Economic and Environmental Performance of the Agricultural Sectors of the Selected EU Countries
Abstract
:1. Introduction
2. Literature Review
2.1. Factors Influencing Agricultural Performance
2.2. Linkages between Agricultural Performance and Rural Sustainability
3. Methods
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Swinnen, J. Compensation Payments in EU Agriculture. 2009, pp. 1–31. Available online: https://core.ac.uk/download/pdf/6560232.pdf (accessed on 26 November 2019). CEPR-Worldbank Paper Working paper.
- Djokoto, J.G. Technical efficiency of organic agriculture: A quantitative review. Stud. Agric. Econ. 2015, 117, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Oluwatayo, I.B.; Adedeji, T.A. Comparative analysis of technical efficiency of catfish farms using different technologies in Lagos State, Nigeria: A Data Envelopment Analysis (DEA) approach. Agric. Food Secur. 2019, 8, 8. [Google Scholar] [CrossRef]
- Piłatowska, M.; Włodarczyk, A. Decoupling Economic Growth from Carbon Dioxide Emissions in the EU Countries. Montenegrin J. Econ. 2018, 14, 7–26. [Google Scholar] [CrossRef]
- Sharma, D.; Shardendu, S. Assessing farm-level agricultural sustainability over a 60-year period in rural eastern India. Environmentalist 2011, 31, 325. [Google Scholar] [CrossRef]
- Smith, G.; Nandwani, D.; Kankarla, V. Facilitating resilient rural-to-urban sustainable agriculture and rural communities. Int. J. Sustain. Dev. World Ecol. 2017, 24, 485–501. [Google Scholar] [CrossRef]
- Veisi, H.; Liaghati, H.; Alipour, A. Developing an ethics-based approach to indicators of sustainable agriculture using analytic hierarchy process (AHP). Ecol. Indic. 2016, 60, 644–654. [Google Scholar] [CrossRef]
- De Olde, E.M.; Moller, H.; Marchand, F.; McDowell, R.W.; MacLeod, C.J.; Sautier, M.; Halloy, S.; Barber, A.; Benge, J.; Bockstaller, C.; et al. When experts disagree: The need to rethink indicator selection for assessing sustainability of agriculture. Environ. Dev. Sustain. 2017, 19, 1327–1342. [Google Scholar] [CrossRef] [Green Version]
- Latruffe, L.; Diazabakana, A.; Bockstaller, C.; Desjeux, Y.; Finn, J.; Kelly, E.; Ryan, M.; Uthes, S. Measurement of sustainability in agriculture: A review of indicators. Stud. Agric. Econ. 2016, 118, 123–130. [Google Scholar] [CrossRef]
- S tanciu, S.; Virlanuta, F.O.; Dinu, V.; Zungun, D.; Antohi, V.M. The Perception of the Social Economy by Agricultural Producers in the North-East Development Region of Romania. Transform. Bus. Econ. 2019, 18, 879–899. [Google Scholar]
- Mariyono, J.; Kuntariningsih, A.; Suswati, E.; Kompas, T. Quantity and monetary value of agrochemical pollution from intensive farming in Indonesia. Manag. Environ. Qual. 2018, 29, 759–779. [Google Scholar] [CrossRef]
- Djokoto, J.G.; Srofenyo, F.Y.; Arthur, A.A.A. Technical inefficiency effects in agriculture—A meta-regression. J. Agric. Sci. 2016, 8, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Nyemeck Binam, J.; Tonye, J.; Wandji, N. Source of technical efficiency among small holder maize and peanut farmers in the slash and burn agriculture zone of Cameroon. J. Econ. Coop. Islam. Count. 2005, 26, 193–210. [Google Scholar]
- Bokusheva, R.; Hockmann, H.; Kumbhakar, S.C. Dynamics of productivity and technical efficiency in Russian agriculture. Eur. Rev. Agric. Econ. 2011, 39, 611–637. [Google Scholar] [CrossRef]
- Masterson, T. Productivity, Technical Efficiency, and Farm Size in Paraguayan Agriculture; Levy Economics Institute Working Paper No. 490; The Levy Economics Institute: New York, NY, USA, 2007. [Google Scholar]
- de Freitas, C.O.; Teixeira, E.C.; Braga, M.J. Technical efficiency and farm size: An analysis based on the Brazilian agriculture and livestock census. Ital. Rev. Agric. Econ. 2019, 74, 33–48. [Google Scholar]
- Haq, U.S.; Ceyhan, V.; Boz, I.; Shahbaz, P. Effect of different crop management system on technical efficiency in sugarcane production in Faisalabad, Punjab Region of Pakistan. J. Biol. Agric. Healthc. 2016, 6, 106–114. [Google Scholar]
- Schmitz, H. Collective efficiency: Growth path for small-scale industry. J. Dev. Stud. 1995, 31, 529–566. [Google Scholar] [CrossRef]
- Muhammad-Lawal, A.; Omotesho, O.A.; Falola, A. Technical efficiency of youth participation in agriculture: A case study of the youth-in-agriculture programme in ondo state, south western Nigeria. Niger. J. Agric. Food Environ. 2009, 5, 20–26. [Google Scholar]
- GÜL, M.; Yilmaz, H.; Parlakay, O.; Akkoyun, S.; Bilgili, M.E.; Vurarak, Y.; Hizli, H.; Kilicalp, N. Technical efficiency of dairy cattle farms in East Mediterranean region of Turkey. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2018, 18, 213–226. [Google Scholar]
- Błażejczyk-Majka, L.; Kala, R. On the combined estimation of technical efficiency and its application to agriculture. Agric. Econ. 2015, 61, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Hřebíková, B.; Čechura, L. An Analysis of the Impacts of Weather on Technical Efficiency in Czech Agriculture. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 1645–1652. [Google Scholar] [CrossRef] [Green Version]
- Diallo, Y.; Marchand, S.; Espagne, E. Impacts of extreme climate events on technical efficiency in Vietnamese agriculture; Études et Documents, n° 12, CERDI. 2019. Available online: https://ideas.repec.org/p/hal/ciredw/halshs-02080285.html (accessed on 17 November 2019).
- Latruffe, L.; Bravo-Ureta, B.E.; Carpentier, A.; Desjeux, Y.; Moreira, V.H. Subsidies and technical efficiency in agriculture: Evidence from European dairy farms. Am. J. Agric. Econ. 2017, 99, 783–799. [Google Scholar] [CrossRef] [Green Version]
- Minviel, J.J.; Latruffe, L. Effect of public subsidies on farm technical efficiency: A meta-analysis of empirical results. Appl. Econ. 2017, 49, 213–226. [Google Scholar] [CrossRef]
- Lachaal, L. Subsidies, endogenous technical efficiency and the measurement of productivity growth. J. Agric. Appl. Econ. 1994, 26, 299–310. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Milán Demeter, R.; Lansink, A.O. Technical efficiency and productivity differentials of dairy farms in three EU countries: The role of CAP subsidies. Agric. Econ. Rev. 2012, 13, 66–92. [Google Scholar]
- Mehta, N. Technical efficiency and reduction in input costs in agriculture: Case of genetically modified cotton. Agric. Econ. Res. Rev. 2019, 32, 105–116. [Google Scholar] [CrossRef]
- Siddique, M.A.B.; Sarkar, M.A.R.; Rahman, M.C.; Chowdhury, A.; Rahaman, M.S.; Deb, L. Rice farmers’ technical efficiency under abiotic stresses in Bangladesh. Asian J. Agric. Rural Dev. 2017, 7, 219–232. [Google Scholar]
- Hasnain, M.N.; Hossain, M.E.; Islam, M.K. Technical efficiency of Boro rice production in Meherpur district of Bangladesh: A stochastic frontier approach. Am. J. Agric. For. 2015, 3, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Nowak, A.; Kijek, T.; Domańska, K. Technical efficiency and its determinants in the European Union. Agric. Econ. 2015, 61, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Huy, H.T.; Nguyen, T.T. Cropland rental market and farm technical efficiency in rural Vietnam. Land Use Policy 2019, 81, 408–423. [Google Scholar] [CrossRef]
- Hoang Linh, V. Efficiency of rice farming households in Vietnam. Int. J. Dev. Issues 2012, 11, 60–73. [Google Scholar] [CrossRef]
- Temoso, O.; Hadley, D.; Villano, R. Sources of efficiency, productivity and output growth in Botswana agriculture. Rev. Dev. Econ. 2018, 22, 1105–1124. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, B.; Zhang, L. A technical efficiency evaluation system for vegetable production in China. Inf. Process. Agric. 2018, 5, 345–353. [Google Scholar] [CrossRef]
- Souza, G.D.S.; Gomes, E.G. The effect of marketing imperfection variables on production in the context of brazilian agriculture. In Área de Informação da Sede-Artigo em Anais de Congresso (ALICE). International Conference on Operations Research and Enterprises Systems; ScitePress: Funchal, Portugal, 2018; pp. 15–20. [Google Scholar]
- Čechura, L. Technical efficiency and total factor productivity in Czech agriculture. Agric. Econ. 2012, 58, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Varasani, J.; Shiyani, R.L.; Ardeshna, N.J.; Swaminathan, B. Technical efficiency analysis of groundnut production in Saurashtra region of Gujarat. Int. J. Agric. Sci. 2016, 8, 852–858. [Google Scholar]
- Ahmad, D.; Afzal, M. Comparative Analysis of Bt and Non-Bt Cotton Farmers Technical Efficiency of Core Cotton Zone in Punjab Pakistan. Sarhad J. Agric. 2019, 35, 358–368. [Google Scholar] [CrossRef]
- Ho, T.T.; Shimada, K. The Effects of Climate Smart Agriculture and Climate Change Adaptation on the Technical Efficiency of Rice Farming—An Empirical Study in the Mekong Delta of Vietnam. Agriculture 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Khataza, R.R.; Hailu, A.; Kragt, M.E.; Doole, G.J. Estimating shadow price for symbiotic nitrogen and technical efficiency for legume-based conservation agriculture in Malawi. Aust. J. Agric. Resour. Econ. 2017, 61, 462–480. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Moreno, J.J.; Morente, F.V.; Díaz, M.T.S. Assessment of the operational and environmental efficiency of agriculture in Latin America and the Caribbean. Agric. Econ. 2018, 64, 74–88. [Google Scholar]
- Buckley, C.; Carney, P. The potential to reduce the risk of diffuse pollution from agriculture while improving economic performance at farm level. Environ. Sci. Policy 2013, 25, 118–126. [Google Scholar] [CrossRef] [Green Version]
- You, H.; Zhang, X. Sustainable livelihoods and rural sustainability in China: Ecologically secure, economically efficient or socially equitable? Resour. Conserv. Recycl. 2017, 120, 1–13. [Google Scholar] [CrossRef]
- Nazzaro, C.; Marotta, G. The Common Agricultural Policy 2014–2020: Scenarios for the European agricultural and rural systems. Agric. Food Econ. 2016, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Zeller, M.; Lapenu, C.; Minten, B.; Ralison, E.; Randrianaivo, D.; Randrianarisoa, C. The Critical Triangle Between Environmental Sustainability, Economic Growth, and Poverty Alleviation. In Beyond Market Liberalization: Welfare, Income Generation and Environmental Sustainability in Rural Madagascar; Minten, B., Zeller, M., Eds.; Routledge: Abingdon, UK, 2000; p. 259. [Google Scholar]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akroyd, H.D. Agriculture and Rural Development Planning: A Process in Transition; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Babych, M. Social-economic and environmental sustainability of short supply chains: Opportunities for development rural territories. Agric. Resour. Econ. Int. Sci. E J. 2018, 4, 42–59. [Google Scholar]
- Thurlow, J.; Dorosh, P.; Davis, B. Demographic Change, Agriculture, and Rural Poverty. In Sustainable Food and Agriculture; Academic Press: Cambridge, MA, USA, 2019; pp. 31–53. [Google Scholar]
- Imai, K.S.; Gaiha, R.; Garbero, A. Poverty reduction during the rural–urban transformation: Rural development is still more important than urbanisation. J. Policy Model. 2017, 39, 963–982. [Google Scholar] [CrossRef] [Green Version]
- Kadir, K.; Amalia, R.R. Economic growth and poverty reduction: The role of the agricultural sector in rural Indonesia. In Proceedings of the ICAS VII Seventh International Conference on Agricultural Statistics, Rome, Italy, 24–26 October 2016. [Google Scholar]
- Edwards, R.B. Export Agriculture and Rural Poverty: Evidence from Indonesian Palm Oil; Dartmouth College: Hanover, Germany, 2019; Available online: https://static1.squarespace.com/static/57d5edcf197aea51693538dc/t/5c6cbb1aa4222f75067de956/1550629671736/eard_v9_1901-merged.pdf (accessed on 17 November 2019).
- Thuita, G.; Ouma, M. Inequality and rural poverty: Innovative agricultural practices for sustainable and social development in Kenya. In Emerging Economic Models for Global Sustainability and Social Development; IGI Global: Hershey, PA, USA, 2019; pp. 84–97. [Google Scholar]
- Evans, N.; Yarwood, R. Farm animals and rural sustainability. In Sustainable Rural Systems; Routledge: Abingdon, UK, 2008; pp. 99–114. [Google Scholar]
- Mansfield, L. The Cumbria Hill Sheep initiative: A Solution to the Decline in upland Hill Farming Community in England. In Sustainable Rural Systems: Sustainable Agriculture and Rural Communities; Robinson, G., Ed.; Ashgate: Aldershot, UK, 2008; pp. 161–184. [Google Scholar]
- Janker, J.; Mann, S.; Rist, S. Social sustainability in agriculture–A system-based framework. J. Rural Stud. 2019, 65, 32–42. [Google Scholar] [CrossRef]
- De los Ríos, I.; Rivera, M.; García, C. Redefining rural prosperity through social learning in the cooperative sector: 25 years of experience from organic agriculture in Spain. Land Use Policy 2016, 54, 85–94. [Google Scholar] [CrossRef]
- Gathorne-Hardy, A.; Reddy, D.N.; Venkatanarayana, M.; Harriss-White, B. System of Rice Intensification provides environmental and economic gains but at the expense of social sustainability—A multidisciplinary analysis in India. Agric. Syst. 2016, 143, 159–168. [Google Scholar] [CrossRef]
- Carles, L.; Joly, M.; Joly, P. Mesotrione herbicide: Efficiency, effects, and fate in the environment after 15 years of agricultural use. Clean Soil Air Water 2017, 45, 1700011. [Google Scholar] [CrossRef]
- Bowers, J.K.; Cheshire, P. Agriculture, the Countryside and Land Use: An Economic Critique; Routledge: Abingdon, UK, 2019; Volume 4. [Google Scholar]
- Clark, M.; Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017, 12, 064016. [Google Scholar] [CrossRef]
- Zhang, X.; Bol, R.; Rahn, C.; Xiao, G.; Meng, F.; Wu, W. Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980–2014 in Northern China. Sci. Total Environ. 2017, 596, 61–68. [Google Scholar] [CrossRef]
- Devkota, M.; Devkota, K.P.; Gupta, R.K.; Sayre, K.D.; Martius, C.; Lamers, J.P. Conservation agriculture farming practices for optimizing water and fertilizer use efficiency in Central Asia. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D., Eds.; International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI), and International Potash Institute (IPI): Paris, France, 2015; pp. 242–257. [Google Scholar]
- Etingoff, K. Sustainable agriculture: The basics. In Sustainable Agriculture and Food Supply Scientific, Economic and Policy Enhancements; Apple Academic Press: Oakville, ON, Canada, 2016; p. 386. [Google Scholar]
- Czyżewski, B.; Matuszczak, A.; Muntean, A. Influence of agricultural policy on the environmental sustainability of European farming. J. Environ. Prot. Ecol. 2018, 19, 426–434. [Google Scholar]
- Czyżewski, B.; Majchrzak, A. Market versus agriculture in Poland—Macroeconomic relations of incomes, prices and productivity in terms of the sustainable development paradigm. Technol. Econ. Dev. Econ. 2018, 24, 318–334. [Google Scholar] [CrossRef] [Green Version]
- Renwick, A.; Jansson, T.; Verburg, P.H.; Revoredo-Giha, C.; Britz, W.; Gocht, A.; and McCracken, D. Policy reform and agricultural land abandonment in the EU. Land Use Policy 2013, 30, 446–457. [Google Scholar] [CrossRef]
- Louhichi, K.; Ciaian, P.; Espinosa, M.; Colen, L.; Perni, A.; y Paloma, S.G. Does the crop diversification measure impact EU farmers’ decisions? An assessment using an Individual Farm Model for CAP Analysis (IFM-CAP). Land Use Policy 2017, 66, 250–264. [Google Scholar] [CrossRef]
- Brookes, G.; Barfoot, P. Environmental impacts of genetically modified (GM) crop use 1996–2015: Impacts on pesticide use and carbon emissions. GM Crops Food 2017, 8, 117–147. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, A.; Leibowitz, S.G.; Johnson, Z.C.; Lin, J.; Massie, J.A.; Hollister, J.W.; Bennett, M.G. Performance of national maps of watershed integrity at watershed scales. Water 2018, 10, 604. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.S.; Entenmann, S.K. Land in the EU for perennial biomass crops from freed-up agricultural land: A sensitivity analysis considering yields, diet, market liberalization and world food prices. Land Use Policy 2019, 82, 292–306. [Google Scholar] [CrossRef]
- Pimentel, D. Handbook of Energy Utilization in Agriculture; CRC Press: New York, NY, USA, 2019; p. 487. [Google Scholar]
- European Commission. FADN Public Database. Available online: https://ec.europa.eu/agriculture/rica/database/database_en.cfm (accessed on 3 February 2020).
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making-Methods and Applications, A State of the Art Survey; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1981. [Google Scholar]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Eurostat. Database. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 3 February 2020).
- Crespo Cuaresma, J.; Ritzberger-Grünwald, D.; Silgoner, M.A. Growth, convergence and EU membership. Appl. Econ. 2008, 40, 643–656. [Google Scholar] [CrossRef] [Green Version]
- Patton, M.; Kostov, P.; McErlean, S.; Moss, J. Assessing the influence of direct payments on the rental value of agricultural land. Food Policy 2008, 33, 397–405. [Google Scholar] [CrossRef]
Criterion | Share of LPCQ in GFI | Share of B in GFI | Share of M in GFI | Share of BL in GFI |
---|---|---|---|---|
Type | Cost (-) | Cost (-) | Cost (-) | Cost (-) |
Specialist cereals, oilseeds, and protein crops | ||||
Ei | 0.91025 | 0.95134 | 0.98210 | 0.91008 |
di | 0.08975 | 0.04866 | 0.01790 | 0.08992 |
0.364 | 0.198 | 0.073 | 0.365 | |
Specialist milk | ||||
Ei | 0.92367 | 0.96930 | 0.98087 | 0.98603 |
di | 0.07633 | 0.03070 | 0.01913 | 0.01397 |
0.545 | 0.219 | 0.136 | 0.100 | |
Specialist cattle | ||||
Ei | 0.89544 | 0.95162 | 0.97204 | 0.97112 |
di | 0.10456 | 0.04838 | 0.02796 | 0.02888 |
0.498 | 0.231 | 0.133 | 0.138 |
Farming Types | Specialist Cereals, Oilseeds and Protein Crops | Specialist Milk | Specialist Cattle | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Countries | Share of LPCQ in the GFI | Share of B in the GFI | Share of M in the GFI | Share of BL in the GFI | Share of LPCQ in the GFI | Share of B in the GFI | Share of M in the GFI | Share of BL in the GFI | Share of LPCQ in the GFI | Share of B in the GFI | Share of M in the GFI | Share of BL in the GFI |
Bulgaria | 0.0100 | 0.0032 | 0.0054 | 0.0204 | 0.0084 | 0.0032 | 0.0052 | 0.0417 | 0.0015 | 0.0000 | 0.0501 | 0.0366 |
Czechia | 0.0211 | 0.0272 | 0.0146 | 0.0582 | 0.0167 | 0.0405 | 0.0209 | 0.0096 | 0.0154 | 0.0300 | 0.0319 | 0.0156 |
Denmark | 0.2120 | 0.0839 | 0.0254 | 0.0324 | 0.1935 | 0.0546 | 0.0294 | 0.0173 | 0.1980 | 0.0718 | 0.0335 | 0.0103 |
Germany | 0.0990 | 0.0168 | 0.0165 | 0.0594 | 0.1157 | 0.0276 | 0.0400 | 0.0226 | 0.0688 | 0.0281 | 0.0362 | 0.0057 |
Spain | 0.1080 | 0.0134 | 0.0051 | 0.0162 | 0.0705 | 0.0154 | 0.0003 | 0.0727 | 0.0432 | 0.0156 | 0.0078 | 0.0638 |
Estonia | 0.0203 | 0.0225 | 0.0350 | 0.0105 | 0.0207 | 0.0561 | 0.0329 | 0.0172 | 0.0148 | 0.0217 | 0.0544 | 0.0308 |
France | 0.0156 | 0.0073 | 0.0153 | 0.2455 | 0.0108 | 0.0344 | 0.0381 | 0.0495 | 0.0072 | 0.0213 | 0.0349 | 0.0744 |
Croatia | 0.0441 | 0.0324 | 0.0308 | 0.0418 | 0.0633 | 0.0704 | 0.0795 | 0.0242 | 0.0270 | 0.0584 | 0.0539 | 0.0186 |
Hungary | 0.0261 | 0.0168 | 0.0177 | 0.0426 | 0.0167 | 0.0243 | 0.0152 | 0.0252 | 0.0133 | 0.0270 | 0.0269 | 0.0323 |
Italy | 0.2982 | 0.0278 | 0.0049 | 0.0034 | 0.0999 | 0.0113 | 0.0035 | 0.0290 | 0.0513 | 0.0198 | 0.0121 | 0.0178 |
Lithuania | 0.0209 | 0.0104 | 0.0226 | 0.0378 | 0.0367 | 0.0055 | 0.0861 | 0.0169 | 0.0153 | 0.0029 | 0.0615 | 0.0196 |
Latvia | 0.0247 | 0.0192 | 0.0239 | 0.0399 | 0.0335 | 0.0173 | 0.0266 | 0.0154 | 0.0167 | 0.0131 | 0.0299 | 0.0279 |
Austria | 0.0224 | 0.0852 | 0.0330 | 0.0043 | 0.0595 | 0.1807 | 0.0963 | 0.0069 | 0.0528 | 0.1293 | 0.0705 | 0.0024 |
Poland | 0.1265 | 0.0789 | 0.0354 | 0.0341 | 0.1327 | 0.0709 | 0.0822 | 0.0326 | 0.0900 | 0.0872 | 0.0765 | 0.0192 |
Portugal | 0.0457 | 0.0107 | 0.0085 | 0.1811 | 0.0458 | 0.0063 | 0.0390 | 0.0510 | 0.0224 | 0.0067 | 0.0180 | 0.0306 |
Romania | 0.0153 | 0.0250 | 0.0142 | 0.0110 | 0.0263 | 0.0680 | 0.0101 | 0.0074 | 0.0105 | 0.0628 | 0.0136 | 0.0117 |
Finland | 0.1408 | 0.0475 | 0.0369 | 0.0023 | 0.0811 | 0.0713 | 0.0673 | 0.0086 | 0.0300 | 0.0529 | 0.0394 | 0.0000 |
Sweden | 0.2264 | 0.0586 | 0.0463 | 0.0137 | 0.0724 | 0.0787 | 0.0690 | 0.0295 | 0.0938 | 0.0642 | 0.1157 | 0.0150 |
Slovakia | 0.0097 | 0.0353 | 0.0124 | 0.0915 | 0.0082 | 0.0480 | 0.0100 | 0.0022 | 0.0015 | 0.0453 | 0.0168 | 0.0082 |
Slovenia | 0.1214 | 0.1112 | 0.0403 | 0.0366 | 0.1907 | 0.1522 | 0.1077 | 0.0317 | 0.1240 | 0.1486 | 0.1042 | 0.0122 |
United Kingdom | 0.3052 | 0.0170 | 0.0241 | 0.1620 | 0.2478 | 0.0088 | 0.0336 | 0.0690 | 0.2211 | 0.0164 | 0.0469 | 0.0502 |
Member State | Average Performance | High-Input Farms (% of Area) | Air Pollution, kg/ha |
---|---|---|---|
Austria | 0.275 | 25.823 | 43.92 |
Bulgaria | 0.050 | 5.400 | 16.64 |
Croatia | 0.199 | 30.225 | 33.31 |
Czech Republic | 0.111 | 21.431 | 19.36 |
Denmark | 0.495 | 57.992 | 53.26 |
Estonia | 0.108 | 4.108 | 17.76 |
Finland | 0.168 | 31.954 | 25.86 |
France | 0.201 | 44.031 | 22.85 |
Germany | 0.195 | 62.092 | 60.03 |
Hungary | 0.076 | 13.200 | 29.37 |
Italy | 0.273 | 26.569 | 45.92 |
Latvia | 0.068 | 5.646 | 14.41 |
Lithuania | 0.116 | 4.600 | 19.67 |
Poland | 0.265 | 23.723 | 33.71 |
Portugal | 0.091 | 12.177 | 19.87 |
Romania | 0.088 | 7.170 | 17.70 |
Slovakia | 0.106 | 4.685 | 20.68 |
Slovenia | 0.406 | 31.808 | 52.62 |
Spain | 0.183 | 14.600 | 31.59 |
Sweden | 0.256 | 35.031 | 32.15 |
United Kingdom | 0.473 | 33.238 | 24.05 |
Average Performance | High-Input Farms | Air Pollution | |
---|---|---|---|
Average performance | 1 | ||
High-input farms | 0.679 | 1 | |
Air pollution | 0.651 | 0.75 | 1 |
Variable | Description | Source |
---|---|---|
lag_crop lag_milk lag_cattle | The lagged score rendered by the VIKOR method (specific to each farming type) | Own calculation |
cropShare | The ratio of the crop output to the total output (specific to each farming type) | FADN |
AWUha | The ratio of labor input to land area (specific to each farming type) | FADN |
LUha | The ratio of LU to land area (specific to each farming type) | FADN |
lAsset | The ratio of liabilities top assets (specific to each farming type) | FADN |
pay | Direct payments per land area unit (for crop farms) or per LU (for milk and cattle farms) | FADN |
ESU | Economic farm size in Euro (specific to each farming type) | FADN |
HDD | Heating degree days | Eurostat |
interest | The ratio of interest paid to liabilities (specific to each farming type) | FADN |
landP | Land price derived as the ratio of the rent paid to the rented land area (specific to each farming type) | FADN |
laborP | Labor price derived as the ratio of the wages paid to the paid labor input (specific to each farming type) | FADN |
PR | Price recovery ratio derived by dividing output price indices (crop or livestock) by input price index | Eurostat |
Variable | Crop | Milk | Cattle | |||
---|---|---|---|---|---|---|
Coefficient | Sig. | Coefficient | Sig. | Coefficient | Sig. | |
lag_crop | 0.262692 | ** | 0.180956 | *** | 0.145714 | ** |
lag_milk | −0.27516 | . | −0.36626 | *** | ||
lag_cattle | 0.158771 | 0.202933 | *** | 0.603742 | *** | |
cropShare | 0.405328 | . | 0.145009 | . | ||
AWUha | 4.140393 | . | 0.456514 | |||
LUha | 1.931309 | ** | ||||
lAsset | −0.29106 | . | −0.46544 | *** | −0.44095 | *** |
log(pay) | −0.183352 | ** | −0.05683 | * | ||
log(ESU) | −0.05349 | |||||
log(HDD) | 2.094569 | * | ||||
log(HDD)^2 | −0.13444 | * | ||||
interest | −0.48056 | * | ||||
log(landP) | 0.04877 | 0.044971 | * | |||
log(laborP) | −0.07798 | |||||
PR | ||||||
R-Squared | 0.28706 | 0.34735 | 0.39904 | |||
Adj. R-Squared | 0.10882 | 0.18925 | 0.26712 | |||
F-test (p-value) | 2.61 × 10−08 | 1.43 × 10−11 | 4.22 × 10−16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkov, A.; Morkunas, M.; Balezentis, T.; Šapolaitė, V. Economic and Environmental Performance of the Agricultural Sectors of the Selected EU Countries. Sustainability 2020, 12, 1210. https://doi.org/10.3390/su12031210
Volkov A, Morkunas M, Balezentis T, Šapolaitė V. Economic and Environmental Performance of the Agricultural Sectors of the Selected EU Countries. Sustainability. 2020; 12(3):1210. https://doi.org/10.3390/su12031210
Chicago/Turabian StyleVolkov, Artiom, Mangirdas Morkunas, Tomas Balezentis, and Vaida Šapolaitė. 2020. "Economic and Environmental Performance of the Agricultural Sectors of the Selected EU Countries" Sustainability 12, no. 3: 1210. https://doi.org/10.3390/su12031210
APA StyleVolkov, A., Morkunas, M., Balezentis, T., & Šapolaitė, V. (2020). Economic and Environmental Performance of the Agricultural Sectors of the Selected EU Countries. Sustainability, 12(3), 1210. https://doi.org/10.3390/su12031210