Development of Spatial Distribution Maps for Energy Demand and Thermal Comfort Estimation in Algeria
Abstract
:1. Introduction
1.1. State of the Art of Climatic Zoning
1.2. Studies on Climatic Zoning in Algeria
2. Characterization of the Algerian Housing Sector
3. Methodology
3.1. Climate Data and Reference Model Creation
3.1.1. Characterization of the Housing Sector
3.1.2. Climatic Data
3.1.3. Reference Model Creation and Calibration
3.2. Calibration Method
- hourly MBE values are within ±10% and hourly CV (RMSE) values are below 30%
- monthly MBE values are within ±5% and monthly CV (RMSE) values are below 15%
3.3. Building Performance Simulation
3.3.1. Discomfort Hours
3.3.2. Energy Demand
3.4. Plotting on GIS-Based Maps
4. Results
4.1. Indoor-Discomfort Hours
4.1.1. Cold-Discomfort Hours
4.1.2. Heat-Discomfort Hours
4.1.3. Annual-Discomfort Hours
4.2. Thermal Energy Demand
4.2.1. Heating Energy Demand
4.2.2. Cooling Energy Demand
4.2.3. Annual Energy Demand
5. Discussion
5.1. Summary of the Main Findings
5.2. Strength and Limitations of the Study
5.3. Implications for the Practice and Future Research
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Energy Use in Algeria
Appendix B. Residential Housing Typologies in Algeria
References
- Attia, S.; Lacombe, T.; Rakotondramiarana, H.T.; Garde, F.; Roshan, G.R. Analysis tool for bioclimatic design strategies in hot humid climates. Sustain. Cities Soc. 2019, 45, 8–24. [Google Scholar] [CrossRef] [Green Version]
- Roshan, G.; Ghanghermeh, A.; Attia, S. Determining new threshold temperatures for cooling and heating degree day index of different climatic zones of Iran. Renew. Energy 2017, 101, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Roshan, G.R.; Farrokhzad, M.; Attia, S. Defining thermal comfort boundaries for heating and cooling demand estimation in Iran’s urban settlements. Build. Environ. 2017, 121, 168–189. [Google Scholar] [CrossRef] [Green Version]
- Semahi, S.; Zemmouri, N.; Singh, M.K.; Attia, S. Comparative bioclimatic approach for comfort and passive heating and cooling strategies in Algeria. Build. Environ. 2019, 161, 106271. [Google Scholar] [CrossRef] [Green Version]
- Walsh, A.; Costola, D.; Labaki, L.C. Review of methods for climatic zoning for building energy efficiency programs. Build. Environ. 2017, 112, 337–350. [Google Scholar] [CrossRef]
- Attia, S. Regenerative and Positive Impact Architecture: Learning from Case Studies; Springer: London, UK, 2018; ISBN 978-3-319-66717-1. [Google Scholar] [CrossRef]
- Roshan, G.; Oji, R.; Attia, S.; Roshan, R.; Oji, R. Projecting the impact of climate change on design recommendations for residential buildings in Iran. Build. Environ. 2019, 155, 283–297. [Google Scholar] [CrossRef] [Green Version]
- Barenbrug, A.W.T. Psychrometry and Psychrometric Charts; Transvaal and Orange Free State Chamber of Mines of South Africa: Johannesburg, South Africa, 1965. [Google Scholar]
- Olgyay, V. Design with Climate: Bioclimatic Approach to Architectural Regionalism, new and expanded ed.; Princeton University Press: Princeton, NJ, USA, 1969. [Google Scholar]
- Givoni, B. Man, Climate and Architecture; Elsevier: Amsterdam, The Netherlands, 1969. [Google Scholar]
- Givoni, B. Comfort, climate analysis and building design guidelines. Energy Build. 1992, 18, 11–23. [Google Scholar] [CrossRef]
- DeKay, M.; Brown, G.Z. Sun, Wind, and Light: Architectural Design Strategies, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 978-0-470-94578-0. [Google Scholar]
- Roshan, G.; Almomenin, H.S.; Hirashima, S.Q.D.S.; Attia, S. Estimate of outdoor thermal comfort zones for different climatic regions of Iran. Urban Clim. 2019, 27, 8–23. [Google Scholar] [CrossRef]
- Praene, J.P.; Malet-Damour, B.; Radanielina, M.H.; Fontaine, L.; Rivière, G. GIS-based approach to identify climatic zoning: A hierarchical clustering on principal component analysis. Build. Environ. 2019, 164. [Google Scholar] [CrossRef] [Green Version]
- Verichev, K.; Carpio, M. Climatic zoning for building construction in a temperate climate of Chile. Sustain. Cities Soc. 2018, 40, 352–364. [Google Scholar] [CrossRef]
- Groppi, D.; de Santoli, L.; Cumo, F.; Garcia, D.A. A GIS-based model to assess buildings energy use and usable solar energy potential in urban areas. Sustain. Cities Soc. 2018, 40, 546–558. [Google Scholar] [CrossRef]
- Moghadam, S.T.; Toniolo, J.; Mutani, G.; Lombardi, P. A GIS-statistical approach for assessing built environment energy use at urban scale. Sustain. Cities Soc. 2018, 37, 70–84. [Google Scholar] [CrossRef]
- Borah, P.; Singh, M.K.; Mahapatra, S. Estimation of degree-days for different climatic zones of North-East India. Sustain. Cities Soc. 2015, 14, 70–81. [Google Scholar] [CrossRef]
- Singh, M.K.; Mahapatra, S.; Attia, S.; Teller, J. Development of thermal comfort models for various climatic zones of North-East India. Sustain. Cities Soc. 2015, 14, 133–145. [Google Scholar] [CrossRef]
- Pajek, L.; Košir, M. Implications of present and upcoming changes in bioclimatic potential for energy performance of residential buildings. Build. Environ. 2018, 127, 157–172. [Google Scholar] [CrossRef]
- Walsh, A.; Costola, D.; Labaki, L.C. Performance-based validation of climatic zoning for building energy efficiency applications. Appl. Energy 2018, 212, 416–427. [Google Scholar] [CrossRef] [Green Version]
- Pajek, L.; Tekavec, J.; Drešček, U.; Lisec, A.; Košir, M. Bioclimatic potential of European locations: GIS supported study of proposed passive building design strategies. IOP Conf. Series: Earth Environ. Sci. 2019, 296, 012008. [Google Scholar] [CrossRef]
- Poggi, F.; Firmino, A.; Amado, M. Assessing energy performances: A step toward energy efficiency at the municipal level. Sustain. Cities Soc. 2017, 33, 57–69. [Google Scholar] [CrossRef] [Green Version]
- CNERIB (2007a) DTRC3-2, Thermal Regulation of Residential Buildings Calculation Methods for dEtermining Building Heat Losses, Algiers. Available online: www.cnerib.edu.dz (accessed on 26 July 2020).
- CNERIB (2007b) DTRC3-4, Cooling Calculation Methods for Determining Building Cooling, Algiers. Available online: www.cnerib.edu.dz (accessed on 26 July 2020).
- Mesri, M.; Ghilane, A.; Bachari, N.E.I. An approach to spatio-temporal analysis for climatic data. Renew. Sustain. Energy Rev. 2013, 16, 413–424. [Google Scholar]
- Ghedamsi, R.; Settou, N.; Gouareh, A.; Khamouli, A.; Saifi, N.; Recioui, B.; Dokkar, B. Modeling and forecasting energy consumption for residential buildings in Algeria using bottom-up approach. Energy Build. 2016, 121, 309–317. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Mokhtara, C.; Negrou, B.; Settou, N.; Gouareh, A.; Settou, B. Pathways to plus-energy buildings in Algeria: Design optimization method based on GIS and multi-criteria decision-making. Energy Procedia 2019, 162, 171–180. [Google Scholar] [CrossRef]
- Cicelsky, A.; Meir, I.A. Parametric analysis of environmentally responsive strategies for building envelopes specific for hot hyperarid regions. Sustain. Cities Soc. 2014, 13, 279–302. [Google Scholar] [CrossRef]
- Gaspari, J.; Fabbri, K.; Lucchi, M. The use of outdoor microclimate analysis to support decision making process: Case study of Bufalini square in Cesena. Sustain. Cities Soc. 2018, 42, 206–215. [Google Scholar] [CrossRef]
- Stavrakakis, G.; Tzanaki, E.; Genetzaki, V.; Anagnostakis, G.; Galetakis, G.; Grigorakis, E. A computational methodology for effective bioclimatic-design applications in the urban environment. Sustain. Cities Soc. 2012, 4, 41–57. [Google Scholar] [CrossRef] [Green Version]
- Missoum, M.; Hamidat, A.; Loukarfi, L.; Abdeladim, K. Impact of rural housing energy performance improvement on the energy balance in the North-West of Algeria. Energy Build. 2014, 85, 374–388. [Google Scholar] [CrossRef]
- ME (Ministry of Energy) National Energy Review 2018. Available online: www.energy.gov.dz (accessed on 22 June 2020).
- MHUV Ministry of Housing Planning and the City, Les livraison de Logements. Available online: http://www.mhuv.gov.dz (accessed on 22 June 2020).
- ONS Algerian National Office of Statistics. 2018. Available online: www.ons.dz (accessed on 22 June 2020).
- ClimateOne Climate One Building. 2019. Available online: http://climate.onebuilding.org (accessed on 12 June 2020).
- Colton, M.; Macnaughton, P.; Vallarino, J.; Kane, J.; Bennett-Fripp, M.; Spengler, J.D.; Adamkiewicz, G. Indoor Air Quality in Green Vs Conventional Multifamily Low-Income Housing. Environ. Sci. Technol. 2014, 48, 7833–7841. [Google Scholar] [CrossRef]
- Giancola, E.; Soutullo, S.; Olmedo, R.; Heras, M.; Celemin, M.D.R.H. Evaluating rehabilitation of the social housing envelope: Experimental assessment of thermal indoor improvements during actual operating conditions in dry hot climate, a case study. Energy Build. 2014, 75, 264–271. [Google Scholar] [CrossRef]
- Lai, A.; Mui, K.; Wong, L.; Law, L.; Lai, A.C.; Wai, M.K. An evaluation model for indoor environmental quality (IEQ) acceptance in residential buildings. Energy Build. 2009, 41, 930–936. [Google Scholar] [CrossRef]
- ASHRAE; ANSI/ASHRAE. Guideline 14-2014: Measurement of Energy, Demand, and Water Savings; ASHRAE Standards Committee: Atlanta, GA, USA, 2014. [Google Scholar]
- Crawley, D.B.; Lawrie, L.K.; Winkelmann, F.C.; Buhl, W.; Huang, Y.; Pedersen, C.O.; Strand, R.K.; Liesen, R.J.; Fisher, D.E.; Witte, M.J.; et al. EnergyPlus: Creating a new-generation building energy simulation program. Energy Build. 2001, 33, 319–331. [Google Scholar] [CrossRef]
- ASHRAE; AANSI/ASHRAE. Standard 55-Thermal Environmental Conditions for Human Occupancy; American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2017. [Google Scholar]
- Attia, S.; Carlucci, S. Impact of different thermal comfort models on zero energy residential buildings in hot climate. Energy Build. 2015, 102, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Semahi, S.; Benbouras, M.A.; Attia, S. Atlas of Spatial Distribution for Energy Demand and Thermal Comfort Estimation in Algeria; SBD Lab: Liège, Belgium, 2019; Available online: https://orbi.uliege.be/handle/2268/238864 (accessed on 24 July 2020). [CrossRef]
- Pérez-Fargallo, A.; Pulido-Arcas, J.; Rubio-Bellido, C.; Trebilcock, M.; Piderit, M.B.; Attia, S. Development of a new adaptive comfort model for low income housing in the central-south of chile. Energy Build. 2018, 178, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Carte-Algerie: Plan et Cartes des Villes Algérienne. 2019. Available online: http://www.carte-algerie.com (accessed on 12 June 2020).
- Childs, C. Interpolating surfaces in ArcGIS spatial analyst. ArcUser 2004, 3235, 32–35. [Google Scholar]
- Carpio, M.; Jódar, J.; Rodriguez, M.L.; Zamorano, M. A proposed method based on approximation and interpolation for determining climatic zones and its effect on energy demand and CO2 emissions from buildings. Energy Build. 2015, 87, 253–264. [Google Scholar] [CrossRef]
Köppen [28] | CNERIB [24,25] | Mesri et al. [26] | Ghedamsi et al. [27] | |
---|---|---|---|---|
No. of zones | 5 climate zones | 6 climate zones | 3 climate zones | 7 climate zones |
Classification parameters |
|
|
| Daily mean outdoor air temperature |
No. of Weather stations | Several stations worldwide | 31 stations | 52 stations | 48 stations |
Classification Approach | Cluster analysis | Heating and cooling degree-days | Clustering method | Heating and cooling degree-days |
Validation Criteria | Winter Indoor Air Temp. | Summer Indoor Air Temp. | Monthly Electricity Use | Monthly Gas Use |
---|---|---|---|---|
MBE (%) | −2 | −1.52 | −0.68 | 0.4 |
CV-RMSE (%) | 5.12 | 4.97 | 7.83 | 6.67 |
R2 | 0.75 | 0.63 | 0.92 | 0.98 |
Cold-discomfort hours range (hours) | 0–450 | 450–900 | 900–1350 | 1350–1800 | 1800–2250 | 2250–2700 | 2700–3150 | 3150–3600 | 3600–4250 |
Territory surface in percentage (%) | 18.3 | 25.8 | 16.9 | 16.2 | 5.2 | 4.7 | 6.5 | 5.6 | 0.7 |
Heat-discomfort hours range (hours) | 1400–2100 | 2100–2800 | 2800–3500 | 3500–4200 | 4200–4900 | 4900–5600 | 5600–6300 | 6300–7000 | 7000–7900 |
Territory surface in percentage (%) | 0.2 | 2.3 | 12.7 | 5.3 | 18 | 31.8 | 25.8 | 3 | 0.8 |
Annual indoor-discomfort hours range (hours) | 4000–4450 | 4450–4900 | 4900–5350 | 5350–5800 | 5800–6100 | 6100–6400 | 6400–6800 | 6800–7200 | 7200–7900 |
Territory surface in percentage (%) | 0.2 | 0.5 | 1.5 | 4.3 | 16.5 | 62 | 12.9 | 1.2 | 0.8 |
Heating energy demand range (kWh/m2) | 0–15 | 15–30 | 30–45 | 45–60 | 60–75 | 75–90 | 90–105 | 105–120 | 120–150 |
Territory surface in percentage (%) | 3.8 | 33.8 | 24.2 | 16.4 | 5.3 | 6 | 5.6 | 4.2 | 0.5 |
Cooling energy demand range (kWh/m2) | 0–15 | 15–30 | 30–45 | 45–60 | 60–75 | 75–90 | 90–105 | 105–120 | 120–141 |
Territory surface in percentage (%) | 9.3 | 6.9 | 4.2 | 12.7 | 30.8 | 14.2 | 16.8 | 3.6 | 1.5 |
Annual thermal energy demand range (kWh/m2) | 45–60 | 60–75 | 75–90 | 90–100 | 100–110 | 110–120 | 120–130 | 130–155 |
Territory surface in percentage (%) | 0.1 | 0.9 | 5.6 | 13.7 | 14.9 | 42.8 | 19.2 | 2.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semahi, S.; Benbouras, M.A.; Mahar, W.A.; Zemmouri, N.; Attia, S. Development of Spatial Distribution Maps for Energy Demand and Thermal Comfort Estimation in Algeria. Sustainability 2020, 12, 6066. https://doi.org/10.3390/su12156066
Semahi S, Benbouras MA, Mahar WA, Zemmouri N, Attia S. Development of Spatial Distribution Maps for Energy Demand and Thermal Comfort Estimation in Algeria. Sustainability. 2020; 12(15):6066. https://doi.org/10.3390/su12156066
Chicago/Turabian StyleSemahi, Samir, Mohammed Amin Benbouras, Waqas Ahmed Mahar, Noureddine Zemmouri, and Shady Attia. 2020. "Development of Spatial Distribution Maps for Energy Demand and Thermal Comfort Estimation in Algeria" Sustainability 12, no. 15: 6066. https://doi.org/10.3390/su12156066
APA StyleSemahi, S., Benbouras, M. A., Mahar, W. A., Zemmouri, N., & Attia, S. (2020). Development of Spatial Distribution Maps for Energy Demand and Thermal Comfort Estimation in Algeria. Sustainability, 12(15), 6066. https://doi.org/10.3390/su12156066