The Impacts of Urban Air Pollution Emission Density on Air Pollutant Concentration Based on a Panel Model
Abstract
:1. Introduction
2. Related Literature
3. Methodology
3.1. Conceptual Framework and Hypothesis
3.2. Data and Methodology
3.2.1. Selecting Variables and Establishing Data
3.2.2. Study Model and Hypothesis Testing
4. Results
4.1. Descriptive Statistical Analysis
4.2. Correlation Analysis
4.3. Study Model and Panel Analysis
4.3.1. NO2
4.3.2. O3
4.3.3. PM10
4.3.4. Explanation Model for Each Air Pollutant: Panel Model
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. World Urbanization Prospects: The 1996 Revision; United Nations: New York, NY, USA, 2012. [Google Scholar]
- Yang, X.; Yue, W.; Xu, H.; Wu, J.; He, Y. Environmental consequences of rapid urbanization in Zhejiang province, East China. Int. J. Environ. Res. Public Health 2014, 11, 7045–7059. [Google Scholar] [CrossRef]
- WHO. Ambient (Outdoor) Air Quality and Health; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Tian, Y.; Yao, X.; Chen, L. Analysis of spatial and seasonal distributions of air pollutants by incorporating urban morphological characteristics. Comput. Environ. Urban Syst. 2019, 75, 35–48. [Google Scholar] [CrossRef]
- Wei, Y.D.; Ye, X. Urbanization, urban land expansion and environmental change in China. Stoch. Environ. Res. Risk Assess. 2014, 28, 757–765. [Google Scholar] [CrossRef]
- Hassan, A.M.; Lee, H. Toward the sustainable development of urban areas: An overview of global trends in trials and policies. Land Use Policy 2015, 48, 199–212. [Google Scholar] [CrossRef]
- Bereitschaft, B.; Debbage, K. Urban Form, Air Pollution, and CO2 Emissions in Large, U.S. Metropolitan Areas. Prof. Geogr. 2013, 65, 612–635. [Google Scholar] [CrossRef]
- Cárdenas Rodríguez, M.; Dupont-Courtade, L.; Oueslati, W. Air pollution and urban structure linkages: Evidence from European cities. Renew. Sustain. Energy Rev. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Fan, C.; Tian, L.; Zhou, L.; Hou, D.; Song, Y.; Qiao, X.; Li, J. Examining the impacts of urban form on air pollutant emissions: Evidence from China. J. Environ. Manage. 2018, 212, 405–414. [Google Scholar] [CrossRef]
- Lee, C. Impacts of urban form on air quality: Emissions on the road and concentrations in the US metropolitan areas. J. Environ. Manage. 2019, 246, 192–202. [Google Scholar] [CrossRef]
- Clark, L.P.; Millet, D.B.; Marshall, J.D. Air Quality and Urban Form in U.S. Urban Areas: Evidence from Regulatory Monitors. Environ. Sci. Technol. 2011, 7028–7035. [Google Scholar] [CrossRef]
- Kahn, M.E.; Walsh, R. Cities and the Environment. In Handbook of Regional and Urban Economics; Duranton, G., Henderson, J.V., Thisse, J.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 5, pp. 405–465. [Google Scholar]
- Huang, Z.; Du, X. Urban Land Expansion and Air Pollution: Evidence from China. J. Urban Plan. Dev. 2018, 144, 05018017. [Google Scholar] [CrossRef]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Muralikrishna, I.V.; Manickam, V. Environmental Management: Science and Engineering for Industry, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Marquez, L.O.; Smith, N.C. A framework for linking urban form and air quality. Environ. Model. Softw. 1999, 14, 541–548. [Google Scholar] [CrossRef]
- Legras, S.; Cavailhès, J. Environmental performance of the urban form. Reg. Sci. Urban Econ. 2016, 59, 1–11. [Google Scholar] [CrossRef]
- Jung, M.C.; Park, J.; Kim, S. Spatial Relationships between Urban Structures and Air Pollution in Korea. Sustainability 2019, 11, 476. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Ko, D.W. Investigating the effects of the built environment on PM2.5 and PM10: A case study of Seoul Metropolitan city, South Korea. Sustainability 2018, 10, 4552. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Liu, H.; Li, G.; Sun, D.; Miao, Z. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models. Sustainability 2015, 7, 15570–15592. [Google Scholar] [CrossRef] [Green Version]
- Frank, L.D.; Sallis, J.F.; Conway, T.L.; Chapman, J.E.; Saelens, B.E.; Bachman, W. Many pathways from land use to health: Associations between neighborhood walkability and active transportation, body mass index, and air quality. J. Am. Plan. Assoc. 2006, 72, 75–87. [Google Scholar] [CrossRef]
- Stone, B. Urban sprawl and air quality in large US cities. J. Environ. Manage. 2008, 86, 688–698. [Google Scholar] [CrossRef]
- Martins, H.; Miranda, A.; Borrego, C. Urban structure and air quality. In Air Pollution: A Comprehensive Perspective; Budi, H., Ed.; InTech Open: London, UK, 2012. [Google Scholar]
- Kashem, S.B.; Irawan, A.; Wilson, B. Evaluating the dynamic impacts of urban form on transportation and environmental outcomes in US cities. Int. J. Environ. Sci. Technol. 2014, 11, 2233–2244. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, T.J.; Rodriguez, D.A.; Huegy, J.; Gibson, J.M. The Effects of Urban Form on Ambient Air Pollution and Public Health Risk: A Case Study in Raleigh, North Carolina. Risk Anal. 2015, 35, 901–918. [Google Scholar] [CrossRef] [Green Version]
- World Bank. Urban planning and air quality; World Bank: Washington, DC, USA, 2002. [Google Scholar]
- Stone, B. Urban Heat and Air Pollution: An Emerging Role for Planners in the Climate Change Debate. J. Am. Plan. Assoc. 2005, 71, 13–25. [Google Scholar] [CrossRef]
- Pui, D.Y.H.; Chen, S.-C.; Zuo, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, W.; Cheng, Z.; Wang, S.; He, K.; Hao, J. Particulate Matter Distributions in China during a Winter Period with Frequent Pollution Episodes (January 2013). Aerosol Air Qual. Res. 2015, 15, 494–503. [Google Scholar] [CrossRef]
- Lu, C.; Liu, Y. Effects of China’s urban form on urban air quality. Urban Stud. 2015, 53, 2607–2623. [Google Scholar] [CrossRef]
- Cho, H.S.; Choi, M.J. Effects of compact Urban development on air pollution: Empirical evidence from Korea. Sustainability 2014, 6, 5968–5982. [Google Scholar] [CrossRef] [Green Version]
- McCarty, J.; Kaza, N. Urban form and air quality in the United States. Landsc. Urban Plan. 2015, 139, 168–179. [Google Scholar] [CrossRef]
- Muttoo, S.; Ramsay, L.; Brunekreef, B.; Beelen, R.; Meliefste, K.; Naidoo, R.N. Land use regression modelling estimating nitrogen oxides exposure in industrial south Durban, South Africa. Sci. Total Environ. 2018, 610–611, 1439–1447. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S. A Factor Analysis of Household Gas Demand using Panel Data Model. Seoul City Study 2018, 19, 117–130. [Google Scholar]
- Yang, O.-S.; Han, J.-H. The Impact of Research and Development Activities on the Firm Performance in the Emerging Market MNEs: Cost Leadership and Differentiation Strategies. J. CEO Manag. Stud. 2018, 21, 185–208. [Google Scholar]
- Anderson, D.R.; Sweeney, D.J.; Williams, T.A. Statistics for Business and Economics; St. Paul West Public Company: West St. Paul, MN, USA, 1996. [Google Scholar]
- Griffiths, W.E.; Hill, R.C.; Judge, G.G. Learning and Practicing Econometrics; John Willey and Sons: New York, NY, USA, 1993. [Google Scholar]
- Chatterjee, S.; Hadi, A.S. Regression Analysis by Example; John Wiley & Sons: New York, NY, USA, 2015; ISBN 1119122732. [Google Scholar]
- Kennedy, P. A Guide to Econometrics, 3rd ed.; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 5th ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1998. [Google Scholar]
- Cooper, M.; Martin, R.; Donkelaar, A.; Lamsal, L.; Brauer, M.; Brook, J. A Satellite-Based Multi-Pollutant Index of Global Air Quality. Environ. Sci. Technol. 2012, 46, 8523–8524. [Google Scholar] [CrossRef]
- Réquia, W.J.; Koutrakis, P.; Roig, H.L. Spatial distribution of vehicle emission inventories in the Federal District, Brazil. Atmos. Environ. 2015, 112, 32–39. [Google Scholar] [CrossRef]
- Ministry of Environment. Annual Report on Air Environment; Ministry of Environment, Ed.; Ministry of Environment: Seoul, Korea, 2016. [Google Scholar]
- Zou, B.; Xu, S.; Sternberg, T.; Fang, X. Effect of Land Use and Cover Change on Air Quality in Urban Sprawl. Sustainability 2016, 8, 677. [Google Scholar] [CrossRef] [Green Version]
Variables (Unit) | Variable Description | Source | ||
---|---|---|---|---|
Dependent variables | Air Pollutant concentration | NO2 (ppm) | NO2 monthly mean concentration | Final confirmed data by monitoring station from Korea Environ-mental Corporation |
O3 (ppm) | O3 monthly mean concentration | |||
PM10 (ug/m3) | PM10 monthly mean concentration | |||
Control variables | Meteorological characteristics | Mean temperature (°C) | Monthly mean temperature | Weather observation data from the Meteorological Administration |
Mean wind speed (m/s) | Monthly mean wind speed | |||
Monthly precipitation (mm) | Monthly sum of precipitation | |||
Percent of sunshine (%) | Monthly percent of sunshine | |||
Duration of sunshine (h) | Monthly duration of sunshine | |||
Yellow dust days (day) | Monthly yellow dust days | |||
Emission source | Distance to a thermoelectric power plant (m) | The average distance between the center point of the thermal power plant and the center point of the municipality | ||
Independent variables | Urban density | Total population density (people/km2) | Population/Total area | National Statistical Office |
Number of registered vehicles per capita (cars) | Number of registered vehicles/Population | |||
Total emission facility density (facilities/m2) | Number of air pollution emission facilities/Total area | |||
Air pollution source density | Net population density (people/m2) | Population/Residential area | ||
Net vehicle density (cars/m2) | Number of vehicles /Road area | |||
Net emission facility density (facilities/m2) | Number of air pollution emission facilities/Factory area | |||
Time | Air pollutant concentration, Meteorological characteristics: Monthly average (2008~2016) Urban density, Air pollution source density: Annual average (2008~2016) |
Variables | Obs. | Mean | Std. Dev. | Min. | Max. | ||
---|---|---|---|---|---|---|---|
N | Overall | ||||||
n | Between | ||||||
T-bar | Within | ||||||
Dep. | Air pollutant concentration | NO2 (ppm) | 3771 | 0.020 | 0.008 | 0.002 | 0.055 |
35 | 0.006 | 0.010 | 0.036 | ||||
107.7 | 0.006 | 0.027 | 0.059 | ||||
O3 (ppm) | 3759 | 0.027 | 0.010 | 0.007 | 0.061 | ||
35 | 0.004 | 0.020 | 0.038 | ||||
107.4 | 0.009 | 0.009 | 0.059 | ||||
PM10 (ug/m3) | 3692 | 48.93 | 15.28 | 15 | 111 | ||
35 | 6.53 | 38.93 | 66.47 | ||||
105.5 | 13.84 | 10.76 | 112.01 | ||||
Control | Meteorological characteristics | Mean temperature (℃) | 3778 | 13.29 | 9.43 | −10.6 | 29.3 |
35 | 1.40 | 11.07 | 16.94 | ||||
107.9 | 9.33 | −8.38 | 29.42 | ||||
Mean wind speed(m/s) | 3778 | 2.09 | 0.77 | 0.70 | 5.90 | ||
35 | 0.66 | 1.19 | 4.00 | ||||
107.9 | 0.41 | 0.70 | 4.41 | ||||
Monthly precipitation (mm) | 3777 | 108.08 | 125.3 | 0 | 1223.5 | ||
35 | 16.93 | 81.47 | 177.36 | ||||
107.9 | 124.20 | 0 | 1,211.50 | ||||
Percent of sunshine (%) | 3779 | 50.60 | 12.45 | 9.16 | 79.92 | ||
35 | 3.13 | 38.74 | 55.73 | ||||
107.9 | 12.06 | 13.92 | 78.57 | ||||
Duration of sunshine (h) | 3779 | 185.16 | 44.56 | 28.4 | 316.6 | ||
35 | 10.45 | 146.64 | 202.89 | ||||
107.9 | 43.35 | 43.89 | 316.79 | ||||
Yellow dust days(day) | 3036 | 0.55 | 1.79 | 0 | 74 | ||
32 | 0.16 | 0.36 | 1.17 | ||||
94.9 | 1.78 | 0 | 73.39 | ||||
Emission source | Distance to a thermoelectric power plant (m) | 3780 | 187,058.3 | 120,228.3 | 9693.9 | 479,723 | |
35 | 121.967.9 | 9693.9 | 479,723 | ||||
108 | 0.00 | 187,058.3 | 187,058.3 | ||||
Independent | Urban density | Total population density (people/km2) | 3780 | 2155.4 | 3764.3 | 110.0 | 17,576.2 |
35 | 3789.8 | 111.0 | 16,904.2 | ||||
108 | 462.4 | 721.5 | 7151.0 | ||||
Number of registered vehicles per capita(cars) | 3780 | 0.42 | 0.06 | 0.31 | 0.73 | ||
35 | 0.04 | 0.34 | 0.54 | ||||
108 | 0.04 | 0.30 | 0.61 | ||||
Total emission facility density (facilities/m2) | 3780 | 0.62 | 0.86 | 0 | 7.42 | ||
35 | 0.70 | 0.08 | 3.74 | ||||
108 | 0.51 | 0 | 6.43 | ||||
Air pollution source density | Net population density (people/m2) | 3780 | 0.021 | 0.020 | 0.007 | 0.127 | |
35 | 0.020 | 0.007 | 0.125 | ||||
108 | 0.001 | 0.015 | 0.030 | ||||
Net vehicle density (cars/m2) | 3780 | 0.021 | 0.040 | 0.004 | 0.645 | ||
35 | 0.024 | 0.005 | 0.113 | ||||
108 | 0.032 | 0 | 0.552 | ||||
Net emission facility density (facilities/km2) | 3672 | 926.6 | 7475.6 | 4.89 | 80,645.2 | ||
34 | 4492.9 | 8.04 | 26,082.0 | ||||
108 | 6023.9 | 0 | 55,489.8 | ||||
| | | |||||
Ln (NO2) | Ln (O3) | Ln (PM10) | |||||
Histogram: Dependent variable |
ln(NO2) | ln(O3) | ln(PM10) |
| | |
Ln (NO2) | ln(O3) | Ln (PM10) | Ln (Mean Temperature) | Ln (Mean Wind Speed) | Ln (Monthly Precipitation) | Ln (Percent of Sunshine) | VIF | |||
---|---|---|---|---|---|---|---|---|---|---|
NO2 | O3 | PM10 | ||||||||
Ln (Mean temperature) | −0.3757 * | 0.4310 * | −0.4135 * | 1 | 1.46 | 1.61 | 1.61 | |||
Ln (Mean wind speed | −0.0125 | 0.2846 * | −0.0567 * | −0.1121 * | 1 | 1.17 | 1.29 | 1.30 | ||
Ln (Monthly precipitation) | −0.3749 * | 0.3321 * | −0.4453 * | 0.5345 * | 0.0045 | 1 | 1.94 | 1.73 | 1.73 | |
Ln (Percent of sunshine) | 0.3386 * | −0.0384 * | 0.3483 * | −0.2949 * | 0.0830 * | −0.5644 * | 1 | 1.53 | ||
Ln (Duration of sunshine) | 0.1213 * | 0.3215 * | 0.2166 * | 0.0645 * | 0.0935 * | −0.2716 * | 0.8600 * | 1.25 | 1.25 | |
Ln (Yellow dust days) | −0.0764 * | 0.1502 * | 0.2778 * | −0.0598 | 0.1393 * | 0.0781 * | −0.1437 * | 1.14 | 1.15 | 1.15 |
Ln (Total population density) | 0.4389 * | −0.1105 * | 0.0211 | −0.0011 | 0.2304 * | 0.0198 | 0.0754 * | 1.93 | 2.13 | 3.64 |
Ln (Number of registered vehicles per capita) | −0.0565 * | 0.1682 * | 0.1682 * | 0.0256 | 0.0941 * | 0.0535 * | 0.0187 | 1.10 | 1.13 | |
Ln (Total emission facility density) | 0.3917 * | −0.0908 * | 0.0920 * | −0.0069 | 0.0349 * | −0.0042 | 0.0886 * | 1.96 | 1.99 | 2.22 |
Ln (Distance to a thermoelectric power plant) | −0.3346 * | 0.2159 * | −0.1852 * | 0.0104 | 0.1718 * | 0.1060 * | −0.0519 * | 1.22 | ||
Ln (Net population density) | 0.1781 * | −0.1243 * | 0.2222 * | 0.0094 | −0.1504 * | −0.0263 | 0.0349 * | 1.82 | 1.76 | |
Ln (Net vehicle density) | 0.2973 * | −0.0864 * | 0.0808 * | 0.0001 | 0.1617 * | −0.0080 | 0.0626 * | 1.92 | ||
Ln (Net emission facility density) | 0.2187 * | −0.1242 * | 0.0894 * | 0.0240 | −0.0038 | −0.0044 | −0.0150 | 1.43 |
Ln (Duration of Sunshine) | Ln (Yellow Dust Days) | Ln (Total Population Density) | Ln (Number of Registered Vehicles Per Capita) | Ln (Total Emission Facility Density) | Ln (Distance to a Thermoelectric Power Plant) | Ln (Net Population Density) | Ln (Net Vehicle Density) | VIF | |||
---|---|---|---|---|---|---|---|---|---|---|---|
NO2 | O3 | PM10 | |||||||||
ln_s_sun_du | 1 | 1.25 | 1.25 | ||||||||
ln_d_hs | 0.1283 * | 1 | 1.14 | 1.15 | 1.15 | ||||||
ln_pop_den | 0.0804 * | 0.0515 * | 1 | 1.93 | 2.13 | 3.64 | |||||
ln_pc_car | 0.0186 | −0.0569 * | −0.2130 * | 1 | 1.10 | 1.13 | |||||
ln_den_ef_a | 0.0924 * | 0.0291 | 0.6528 * | −0.0923 * | 1 | 1.96 | 1.99 | 2.22 | |||
ln_di_plant | −0.0548 * | −0.0468 * | −0.1377 * | 0.0152 | −0.2513 * | 1 | 1.22 | ||||
ln_pop_net_den | 0.0379 * | 0.0454 * | 0.4370 * | −0.2885 * | 0.4018 * | −0.2953 * | 1 | 1.82 | 1.76 | ||
ln_den_car_r | 0.0670 * | 0.0558 * | 0.6955 * | -0.0317 | 0.3652 * | −0.2082 * | 0.4702 * | 1 | 1.92 | ||
ln_den_ef_f | −0.015 | 0.0403 * | 0.4128 * | −0.0406 * | 0.1052 * | −0.2215 * | 0.2491 * | 0.3666 * | 1.43 |
Model | Equation |
---|---|
1 | |
2 | |
3 |
Model | Equation |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
Model | Equation |
---|---|
1 | |
2 | |
3 |
Variables | NO2 | O3 | PM10 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 (FE) | 2 (RE) | 3 (RE) | 1 (FE) | 2 (FE) | 3 (FE) | 4 (FE) | 5 (FE) | 1 (FE) | 2 (FE) | 3 (FE) | |||
Meteorological characteristics | Ln (Mean temperature) | −0.135 *** | −0.135 *** | −0.134 *** | 0.204 *** | 0.153 *** | 0.160 *** | 0.161 *** | 0.163 *** | −0.089 *** | −0.091 *** | −0.078 *** | |
Ln (Mean wind speed) | −0.184 *** | −0.168 *** | −0.164 *** | 0.675 *** | 0.578 *** | 0.617 *** | 0.618 *** | 0.623 *** | 0.314 *** | 0.312 *** | 0.134 *** | ||
Ln (Monthly precipitation) | −0.043 *** | −0.047 *** | −0.047 *** | −0.025 *** | 0.045 *** | 0.039 *** | 0.039 *** | 0.006 *** | −0.067 *** | −0.067 *** | −0.051 *** | ||
Ln (Percent of sunshine) | 0.169 *** | 0.161 *** | 0.161 *** | 0.286 *** | |||||||||
Ln (Duration of sunshine) | 0.493 *** | 0.463 *** | 0.461 *** | 0.472 *** | 0.208 *** | 0.216 *** | 0.191 *** | ||||||
Ln (Yellow dust days) | 0.001 | 0.034 *** | |||||||||||
Emission source | Ln (Distance to a thermoelectric power plant) | −0.099 *** | |||||||||||
Urban density | Ln (Total population density) | 0.090 ** | 0.090 *** | −0.053 | −0.057 | −0.054 | −0.046 | −0.056 | |||||
Ln (Number of registered vehicles per capita) | 0.129 *** | 0.134 *** | 0.420 *** | 0.400 *** | 0.282 *** | ||||||||
Ln (Total emission facility density) | 0.049 *** | 0.046 *** | 0.043 ** | 0.047 ** | 0.070 *** | −0.000 | 0.018 | ||||||
Air pollution source density | Ln (Net population density) | −0.401 *** | −0.319 *** | 0.258 *** | 0.133 | ||||||||
Ln (Net vehicle density) | 0.058 *** | 0.040 *** | |||||||||||
Ln (Net emission facility density) | 0.041 *** | 0.025 ** | |||||||||||
Statistical results | Constant | −4.076 *** | −4.474 *** | −3.302 *** | −5.817 *** | −7.159 *** | −6.248 *** | −7.872 *** | −7.720 *** | 3.024 *** | 5.015 *** | 4.681 *** | |
Observation | 3387 | 3316 | 3316 | 3375 | 3375 | 3304 | 3304 | 2663 | 3320 | 3213 | 2636 | ||
N. groups | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 32 | 35 | 34 | 31 | ||
R2 | within between overall | 0.326 0.003 0.170 | 0.333 0.558 0.415 | 0.333 0.619 0.457 | 0.395 0.122 0.264 | 0.477 0.096 0.343 | 0.495 0.221 0.400 | 0.498 0.186 0.279 | 0.495 0.353 0.359 | 0.351 0.192 0.163 | 0.368 0.050 0.257 | 0.467 0.154 0.412 | |
Σu | 0.297 | 0.202 | 0.182 | 0.201 | 0.184 | 0.176 | 0.290 | 0.239 | 0.182 | 0.168 | 0.126 | ||
Σe | 0.255 | 0.255 | 0.255 | 0.266 | 0.248 | 0.244 | 0.244 | 0.244 | 0.237 | 0.235 | 0.216 | ||
ρ | 0.576 | 0.385 | 0.338 | 0.364 | 0.356 | 0.342 | 0.587 | 0.490 | 0.373 | 0.339 | 0.253 | ||
Test results | F-test | 120.63 *** | 55.52 *** | 55.52 *** | 32.03 *** | 36.67 *** | 25.23 *** | 24.86 *** | 24.48 *** | 28.79 *** | 20.14 *** | 16.16 *** | |
Breusch–Pagan test | 43298.15 *** | 19652.51 *** | 14138.97 *** | 5750.20 *** | 8650.81 *** | 4182.74 *** | 3950.23 *** | 3756.80 *** | 3919.38 *** | 1878.00 *** | 1498.01 *** | ||
Hausman test | 10.43 ** | 12.96 | 13.46 | 59.31 *** | 49.01 *** | 53.37 *** | 73.69 *** | 44.58 *** | 55.25 *** | 50.56 *** | 19.48 ** | ||
Wald test | 1618.87 *** | 1671.62 *** | 1687.47 *** | 2095.46 *** | 2963.60 *** | 3121.52 *** | 3123.43 *** | 2511.42 *** | 1702.72 *** | 1791.99 *** | 2282.02 *** | ||
* < 0.05, ** < 0.01 |
Hypothesis | Expectation | Result |
---|---|---|
Hypothesis 1.1 (H1.1).Meteorological characteristics will affect NO2 concentrations. | −, + | Accept |
Hypothesis 1.2.1 (H1.2.1).Population density will have a positive impact on NO2 concentrations. | + | Accept |
Hypothesis 1.2.2 (H1.2.2).Total emission facility density, point air pollution source will have a positive impact on NO2 concentrations. | + | Accept |
Hypothesis 1.2.3 (H1.2.3).Cars, a linear pollution source will have a positive impact on NO2 concentrations. | + | Accept |
Hypothesis 1.3 (H1.3).NO2 concentration will increase when it is closer to a thermoelectric power plant. | − | Accept |
Hypothesis | Expectation | Result |
---|---|---|
Hypothesis 2.1 (H2.1).O3 concentrations will be affected by meteorological characteristics. | −, + | Accept |
Hypothesis 2.2 (H2.2).Sunlight time affecting photochemical reactions will have a positive impact on the O3 concentration. | + | Accept |
Hypothesis 2.3 (H2.3).Cars and emission facilities will have a positive impact on O3 concentrations. | + | Accept |
Hypothesis 2.4.1 (H2.4.1).The total population density will have a negative impact on the O3 concentration. | − | Reject |
Hypothesis 2.4.2 (H2.4.2).Net population density will have a negative impact on O3 concentration. | − | Accept |
Hypothesis 2.5 (H2.5).Yellow dust, an external meteorological characteristic, will have a positive impact on O3 concentrations. Moreover, when the yellow dust effect is controlled, the impact of other factors on the O3 concentration will vary. | +/Change | Reject/Reject |
Hypothesis | Expectation | Result |
---|---|---|
Hypothesis 3.1 (H3.1).Meteorological characteristics will affect PM10 concentrations. | −, + | Accept |
Hypothesis 3.2.1 (H3.2.1).The density of the air pollutant sources will have a positive impact on PM10 concentrations. | + | Reject |
Hypothesis 3.2.2 (H3.2.2).Net population density and net density (density) of cars and air pollution source facilities will have a positive impact on PM10 concentrations. | + | Partially accept (Emission facility, Number of registered vehicles per capita) |
Hypothesis 3.3 (H3.3).Yellow dust will have a positive impact on PM10 concentrations. | +/Change | Accept/ Partially accept (Net pop. den.) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, J.I.; Ban, Y.U. The Impacts of Urban Air Pollution Emission Density on Air Pollutant Concentration Based on a Panel Model. Sustainability 2020, 12, 8401. https://doi.org/10.3390/su12208401
Baek JI, Ban YU. The Impacts of Urban Air Pollution Emission Density on Air Pollutant Concentration Based on a Panel Model. Sustainability. 2020; 12(20):8401. https://doi.org/10.3390/su12208401
Chicago/Turabian StyleBaek, Jong In, and Yong Un Ban. 2020. "The Impacts of Urban Air Pollution Emission Density on Air Pollutant Concentration Based on a Panel Model" Sustainability 12, no. 20: 8401. https://doi.org/10.3390/su12208401
APA StyleBaek, J. I., & Ban, Y. U. (2020). The Impacts of Urban Air Pollution Emission Density on Air Pollutant Concentration Based on a Panel Model. Sustainability, 12(20), 8401. https://doi.org/10.3390/su12208401