Shahsavari E, Khudur LS, Brown S, Ball AS. A Review of Dry Sanitation Systems. Sustainability. 2020; 12(14):5812. https://doi.org/10.3390/su12145812
Chicago/Turabian StyleAburto-Medina, Arturo, Esmaeil Shahsavari, Leadin S. Khudur, Sandy Brown, and Andrew S. Ball. 2020. "A Review of Dry Sanitation Systems" Sustainability 12, no. 14: 5812. https://doi.org/10.3390/su12145812