Human Simulation and Sustainability: Ontological, Epistemological, and Ethical Reflections
Abstract
:1. Introduction
2. Advances in Sustainability Modeling
3. The “Human Simulation” Approach
4. Ontological, Epistemological, and Ethical Reflections
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations, Department of Economic and Social Affairs: New York, NY, USA, 2017. [Google Scholar]
- Alvarez, R.M. (Ed.) Computational Social Science: Discovery and Prediction; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Epstein, Generative Social Science: Studies in Agent-Based Computational Modeling; Princeton University Press: Princeton, NJ, USA, 2006.
- Gilbert, G.N.; Troitzsch, K.G. Simulation for the Social Scientist, 2nd ed.; Open University Press: London, UK, 2005. [Google Scholar]
- Baud, I.; Basile, E.; Kontinen, T.; Von Itter, S. Building Development Studies for the New Millennium; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M.A.; Ostrom, E. Empirically based, agent-based models. Ecol. Soc. 2006, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Anderies, J.M.; Janssen, M.A.; Ostrom, E. A framework to analyze the robustness of social-ecological systems from an institutional perspective. Ecol. Soc. 2004, 9, 1. [Google Scholar] [CrossRef]
- Squazzoni, F.; Polhill, J.G.; Edmonds, B.; Ahrweiler, P.; Antosz, P.; Scholz, G.; Chappin, É.; Borit, M.; Verhagen, H.; Giardini, F.; et al. Computational Models That Matter During a Global Pandemic Outbreak: A Call to Action. J. Artif. Soc. Soc. Simul. 2020, 23, 2. [Google Scholar] [CrossRef] [Green Version]
- Wildman, W.J.; Diallo, S.Y.; Hodulik, G.; Page, A.; Tolk, A.; Gondal, N. The Artificial University: Decision Support for Universities in the COVID-19 Era. Complexity. forthcoming.
- Shults, F.L.; Wildman, W.J.; Diallo, S.; Puga-Gonzalez, I.; Voas, D. The Artificial Society Analytics Platform. In Advances in Social Simulation; Springer: Berlin/Heidelberg, Germany, 2020; pp. 411–426. [Google Scholar]
- Meadows, D.H. Club of Rome, The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind; Earth Island Ltd.: London, UK, 1972. [Google Scholar]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M. Trajectories of the Earth System in the Anthropocene. PNAS 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Dearing, J.A.; Dyke, J.G.; Van Der Leeuw, S.; Seitzinger, S.; Steffen, W.; Syvitski, J. Methods and approaches to modelling the Anthropocene. Glob. Environ. Chang. 2016, 39, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Kniveton, D.; Smith, C.; Wood, S. Agent-Based model simulations of future changes in migration flows for Burkina Faso. Glob. Environ. Chang. 2011, 21, S34–S40. [Google Scholar] [CrossRef]
- Sprinz, D.F.; Sælen, H.; Underdal, A.; Hovi, J. The effectiveness of climate clubs under Donald Trump. Clim. Policy 2018, 18, 828–838. [Google Scholar] [CrossRef] [Green Version]
- Köhler, J.; De Haan, F.; Holtz, G.; Kubeczko, K.; Moallemi, E.; Papachristos, G.; Chappin, E. Modelling Sustainability Transitions: An assessment of approaches and challenges. J. Artif. Soc. Soc. Simul. 2018, 21, 1. [Google Scholar] [CrossRef] [Green Version]
- Beckage, B.; Gross, L.J.; Lacasse, K.; Carr, E.; Metcalf, S.S.; Winter, J.M.; Howe, P.D.; Fefferman, N.; Franck, T.; Zia, A.; et al. Linking models of human behaviour and climate alters projected climate change. Nat. Clim. Chang. 2018, 8, 79. [Google Scholar] [CrossRef]
- Kraan, O.; Dalderop, S.; Kramer, G.J.; Nikolic, I. Jumping to a better world: An agent-based exploration of criticality in low-carbon energy transitions. Energy Res. Soc. Sci. 2019, 47, 156–165. [Google Scholar] [CrossRef]
- Moallemi, E.A.; de Haan, F.J. Modelling Transitions: Virtues, Vices, Visions of the Future; Routledge: London, UK, 2019. [Google Scholar]
- Shults, F.L.; Wildman, W.J. Simulating religious entanglement and social investment in the Neolithic. In Religion, History and Place in the Origin of Settled Life; Hodder, I., Ed.; University of Colorado Press: Colorado Springs, CO, USA, 2018; pp. 33–63. [Google Scholar]
- Shults, F.L.; Wildman, W.J.; Lane, J.E.; Lynch, C.; Diallo, S. Multiple Axialities: A Computational Model of the Axial Age. J. Cogn. Cult. 2018, 18, 537–564. [Google Scholar] [CrossRef]
- Wildman, W.J.; Shults, F.L.; Diallo, S.Y.; Gore, R.; Lane, J.E. Post-Supernaturalist Cultures: There and Back Again. Secul. Nonrelig. 2020, 9, 1–15. [Google Scholar]
- Balbi, S.; Giupponi, C. Agent-based modelling of socio-ecosystems: A methodology for the analysis of adaptation to climate change. Int. J. Agent Technol. Syst. 2010, 2, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Epstein, J.M.; Axtell, R. Growing Artificial Societies: Social Science from the Bottom up; Brookings Institution Press: New York, NY, USA, 1996. [Google Scholar]
- Cooper, G.S.; Dearing, J.A. Modelling future safe and just operating spaces in regional social-ecological systems. Sci. Total Environ. 2019, 651, 2105–2117. [Google Scholar] [CrossRef]
- Schlüter, M.; Müller, B.; Frank, K. The potential of models and modeling for social-ecological systems research: The reference frame ModSES. Ecol. Soc. 2019, 24, 1. [Google Scholar] [CrossRef] [Green Version]
- Dignum and Dignum, Perspectives on Culture and Agent-Based Simulations: Integrating Cultures; Springer International Publishing: Berlin/Heidelberg, Germany, 2014.
- Conte, R.; Andrighetto, G.; Campennì, M. Minding Norms: Mechanisms and Dynamics of Social Order in Agent Societies; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Lemos, C.M.; Gore, R.J.; Lessard-Phillips, L.; Shults, F.L. A network agent-based model of ethnocentrism and intergroup cooperation. Qual. Quant. 2019, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef] [Green Version]
- van Burken, C.B.; Gore, R.; Dignum, F.P.; Royakkers, L.; Wozny, P.; Shults, F.L. Agent-based modelling of values: The case of value sensitive design for refugee logistics. J. Artif. Soc. Soc. Simul. 2020, 23, 4. [Google Scholar] [CrossRef]
- Barton, C.M.; Ullah, I.I.; Bergin, S.M.; Sarjoughian, H.S.; Mayer, G.R.; Bernabeu-Auban, J.E.; Heimsath, A.M.; Acevedo, M.F.; Riel-Salvatore, J.G.; Arrowsmith, J.R. Experimental socioecology: Integrative science for anthropocene landscape dynamics. Anthropocene 2016, 13, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.T.; Di Vittorio, A.; Alexander, P.; Arneth, A.; Barton, C.M.; Brown, D.G.; Kettner, A.; Lemmen, C.; O’Neill, B.C.; Janssen, M.; et al. Modelling feedbacks between human and natural processes in the land system. Earth Syst. Dyn. 2018, 9, 895–914. [Google Scholar] [CrossRef] [Green Version]
- Cioffi-Revilla, C.; Rogers, J.D.; Schopf, P.; Luke, S.; Bassett, J.; Hailegiorgis, A.; Kennedy, W.; Froncek, P.; Mulkerin, M.; Sha, M.; et al. MASON NorthLands: A geospatial agent-based model of coupled human-artificial-natural systems in boreal and arctic regions. Eur. Soc. Simul. Assoc. (ESSA) 2015, 1–14. Available online: https://www.researchgate.net/publication/281782295_MASON_NorthLands_A_Geospatial_Agent-Based_Model_of_Coupled_Human-Artificial-Natural_Systems_in_Boreal_and_Arctic_Regions (accessed on 26 November 2020).
- Monticino, M.; Acevedo, M.; Callicott, B.; Cogdill, T.; Lindquist, C. Coupled human and natural systems: A multi-agent-based approach. Environ. Model. Softw. 2007, 22, 656–663. [Google Scholar] [CrossRef] [Green Version]
- Deissenberg, C.; Van Der Hoog, S.; Dawid, H. EURACE: A massively parallel agent-based model of the European economy. Appl. Math. Comput. 2008, 204, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Farmer, J.D.; Foley, D. The economy needs agent-based modelling. Nature 2009, 460, 685–686. [Google Scholar] [CrossRef]
- Schulze, J.; Müller, B.; Groeneveld, J.; Grimm, V. Agent-based modelling of social-ecological systems: Achievements, challenges, and a way forward. J. Artif. Soc. Soc. Simul. 2017, 20, 2. [Google Scholar] [CrossRef] [Green Version]
- Gotts, N.M.; van Voorn, G.A.; Polhill, J.G.; de Jong, E.; Edmonds, B.; Hofstede, G.J.; Meyer, R. Agent-based modelling of socio-ecological systems: Models, projects and ontologies. Ecol. Complex. 2019, 40. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, M.; Baeza, A.; Dressler, G.; Frank, K.; Groeneveld, J.; Jager, W.; Marco Janssen, A.; McAllister, R.R.J.; Müller, B.; Orach, K.; et al. A framework for mapping and comparing behavioural theories in models of social-ecological systems. Ecol. Econ. 2017, 131, 21–35. [Google Scholar] [CrossRef]
- Janssen, M.; Baggio, J.A. Using agent-based models to compare behavioral theories on experimental data: Application for irrigation games. J. Environ. Psychol. 2016, 46, 106–115. [Google Scholar] [CrossRef]
- Waring, T.M.; Kline Ann, M.; Brooks, J.S.; Goff, S.H.; Gowdy, J.; Janssen, M.A.; Smaldino, P.E.; Jacquet, J. A multilevel evolutionary framework for sustainability analysis. Ecol. Soc. 2015, 20, 2. [Google Scholar] [CrossRef]
- Janssen, M.; De Vries, B. The battle of perspectives: A multi-agent model with adaptive responses to climate change. Ecol. Econ. 1998, 26, 43–65. [Google Scholar] [CrossRef] [Green Version]
- Janssen, M.A.; Walker, B.H.; Langridge, J.; Abel, N. An adaptive agent model for analysing co-evolution of management and policies in a complex rangeland system. Ecol. Model. 2000, 131, 249–268. [Google Scholar] [CrossRef] [Green Version]
- Jager, W.; Janssen, M. The need for and development of behaviourally realistic agents. In International Workshop on Multi-Agent Systems and Agent-Based Simulation; Springer: Berlin/Heidelberg, Germany, 2002; pp. 36–49. [Google Scholar]
- Hailegiorgis, A.B.; Kennedy, W.G.; Rouleau, M.; Bassett, J.K.; Coletti, M.; Balan, G.C.; Gulden, T. An Agent Based Model of Climate Change and Conflict among Pastoralists in East Africa; BYU Scholars Archive: Ottawa, ON, Canada, 2010. [Google Scholar]
- Skoggard, I.; Kennedy, W.G. An interdisciplinary approach to agent-based modeling of conflict in Eastern Africa. Pract. Anthropol. 2013, 35, 14–18. [Google Scholar] [CrossRef]
- Granco, G.; Stamm, J.L.H.; Bergtold, J.S.; Daniels, M.D.; Sanderson, M.R.; Sheshukov, A.Y.; Mather, M.E.; Caldas, M.M.; Ramsey, S.M.; Lehrter, R.J., II; et al. Evaluating environmental change and behavioral decision-making for sustainability policy using an agent-based model: A case study for the Smoky Hill River Watershed, Kansas. Sci. Total Environ. 2019, 695, 133769. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Pan, L.; Xue, Z.; Zhen, L.; Bai, X.; Hu, Y.; Huang, H.Q. Agent-Based Modeling of Sustainable Ecological Consumption for Grasslands: A Case Study of Inner Mongolia, China. Sustainability 2019, 11, 2261. [Google Scholar] [CrossRef] [Green Version]
- Sælen, H. The effect of enforcement in the presence of strong reciprocity: An application of agent-based modeling. In Toward a New Climate Agreement: Conflict, Resolution and Governance; Cherry, T., Hovi, J., McEvoy, D.M., Eds.; Routledge: London, UK, 2014; pp. 233–253. [Google Scholar]
- Sælen, H. Side-payments: An effective instrument for building climate clubs? Int. Environ. Agreem. Politics Law Econ. 2016, 16, 909–932. [Google Scholar] [CrossRef] [Green Version]
- Hovi, J.; Sprinz, D.F.; Sælen, H.; Underdal, A. The club approach: A gateway to effective climate co-operation? Br. J. Political Sci. 2019, 49, 1071–1096. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.; Steinbuch, M.; Verbong, G. Creating agent-based energy transition management models that can uncover profitable pathways to climate change mitigation. Complex 2017. [Google Scholar] [CrossRef] [Green Version]
- Arneth, A.; Brown, C.; Rounsevell, M.D.A. Global models of human decision-making for land-based mitigation and adaptation assessment. Nat. Clim. Chang. 2014, 4, 550. [Google Scholar] [CrossRef]
- BenDor, T.K.; Scheffran, J. Agent-Based Modeling of Environmental Conflict and Cooperation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Bai, X.; Van Der Leeuw, S.; O’Brien, K.; Berkhout, F.; Biermann, F.; Brondizio, E.S.; Cudennec, C.; Dearing, J.; Duraiappah, A.; Glaser, M.; et al. Plausible and desirable futures in the Anthropocene: A new research agenda. Glob. Environ. Chang. 2016, 39, 351–362. [Google Scholar] [CrossRef]
- Giuliani, M.; Castelletti, A. Assessing the value of cooperation and information exchange in large water resources systems by agent-based optimization. Water Resour. Res. 2013, 49, 3912–3926. [Google Scholar] [CrossRef]
- Schaat, S.; Jager, W.; Dickert, S. Psychologically plausible models in agent-based simulations of sustainable behavior. In Agent-Based Modeling of Sustainable Behaviors; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–25. [Google Scholar]
- An, L. Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecol. Model. 2012, 229, 25–36. [Google Scholar] [CrossRef]
- Bury, T.M.; Bauch, C.T.; Anand, M. Charting pathways to climate change mitigation in a coupled socio-climate model. PLoS Comput. Biol. 2019, 15, e1007000. [Google Scholar] [CrossRef]
- Gilbert, N.; Ahrweiler, P.; Barbrook-Johnson, P.; Narasimhan, K.P.; Wilkinson, H. Computational Modelling of Public Policy. J. Artif. Soc. Soc. Simul. 2018, 21, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mehryar, S.; Sliuzas, R.; Sharifi, A.; Reckien, D.; van Maarseveen, M. A structured participatory method to support policy option analysis in a social-ecological system. J. Environ. Manag. 2017, 197, 360–372. [Google Scholar] [CrossRef]
- Mehryar, S.; Sliuzas, R.; Schwarz, N.; Sharifi, A.; van Maarseveen, M. From individual Fuzzy Cognitive Maps to Agent Based Models: Modeling multi-factorial and multi-stakeholder decision-making for water scarcity. J. Environ. Manag. 2019, 250, 109482. [Google Scholar] [CrossRef]
- Lippe, M.; Bithell, M.; Gotts, N.; Natalini, D.; Barbrook-Johnson, P.; Giupponi, C.; Hallier, M.; Hofstede, G.J.; Le Page, C.; Matthews, R.B.; et al. Using agent-based modelling to simulate social-ecological systems across scales. GeoInformatica 2019, 23, 269–298. [Google Scholar] [CrossRef]
- Normann, R.; Puga-Gonzalez, I.; Shults, F.L.; Homme, G.A. Multi-agent kunstig intelligens og offentlig politikk. Samf. Skand. 2019, 34, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Giabbanelli, P.J.; Gray, S.A.; Aminpour, P. Combining fuzzy cognitive maps with agent-based modeling: Frameworks and pitfalls of a powerful hybrid modeling approach to understand human-environment interactions. Environ. Model. Softw. 2017, 95, 320–325. [Google Scholar] [CrossRef]
- Gray, S.; Voinov, A.; Paolisso, M.; Jordan, R.; BenDor, T.; Bommel, P.; Glynn, P.; Hedelin, B.; Hubacek, K.; Introne, J.; et al. Purpose, processes, partnerships, and products: Four Ps to advance participatory socio-environmental modeling. Ecol. Appl. 2018, 28, 46–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diallo, S.; Wildman, W.J.; Shults, F.L.; Tolk, A. (Eds.) Human Simulation: Perspectives, Insights, and Applications; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Lane, J. Method, theory, and multi-agent artificial intelligence: Creating computer models of complex social interactions. J. Cogn. Sci. Relig. 2013, 1, 161–180. [Google Scholar] [CrossRef]
- Shults, F.L.; Lane, J.E.; Diallo, S.; Lynch, C.; Wildman, W.J.; Gore, R. Modeling Terror Management Theory: Computer Simulations of the Impact of Mortality Salience on Religiosity. Relig. Brain Behav. 2018, 8, 77–100. [Google Scholar] [CrossRef]
- Shults, F.L.; Gore, R.; Wildman, W.J.; Lynch, C.; Lane, J.E.; Toft, M. A Generative Model of the Mutual Escalation of Anxiety between Religious Groups. J. Artif. Soc. Soc. Simul. 2018, 21. [Google Scholar] [CrossRef]
- Gore, R.; Lemos, C.; Shults, F.L.; Wildman, W.J. Forecasting changes in religiosity and existential security with an agent-based model. J. Artif. Soc. Soc. Simul. 2018, 21, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Padilla, J.J.; Frydenlund, E.; Wallewik, H.; Haaland, H. Model Co-creation from a Modeler’s Perspective: Lessons Learned from the Collaboration between Ethnographers and Modelers. In Social, Cultural, and Behavioral Modeling; Springer: Cham, Switzerland, 2018; pp. 70–75. [Google Scholar] [CrossRef]
- Wildman, W.J.; Fishwick, P.A.; Shults, F.L. Teaching at the intersection of Simulation and the Humanities. In Proceedings of the 2017 Winter Simulation Conference, Las Vegas, NV, USA, 3–6 December 2017; Society for Modeling & Simulation International: Las Vegas, NV, USA, 2017; pp. 1–13. [Google Scholar]
- Briassoulis, H. The Socio-ecological Fit of Human Responses to Environmental Degradation: An Integrated Assessment Methodology. Environ. Manag. 2015, 56, 1448–1466. [Google Scholar] [CrossRef]
- Araos, F.; Anbleyth-Evans, J.; Riquelme, W.; Hidalgo, C.; Brañas, F.; Catalán, E.; Núñez, D.; Diestre, F. Marine Indigenous Areas: Conservation Assemblages for Sustainability in Southern Chile. Coast. Manag. 2020, 1–19. [Google Scholar] [CrossRef]
- Forney, J.; Rosin, C.; Campbell, H. Agri-Environmental Governance as an Assemblage: Multiplicity, Power, and Transformation; Routledge: London, UK, 2018. [Google Scholar]
- Calvez, P.; Soulier, E. ‘Sustainable assemblage for energy (SAE)’ inside intelligent urban areas: How massive heterogeneous data could help to reduce energy footprints and promote sustainable practices and an ecological transition. In Proceedings of the 2014 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 27–30 October 2014; pp. 1–8. [Google Scholar]
- Woods, M. Territorialisation and the assemblage of rural place: Examples from Canada and New Zealand. Cult. Sustain. Reg. Dev. Theor. Pract. Territ. 2015, 1, 29–43. [Google Scholar]
- Burnham, M.; Ma, Z.; Zhang, B. Making sense of climate change: Hybrid epistemologies, socio-natural assemblages and smallholder knowledge. Area 2016, 48, 18–26. [Google Scholar] [CrossRef]
- Havice, E.; Iles, A. Shaping the aquaculture sustainability assemblage: Revealing the rule-making behind the rules. Geoforum 2015, 58, 27–37. [Google Scholar] [CrossRef]
- Köhne, M. Multi-stakeholder initiative governance as assemblage: Roundtable on Sustainable Palm Oil as a political resource in land conflicts related to oil palm plantations. Agric. Hum. Values 2014, 31, 469–480. [Google Scholar] [CrossRef]
- Konefal, J.; Hatanaka, M.; Strube, J.; Glenna, L.; Conner, D. Sustainability assemblages: From metrics development to metrics implementation in United States agriculture. J. Rural Stud. 2019. [Google Scholar] [CrossRef]
- Briassoulis, H. Response assemblages and their socioecological fit: Conceptualizing human responses to environmental degradation. Dialogues Hum. Geogr. 2017, 7, 166–185. [Google Scholar] [CrossRef]
- Spies, M. Glacier thinning and adaptation assemblages in Nagar, northern Pakistan. Erdkunde 2016, 125–140. [Google Scholar] [CrossRef]
- Spies, M.; Alff, H. Assemblages and complex sadaptive systems: A conceptual crossroads for integrative research? Geogr. Compass 2020, 14, e12534. [Google Scholar] [CrossRef]
- Wildman, W.J.; Shults, F.L. Emergence: What does it mean and how is it relevant to computer engineering. In Emergent Behavior in Complex Systems Engineering: A Modeling and Simulation Approach; Mittal, S., Diallo, S., Tolk, A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 21–34. [Google Scholar]
- Shults, F.L. Modeling Metaphysics: The Rise of Simulation and the Reversal of Platonism. In Proceedings of the Spring Simulation Conference, Tucson, AZ, USA, 29 April–2 May 2019; pp. 1–12. [Google Scholar]
- Shults, F.L. Simulating Machines: Modeling, Metaphysics, and the Mechanosphere. Deleuze Guattari Stud. 2020, 14, 349–374. [Google Scholar] [CrossRef]
- DeLanda, M. A New Philosophy of Society: Assemblage Theory and Social Complexity; Continuum: London, UK, 2006. [Google Scholar]
- DeLanda, M. Philosophy and Simulation: The Emergence of Synthetic Reason; Continuum: London, UK, 2011. [Google Scholar]
- DeLanda, M. Intensive Science and Virtual Philosophy; Bloomsbury: London, UK, 2002. [Google Scholar]
- Sonetti, G.; Brown, M.; Naboni, E. About the Triggering of UN Sustainable Development Goals and Regenerative Sustainability in Higher Education. Sustainability 2019, 11, 254. [Google Scholar] [CrossRef] [Green Version]
- Shults, F.L. How to Survive the Anthropocene: Adaptive Atheism and the Evolution of Homo deiparensis. Religions 2015, 6, 724–741. [Google Scholar] [CrossRef] [Green Version]
- Shults, F.L. Practicing Safe Sects: Religious Reproduction in Scientific and Philosophical Perspective; Brill Academic: Leiden, The Netherlands, 2018. [Google Scholar]
- Eom, K.; Saad, C.S.; Kim, H.S. Religiosity moderates the link between environmental beliefs and pro-environmental support: The role of belief in a controlling god. Personal. Soc. Psychol. Bull. 2020. [Google Scholar] [CrossRef]
- Pennycook, G.; Cheyne, J.A.; Koehler, D.J.; Fugelsang, J.A. On the belief that beliefs should change according to evidence: Implications for conspiratorial, moral, paranormal, political, religious, and science beliefs. Judgm. Decis. Mak. 2020, 15, 476. [Google Scholar]
- Talmont-Kaminski, K. Epistemic Vigilance and the Science/Religion Distinction. J. Cogn. Cult. 2020, 20, 88–99. [Google Scholar] [CrossRef]
- Vonk, J.; Brothers, B.; Zeigler-Hill, V. Ours is not to reason why: Information seeking across domains. Psychol. Relig. Spiritual. 2020. [Google Scholar] [CrossRef]
- Sela, Y.; Barbaro, N. Selected to Kill in His Name. In The Oxford Handbook of Evolutionary Psychology and Religion; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Mortreux, C.; Barnett, J. Climate change, migration and adaptation in Funafuti, Tuvalu. Glob. Environ. Chang. 2009, 19, 105–112. [Google Scholar] [CrossRef]
- McCright, A.M.; Dunlap, R.E. Cool dudes: The denial of climate change among conservative white males in the United States. Glob. Environ. Chang. 2011, 21, 1163–1172. [Google Scholar] [CrossRef]
- Shults, F.L. Toxic theisms? New strategies for prebunking religious belief-behavior complexes. J. Cogn. Hist. 2020, 5, 1–19. [Google Scholar] [CrossRef]
- Shults, F.L.; Wildman, W.J. Ethics, computer simulation, and the future of humanity. In Human Simulation: Perspectives, Insights and Applications; Diallo, S.Y., Wildman, W.J., Shults, F.L., Tolk, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 21–40. [Google Scholar]
- Shults, F.L.; Wildman, W.J. Artificial Social Ethics: Simulating Culture, Conflict, and Cooperation. In Proceedings of the SpringSim 2020 Conference, Fairfax, VA, USA, 18–21 May 2020; pp. 1–10. [Google Scholar]
- Diallo, S.Y.; Shults, F.L.; Wildman, W.J. Minding Morality: Ethical Artificial Societies for Public Policy Modeling. AI Soc. 2020. [Google Scholar] [CrossRef] [PubMed]
- Puga-Gonzalez, I.; Wildman, W.J.; Diallo, S.Y.; Shults, F.L. Minority integration in a western city: An agent-based modeling approach. In Human Simulation: Perspectives, Insights, and Applications; Diallo, S.Y., Wildman, W.J., Shults, F.L., Tolk, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 179–190. [Google Scholar]
- Hasan, R. ; Religion and Development in the Global South; Palgrave Macmillan: New York, NY, USA, 2017. [Google Scholar]
- Paul, G. The Chronic Dependence of Popular Religiosity upon Dysfunctional Psychosociological Conditions. Evol. Psychol. 2009, 7, 398–441. [Google Scholar] [CrossRef]
- Zuckerman, P. Society without God: What the Least Religious Nations Can Tell Us About Contentment; NYU Press: New York, NY, USA; Chesham, UK, 2010. [Google Scholar]
- Barber, N. A cross-national test of the uncertainty hypothesis of religious belief. Cross-Cult. Res. 2011, 45, 318–333. [Google Scholar] [CrossRef] [Green Version]
- Bormann, N.-C.; Cederman, L.-E.; Vogt, M. Language, Religion, and Ethnic Civil War. J. Confl. Resolut. 2017, 61, 744–771. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shults, F.L.; Wildman, W.J. Human Simulation and Sustainability: Ontological, Epistemological, and Ethical Reflections. Sustainability 2020, 12, 10039. https://doi.org/10.3390/su122310039
Shults FL, Wildman WJ. Human Simulation and Sustainability: Ontological, Epistemological, and Ethical Reflections. Sustainability. 2020; 12(23):10039. https://doi.org/10.3390/su122310039
Chicago/Turabian StyleShults, F. LeRon, and Wesley J. Wildman. 2020. "Human Simulation and Sustainability: Ontological, Epistemological, and Ethical Reflections" Sustainability 12, no. 23: 10039. https://doi.org/10.3390/su122310039
APA StyleShults, F. L., & Wildman, W. J. (2020). Human Simulation and Sustainability: Ontological, Epistemological, and Ethical Reflections. Sustainability, 12(23), 10039. https://doi.org/10.3390/su122310039