Effect of a Padel Match on Biochemical and Haematological Parameters in Professional Players with Regard to Gender-Related Differences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. Determination of Maximum Oxygen Consumption and Maximum Heart Rate
2.4. Blood Samples
2.5. Determination of Haematological and Biochemical Parameters
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Padel. Federation List of associated country members to the International Padel Federation. Available online: https://www.padelfip.com/federations/ (accessed on 15 August 2020).
- Courel-Ibáñez, J.; Martinez, B.J.S.-A.; Marín, D.M. Exploring Game Dynamics in Padel. J. Strength Cond. Res. 2019, 33, 1971–1977. [Google Scholar] [CrossRef]
- Pradas, F.P.; Cachón, J.; Otín, D.; Quintas, A.; Arraco, S.I.; Castellar, C. Anthropometric, physiological and temporal analysis in elite female paddle players. Retos Nuevas Tend. Educ. Fís. Deport. Recreación 2014, 1, 107–112. [Google Scholar]
- Fernandez-Fernandez, J.; Ulbricht, A.; Ferrauti, A. Fitness testing of tennis players: How valuable is it? Br. J. Sports Med. 2014, 48, i22–i31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartolomé, I.; Córdoba, L.; Crespo, C.; Grijota, F.; Maynar, M.; Muñoz, D. Effects of a paddle match on the urinary excretion of trace minerals in high-level players. Sci. Sports 2016, 31, e131–e137. [Google Scholar] [CrossRef]
- De Hoyo-Lara, M.; Sañudo, B.; Carrasco-Páez, L. Demandas fisiológicas de la competición en pádel. (Physiological demands of competition in paddle). Rev. Int. Cienc. Deport. 2007, 3, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, L.; Romero, S.; Sañudo, B.; De Hoyo, M. Game analysis and energy requirements of paddle tennis competition. Sci. Sports 2011, 26, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Fernandez, J.; Sanz-Rivas, D.; Mendez-Villanueva, A. A Review of the Activity Profile and Physiological Demands of Tennis Match Play. Strength Cond. J. 2009, 31, 15–26. [Google Scholar] [CrossRef]
- Baiget, E.; Fernandez-Fernandez, J.; Iglesias, X.; A Rodríguez, F. Tennis Play Intensity Distribution and Relation with Aerobic Fitness in Competitive Players. PLoS ONE 2015, 10, e0131304. [Google Scholar] [CrossRef]
- Castillo-Rodríguez, A.; Alvero-Cruz, J.; Hernández-Mendo, A.; Fernández-García, J. Physical and physiological responses in Paddle Tennis competition. Int. J. Perform. Anal. Sport 2014, 14, 524–534. [Google Scholar] [CrossRef]
- Torres-Luque, G.; Ramirez, A.; Cabello-Manrique, D.; Nikolaidis, T.P.; Alvero-Cruz, J.R. Match analysis of elite players during paddle tennis competition. Int. J. Perform. Anal. Sport 2015, 15, 1135–1144. [Google Scholar] [CrossRef]
- Courel-Ibáñez, J.; Martínez, B.J.S.-A.; Cañas, J. Game Performance and Length of Rally in Professional Padel Players. J. Hum. Kinet. 2017, 55, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Courel-Ibáñez, J.; Sánchez-Alcaraz, J.B.; Cañas, J. Effectiveness at the net as a predictor of final match outcome in professional padel players. Int. J. Perform. Anal. Sport 2015, 15, 632–640. [Google Scholar] [CrossRef]
- Courel-Ibáñez, J.; Sánchez-Alcaraz, B.J. Effect of Situational Variables on Points in Elite Padel Players. Apunt. Educ. Física Deport. 2017, 127, 68–74. [Google Scholar] [CrossRef]
- Mellado-Arbelo, Ó.; Vidal, E.B.; Usón, M.V. Analysis of game actions in professional male padel. Cult. Cienc. Deport 2019, 14, 191–201. [Google Scholar] [CrossRef]
- Marin, D.M.; Fernandez, A.G.; Perez, F.J.G.; Garcia, J.D.; Sanchez, I.B.; Jimenez, J.M. Influence of set duration on time variables in paddle tennis matches. Apunt. Educ. Física Deport. 2016, 123, 69–75. [Google Scholar]
- Ramón-Llin, J.; Guzmán, J.F.; Llana, S.; Martínez-Gallego, R.; James, N.; Vučković, G. The Effect of the Return of Serve on the Server Pair’s Movement Parameters and Rally Outcome in Padel Using Cluster Analysis. Front. Psychol. 2019, 10, 1194. [Google Scholar] [CrossRef] [Green Version]
- Martinez, B.J.S.-A.; Courel-Ibanez, J.; Canas, J. Temporal structure, court movements and game actions in padel: A systematic review. Retos Nuevas Tend. Educ. Fís. Deport. Recreación 2018, 33, 308–312. [Google Scholar]
- Sánchez-Alcaraz, B.J.; Siquier-Coll, J.; Toro-Román, V.; Sánchez-Pay, A.; Muñoz, D. Outcome parameters analysis in world padel tour 2019: Differences regarding gender, round and tournament. Retos Nuevas Tend. Educ. Fís. Deport. Recreación 2020, 1, 200–204. [Google Scholar] [CrossRef]
- Ojala, T.; Häkkinen, K. Effects of the Tennis Tournament on Players’ Physical Performance, Hormonal Responses, Muscle Damage and Recovery. J. Sports Sci. Med. 2013, 12, 240–248. [Google Scholar]
- Bergeron, M.F.; Maresh, C.M.; Kraemer, W.J.; Abraham, A.; Conroy, B.; Gabaree, C. Tennis: A Physiological Profile during Match Play. Int. J. Sports Med. 1991, 12, 474–479. [Google Scholar] [CrossRef]
- Majumdar, P.; Khanna, G.L.; Malik, V.; Sachdeva, S.; Arif, M.; Mandal, M. Physiological analysis to quantify training load in badminton. Br. J. Sports Med. 1997, 31, 342–345. [Google Scholar] [CrossRef]
- Abián, P.; Del Coso, J.; Salinero, J.J.; Gallo-Salazar, C.; Areces, F.; Ruiz-Vicente, D.; Lara, B.; Soriano, L.; Muñoz, V.; Lorenzo-Capella, I.; et al. Muscle damage produced during a simulated badminton match in competitive male players. Res. Sports Med. 2015, 24, 104–117. [Google Scholar] [CrossRef]
- Owen, A.L.; Cossio-Bolaños, M.A.; Dunlop, G.; Rouissi, M.; Chtara, M.; Bragazzi, N.L.; Chamari, K. Stability in post-seasonal hematological profiles in response to high-competitive match-play loads within elite top-level European soccer players: Implications from a pilot study. Open Access J. Sports Med. 2018, 9, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Zapico, A.G.; Calderón, F.J.; Benito, P.J.; González, C.B.; Parisi, A.; Pigozzi, F.; Di Salvo, V. Evolution of physiological and haematological parameters with training load in elite male road cyclists: A longitudinal study. J. Sports Med. Phys. Fit. 2007, 47, 191–196. [Google Scholar]
- Federación Internacional de Pádel. Reglamento de Juego del Pádel; FIP: Lausanne, Switzerland, 2017. [Google Scholar]
- Phomsoupha, M.; Laffaye, G. The Science of Badminton: Game Characteristics, Anthropometry, Physiology, Visual Fitness and Biomechanics. Sports Med. 2014, 45, 473–495. [Google Scholar] [CrossRef]
- Kovacs, M.S. Applied physiology of tennis performance. Br. J. Sports Med. 2006, 40, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Pekelharing, J.M.; Hauss, O.; De Jonge, R.; Lokhoff, J.; Sodikromo, J.; Spaans, M.; Brouwer, R.; De Lathouder, S.; Hinzmann, R. Haematology reference intervals for established and novel parameters in healthy adults. Sysmex J. Int. 2010, 20, 1–9. [Google Scholar]
- Fallon, K.E. The clinical utility of screening of biochemical parameters in elite athletes: Analysis of 100 cases. Br. J. Sports Med. 2008, 42, 334–337. [Google Scholar] [CrossRef]
- Lee, E.C.; Fragala, M.S.; Kavouras, S.A.; Queen, R.M.; Pryor, J.L.; Casa, D.J. Biomarkers in Sports and Exercise. J. Strength Cond. Res. 2017, 31, 2920–2937. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.; Qiu, J.; Chen, S.; Pan, Q.; Shen, X.; Kang, J. Hematological, Hormonal and Fitness Indices in Youth Swimmers: Gender-Related Comparisons. J. Hum. Kinet. 2019, 70, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Malczewska-Lenczowska, J.; Sitkowski, D.; Orysiak, J.; Pokrywka, A.; Szygula, Z. Total haemoglobin mass, blood volume and morphological indices among athletes from different sport disciplines. Arch. Med. Sci. 2013, 5, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Telford, R.D.; Cunningham, R.B. Sex, sport, and body-size dependency of hematology in highly trained athletes. Med. Sci. Sports Exerc. 1991, 23, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Hero, M.; Wickman, S.; Hanhijärvi, R.; Siimes, M.A.; Dunkel, L. Pubertal upregulation of erythropoiesis in boys is determined primarily by androgen. J. Pediatr. 2005, 146, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Bachman, E.; Travison, T.G.; Basaria, S.; Davda, M.N.; Guo, W.; Li, M.; Westfall, J.C.; Bae, H.; Gordeuk, V.; Bhasin, S. Testosterone Induces Erythrocytosis via Increased Erythropoietin and Suppressed Hepcidin: Evidence for a New Erythropoietin/Hemoglobin Set Point. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2013, 69, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Gligoroska, J.P.; Gontarev, S.; Manchevska, S.; Efremova, L.; Stojmanovska, D.S.; Maleska, V. Red blood cell variables, their inter-correlations and correlations with body mass components in boys aged 10–17 years. Turk. J. Pediatr. 2020, 62, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schutte, J.E.; Longhurst, J.C.; Gaffney, F.A.; Bastian, B.C.; Blomqvist, C.G. Total plasma creatinine: An accurate measure of total striated muscle mass. J. Appl. Physiol. 1981, 51, 762–766. [Google Scholar] [CrossRef]
- Huang, C.; Niu, K.; Kobayashi, Y.; Guan, L.; Momma, H.; Cui, Y.; Chujo, M.; Otomo, A.; Guo, H.; Tadaura, H.; et al. An inverted J-shaped association of serum uric acid with muscle strength among Japanese adult men: A cross-sectional study. BMC Musculoskelet. Disord. 2013, 14, 258. [Google Scholar] [CrossRef] [Green Version]
- Deminice, R.; Sicchieri, T.; Payão, P.O.; Jordão, A.A. Blood and Salivary Oxidative Stress Biomarkers Following an Acute Session of Resistance Exercise in Humans. Int. J. Sports Med. 2010, 31, 599–603. [Google Scholar] [CrossRef]
- Battino, M.; Ferreiro, M.S.; Gallardo, I.; Newman, H.N.; Bullon, P. The antioxidant capacity of saliva. J. Clin. Periodontol. 2002, 29, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, D.; Marquina, R.; Rondón, N.; Rodríguez-Malaver, A.J.; Reyes, R. Effects of Aerobic Exercise on Uric Acid, Total Antioxidant Activity, Oxidative Stress, and Nitric Oxide in Human Saliva. Res. Sports Med. 2008, 16, 128–137. [Google Scholar] [CrossRef]
- Kondakova, I.V.; Lissi, E.A.; Pizarro, M. Total reactive antioxidant potential in human saliva of smokers and non-smokers. Biochem. Mol. BOIL. Int. 1999, 47, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Beavers, K.M.; Hsu, F.-C.; Serra, M.C.; Yank, V.; Pahor, M.; Nicklas, B.J. The Effects of a Long-Term Physical Activity Intervention on Serum Uric Acid in Older Adults at Risk for Physical Disability. J. Aging Phys. Act. 2014, 22, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppe, M.W.; Baumgart, C.; Hilberg, T.; Freiwald, J.; Wehmeier, U.F. Changes of standard physiological-perceptual markers and circulating MicroRNAs in response to tennis match-play: A case report of two elite players. J. Hum. Kinet. 2016, 51, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Akşit, T.; Turgay, F.; Kutlay, E.; Özkol, M.Z.; Vural, F. The Relationships between Simulated Tennis Performance and Biomarkers for Nitric Oxide Synthesis. J. Sports Sci. Med. 2013, 12, 267–274. [Google Scholar]
- Wolfe, R.R.; Nadel, E.R.; Shaw, J.H.; A Stephenson, L.; Wolfe, M.H. Role of changes in insulin and glucagon in glucose homeostasis in exercise. J. Clin. Investig. 1986, 77, 900–907. [Google Scholar] [CrossRef]
- Yardley, J.E.; Sigal, R.J. Exercise Strategies for Hypoglycemia Prevention in Individuals with Type 1 Diabetes. Diabetes Spectr. 2015, 28, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Sorichter, S.; Puschendorf, B.; Mair, J. Skeletal muscle injury induced by eccentric muscle action: Muscle proteins as markers of muscle fiber injury. Exerc. Immunol. Rev. 1999, 5, 5–21. [Google Scholar]
- Del Coso, J.; González-Millán, C.; Salinero, J.J.; Abián-Vicén, J.; Soriano, L.; Garde, S.; Pérez-González, B. Muscle Damage and Its Relationship with Muscle Fatigue During a Half-Iron Triathlon. PLoS ONE 2012, 7, e43280. [Google Scholar] [CrossRef] [Green Version]
- Del Coso, J.; Fernández, D.; Abián-Vicen, J.; Salinero, J.J.; González-Millán, C.; Areces, F.; Ruiz, D.; Gallo, C.; Calleja-González, J.; Pérez-González, B. Running pace decrease during a marathon is positively related to blood markers of muscle damage. PLoS ONE 2013, 8, e57602. [Google Scholar] [CrossRef]
- McKune, A.J.; Semple, S.; Peters-Futre, E. Acute exercise-induced muscle injury. Biol. Sport 2012, 29, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Ebbeling, C.B.; Clarkson, P.M. Exercise-Induced Muscle Damage and Adaptation. Sports Med. 1989, 7, 207–234. [Google Scholar] [CrossRef] [PubMed]
- Manore, M.M.; Thompson, J.; Russo, M. Diet and Exercise Strategies of a World-Class Bodybuilder. Int. J. Sport Nutr. 1993, 3, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Apple, F.S.; McGue, M.K. Serum Enzyme Changes during Marathon Training. Am. J. Clin. Pathol. 1983, 79, 716–719. [Google Scholar] [CrossRef] [Green Version]
- Pavletic, A.J.; Pao, M.; Wright, M.E. Exercise-induced elevation of liver enzymes in a healthy female research volunteer. J. Psychosom. Res. 2015, 56, 604–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersson, J.; Hindorf, U.; Persson, P.; Bengtsson, T.; Malmqvist, U.; Werkström, V.; Ekelund, M. Muscular exercise can cause highly pathological liver function tests in healthy men. Br. J. Clin. Pharmacol. 2008, 65, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lott, M.J.; Galloway, S.D.R. Fluid balance and sodium losses during indoor tennis match play. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 492–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, L.B.; De Chavez, P.J.D.; Ungaro, C.T.; Sopeña, B.C.; Nuccio, R.P.; Reimel, A.J.; Barnes, K.A. Exercise intensity effects on total sweat electrolyte losses and regional vs. whole-body sweat [Na+], [Cl−], and [K+]. Eur. J. Appl. Physiol. 2019, 119, 361–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barratt, L.J. Sodium Metabolism. Anaesth. Intensive Care 1977, 5, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Kardalas, E.; Paschou, S.A.; Anagnostis, P.; Muscogiuri, G.; Siasos, G.; Vryonidou, A. Hypokalemia: A clinical update. Endocr. Connect. 2018, 7, R135–R146. [Google Scholar] [CrossRef]
- Bergeron, M. Heat cramps: Fluid and electrolyte challenges during tennis in the heat. J. Sci. Med. Sport 2003, 6, 19–27. [Google Scholar] [CrossRef]
- Kovacs, M.S. Hydration and temperature in tennis—A practical review. J. Sports Sci. Med. 2006, 5, 1–9. [Google Scholar]
Parameters | Men (n = 14) | Women (n = 16) |
---|---|---|
Age (years) | 28.2 ± 7.9 | 29.7 ± 3.7 |
Weight (kg) | 78.2 ± 8.5 | 60.3 ± 4.4 |
Height (cm) | 178.3 ± 4.4 | 166.7 ± 5.1 |
Fat mass (%) | 10.6 ± 2.5 | 17.6 ± 2.7 |
Muscle mass (%) | 43.4 ± 2.4 | 36.6 ± 2.8 |
VO2max (mL/kg/min) | 55.4 ± 7.0 | 46.8 ± 4.6 |
Maximum heart rate (bpm) | 179 ± 7.5 | 175 ± 6.4 |
Training per week (h) | 23.5 ± 3.9 | 24.1 ± 3.3 |
Parameters | Men (n = 14) | Women (n = 16) |
---|---|---|
Total Time (min) | 79.4 ± 16.6 | 69.7 ± 17.9 |
Real Time (min) | 31.2 ± 7.6 | 25.2 ± 17.9 |
Real Time (%) | 40.7 ± 9.8 | 43.5 ± 11.8 |
Rest Time (min) | 47.1 ± 9.9 | 33.7 ± 10.6 |
Rest Time (%) | 59.3 ± 10.2 | 56.5 ± 12.3 |
Water Intake (mL) | 861.4 ± 369.8 | 737.5 ± 326.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institusional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradas, F.; García-Giménez, A.; Toro-Román, V.; Sánchez-Alcaraz, B.J.; Ochiana, N.; Castellar, C. Effect of a Padel Match on Biochemical and Haematological Parameters in Professional Players with Regard to Gender-Related Differences. Sustainability 2020, 12, 8633. https://doi.org/10.3390/su12208633
Pradas F, García-Giménez A, Toro-Román V, Sánchez-Alcaraz BJ, Ochiana N, Castellar C. Effect of a Padel Match on Biochemical and Haematological Parameters in Professional Players with Regard to Gender-Related Differences. Sustainability. 2020; 12(20):8633. https://doi.org/10.3390/su12208633
Chicago/Turabian StylePradas, Francisco, Alejandro García-Giménez, Víctor Toro-Román, Bernardino Javier Sánchez-Alcaraz, Nicolae Ochiana, and Carlos Castellar. 2020. "Effect of a Padel Match on Biochemical and Haematological Parameters in Professional Players with Regard to Gender-Related Differences" Sustainability 12, no. 20: 8633. https://doi.org/10.3390/su12208633
APA StylePradas, F., García-Giménez, A., Toro-Román, V., Sánchez-Alcaraz, B. J., Ochiana, N., & Castellar, C. (2020). Effect of a Padel Match on Biochemical and Haematological Parameters in Professional Players with Regard to Gender-Related Differences. Sustainability, 12(20), 8633. https://doi.org/10.3390/su12208633