In Situ Observations on the Crack Morphology in the Ancient Timber Beams
Abstract
:1. Introduction
2. A Complex Problem: The Variables
3. Materials and Methods
4. Results and Discussion
4.1. Rupture Cases of Brittle/Quasi-Brittle Type
4.2. Fatigue Phenomena
4.3. Rupture Cases of Pseudo-Ductile Type
4.4. Effect of Cracking Morphology on the MOR and MOE Values
4.5. Interpretative Hypotheses from the Crack Morphology and the Test Results Comparison
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tampone, G. Atlas of the Timber Structures Failures; Nardini Editore: Firenze, Italy, 2016. [Google Scholar]
- Attar-Hassan, G. The effect of Ageing on the Mechanical Properties of Eastern White Pine. Bull. Assoc. Preserv. Technol. 1976, 8, 64–73. [Google Scholar] [CrossRef]
- Ceccotti, A.; Togni, M. NDT on Large Ancient Timber Beams: Assessment of the Strength/Stiffness Properties Combining Visual and Instrumental Methods. In Proceedings of the 10th International Symposium on Non-destructive testing on Wood, Lausanne, Switzerland, 26–28 August 1996; Presses Polytechniques et Universitaires Romandes: Lausanne, Switzerland, 1996. [Google Scholar]
- Branco, J.; Cruz, P.; Dias, S. Old Timber Beams Diagnosis and reinforcement. In Proceedings of the Conservation of Historic Timber Structures, Firenze, Italy, 22–27 February 2005; pp. 417–422. [Google Scholar]
- Faggiano, B.; Grippa, M.R.; Marzo, A.; Mazzolani, F.M. Structural Grading of Old Chestnut Elements by Bending and Compression Tests. In Proceedings of the World Conference on Timber Structures, Riva del Garda, Italy, 20–24 June 2010; p. 758. [Google Scholar]
- Faggiano, B.; Grippa, M.R. Mechanical Characterization of Old Chestnut Clear Wood by Non-Destructive and Destructive Tests. In Proceedings of the World Conference on Timber Engineering, Auckland, New Zealand, 16–19 July 2012; Volume III, pp. 359–364. [Google Scholar]
- Faggiano, B.; Grippa, M.R.; Calderoni, B. Non-Destructive Tests and Bending Tests on Chestnut Structural Timber. Adv. Mater. Res. 2013, 778, 167–174. [Google Scholar] [CrossRef]
- Branco, J.M.; Peixoto, T.P.; Lourenço, P.B.; Medeiros, P. Mechanical characterization of old chestnut beams. In Proceedings of the SHATIS’11 International Conference on Structural Health Assessment of Timber Structures, Lisbon, Portugal, 16–17 June 2011. [Google Scholar]
- Cavalli, A.; Togni, M. The Influence of Routed Grooves on the Bending Behavior of Old Timber Beams. Adv. Mater. Res. 2013, 778, 393–401. [Google Scholar]
- Witomski, P.; Krajewski, A.; Kozakiewicz, P. Selected mechanical properties of Scots pine wood from antique churches of Central Poland. Eur. J. Wood Prod. 2014, 72, 293–296. [Google Scholar] [CrossRef] [Green Version]
- Machado Saporiti, J.; Feio, A. Prediction of bending performance of old timber beams by combining Information from Different Methods. In Proceedings of the SHATIS, Wroclaw, Poland; 2015; pp. 513–522. [Google Scholar]
- Cavalli, A.; Cibecchini, D.; Togni, M.; Sousa, H. A Review on the Mechanical Properties of Aged Wood and Salvaged Timber. Constr. Build. Mater. 2016. [CrossRef] [Green Version]
- Kuipers, J. Effect of Age and/or Load on Timber Strength, International Council for Building Research Studies and Documentation; Working Commission W18–Timber Structure: Florence, Italy, 1986. [Google Scholar]
- Yokoyama, M.; Gril, J.; Matsuo, M.; Yano, H.; Sugiyama, J.; Clair, B.; Kubodera, S.; Mistutani, T.; Sakamoto, M.; Ozaki, H.; et al. Mechanical characteristics of aged Hinoki wood from Japanese historical buildings. Comptes Rendus Phys. 2009, 10, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Rug, W.; Seemann, A. Strength of old timber. Build. Res. Inf. 1991, 19, 31–37. [Google Scholar] [CrossRef]
- Erhardt, D.; Mecklenburg, M.F.; Tumosa, C.S.; Olstad, T.M. New versus old wood: Differences and similarities in physical, mechanical, and chemical properties. In Proceedings of the International Council of Museums Committee for Conservation: 11th Triennial Meeting, London, UK, 1–6 September 1996; pp. 903–910. [Google Scholar]
- Hirashima, Y.; Sugihara, M.; Sasaki, Y.; Kosei, A.; Yamasaki, M. Strength properties of aged wood III: Static and impact bending strength properties of aged keyaki and akamatsu woods. Mokuzai Gakkaishi 2005, 51, 146–152. [Google Scholar] [CrossRef]
- Sousa, H.S.; Branco, J.M.; Lourenço, P.B. Characterization of cross-sections from old chestnut beams weakened by decay. Int. J. Archit. Herit. 2014, 8, 436–451. [Google Scholar] [CrossRef] [Green Version]
- Piazza, M.; Tomasi, R.; Modena, R. Le Strutture in Legno; Hoepli: Milano, Italy, 2005. [Google Scholar]
- Ceccotti, A. Structural Evaluation of the Old Timber Structures in Proceedings of Conservation of Historic Timber Structures; Tampone ed.: Firenze, Italy, 2005; pp. 391–396. [Google Scholar]
- Galassi, S.; Dipasquale, L.; Ruggieri, N.; Tempesta, G. Andalusian timber roof structure in Chefchaouen, Northern Morocco: Construction technique and structural behavior. ASCE J. Archit. Eng. 2018. [Google Scholar] [CrossRef]
- Galassi, S.; Dipasquale, L.; Ruggieri, N.; Tempesta, G. Assessment of the Moroccan vernacular timber roof: A proposal for an eco-friendly strengthening system. J. Archit. Conserv. 2018, 1–25. [Google Scholar] [CrossRef]
- Nwokoye, D.N. An Investigation into an Ultimate Beam Theory for Rectangular Timber Beams–Solid and Laminated; Timber Research and Development Association (TRADA): High Wycombe, UK, 1972. [Google Scholar]
- Zakic, B.D. Inelastic bending of wood beams. J. Struct. Div. 1973, 99, 2079–2095. [Google Scholar]
- Bazan, I.M.M.; Malhotra, S.K. Ultimate Bending Strength of Timber Beams. Wood Sci. 1980, 13, 50–63. [Google Scholar]
- Bodig, J.; Jayne, B.A. Mechanics of Wood and Wood Composites; Van Nostrand Reinhold: New York, NY, USA, 1982. [Google Scholar]
- Giordano, G. Tecnica Delle Costruzioni in Legno; Hoepli: Milano, Italy, 1999. [Google Scholar]
- UNI 11119. Beni Culturali-Manufatti Lignei-Strutture Portanti Degli Edifici-Ispezione in Situ per la Diagnosi Degli Elementi in Opera; Ente Nazionale di Normazione: Milano, Italy, 2004. [Google Scholar]
- Pauley, K.E.; Pauley, C.M. San Fernando, Rey de España: An Illustrated History; Arthur H. Clark Co.: Spokane, WA, USA, 2005. [Google Scholar]
- Stover, C.W.; Coffman, J.L. Seismicity of the United States, 1568–1989; Government Printing Office: Washington, DC, USA, 1993. [Google Scholar]
- Parisi, M.A.; Piazza, M. Traditional timber joints in seismic areas: Cyclic behaviour, numerical modelling, normative requirements. Eur. Earthq. Eng. 2002, 1, 40–49. [Google Scholar]
- Branco, J.; Cruz, P.; Piazza, M. Original and Strengthened Traditional Timber Connections, Protection of Historical Buildings, PROHITECH 09; Piazza, M., Ed.; Taylor & Francis Group: London, UK, 2009; pp. 267–272. [Google Scholar]
- Ruggieri, N.; Galassi, S.; Tempesta, G. Pompeii’s Stabian Baths. Mechanical behavior assessment of selected masonry structures during the 1st century seismic events. Int. J. Archit. Herit. 2018, 12, 859–878. [Google Scholar] [CrossRef]
- Galassi, S.; Ruggieri, N.; Tempesta, G. A novel numerical tool for seismic vulnerability analysis of ruins in archaeological sites. Int. J. Archit. Herit. 2018. [Google Scholar] [CrossRef]
- Galassi, S.; Ruggieri, N.; Tempesta, G. Ruins and archaeological artifacts: Vulnerabilities analysis for their conservation through the original computer program BrickWORK. In Structural Analysis of Historical Constructions, Proceedings of the 11th International Conference on Structural Analysis of Historical Constructions (SAHC2018), 11–13 September 2018; Cusco, P., Aguilar, R., Torrealva, D., Moreira, S., Pando, M., Ramos, L.F., Eds.; RILEM bookseries 18; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 1839–1848. [Google Scholar] [CrossRef]
- Ragil, W.; Yokoyama, M.; Kubodera, S.; Mitsutani, T.; Sakamoto, M.; Ozaki, H.; Imamura, M.; Kawai, S. Evaluation of aged wood from historical Japanese buildingsⅡ–Changes in Chemical component. In Proceedings of the 57th Annual Meeting of the Japanese Wood Research Society, Hiroshima, Japan, 8–10 August 2007. [Google Scholar]
- Kranitz, K. Effect of Natural Aging on Wood. Ph.D. Thesis, University of West Hungary, Sopron, Hungary, 2014. [Google Scholar]
- Lum, C.; Foschi, R.O. Arbitrary V-notches in orthotropic plates. J. Eng. Mech. 1988, 114, 638–655. [Google Scholar] [CrossRef]
- Kollmann and Coté. Principles of Wood Science and Technology, I Solid Wood; Springer Inc.: New York, NY, USA, 1968. [Google Scholar]
- Vasic, S.; Smith, I. Bridging crack model for fracture of spruce. Eng. Fract. Mech. 2002, 69, 745–760. [Google Scholar] [CrossRef]
- Tampone, G. Istanze culturali e ideologiche di conservazione delle testimonianze materiali. Boll. Ing. 2010, 1, 13–21. [Google Scholar]
- Ruggieri, N. Identità Della Struttura del Monumento. Temi per un Dibattito/Identity of the Monument’s Structure. Themes for a Debate, in Territorio, n.85, Aprile-Giugno; Franco Angeli: Milano, Italy, 2018; pp. 148–153. [Google Scholar] [CrossRef]
- Icomos Charter, Principles for the Analysis, Conservation and Structural Restoration of Architectural Heritage . In Proceedings of the ICOMOS 14th General Assembly in Victoria Falls, Victoria Falls, Zimbabwe, 27–31 October 2003.
Wood Specie | Age | Specimen Number | Visual Grade | MOR (MPa) | MOE (GPa) | Rupture | Experimental Test Authors |
---|---|---|---|---|---|---|---|
Pinus strobus L. | 141 years old | 1 | Internal anomalies | 2.28 | 4.80 | Brittle | Attar-Hassan, 1976 |
Abies alba Mill. | 15th C | 3 | Ring shake, checks | 27.16 (mean) | 10.03 (mean) | Brittle | Ceccotti et Togni, 1996 |
Abies alba Mill. | 15th C | 3 | checks | 35.5 (mean) | 12.62 (mean) | Pseudo-ductile | Ceccotti et Togni, 1996 |
Abies alba Mill. | 15th C | 3 | knots | 38.06 (mean) | 10.91 (mean) | Quasi-brittle | Ceccotti et Togni, 1996 |
Eucalyptus globulus Labill | 1914 | 2 | Shrinkage checks | 83.4 (mean) | 19.65 (mean) | Brittle | Branco et al., 2005 |
Eucalyptus globulus Labill. | 1914 | 1 | Slope grain | 47.2 | 17.4 | Brittle | Branco et al., 2005 |
Eucalyptus globulus Labill. | 1914 | 1 | Clean wood | 98.5 | 16.5 | Quasi-brittle | Branco et al., 2005 |
Castanea sativa Mill. | 19th C | 9 | Knot; not squared member | 40.44 (mean) | 12.37 (mean) | Quasi-brittle | Faggiano et al., 2010 |
Castanea sativa Mill. | 19th C | 1 | not squared member | 46.91 | 15.33 | Pseudo-ductile | Faggiano et al., 2010 |
Castanea sativa Mill. | Not specified | 1 | not squared member; III class | 10.98 | Branco et al., 2011 | ||
Castanea sativa Mill. | Not specified | 5 | not squared member; II class | 9.47 (mean) | Branco et al., 2011 | ||
Castanea sativa Mill. | Not specified | 1 | not squared member; I class | 7.53 | Branco et al., 2011 | ||
Abies alba Mill. | Not specified | 3 | Grooves; slope grain | 3.7 (mean) | Cavalli et Togni, 2013 | ||
Abies alba Mill. | Not specified | 3 | Grooves; knots | 7 (mean) | Cavalli et Togni, 2013 | ||
Abies alba Mill. | Not specified | 3 | Grooves; shrinkage checks | 3.8 (mean) | Cavalli et Togni, 2013 |
MainPredisposing Factor | Crack Pattern | Fracture Edges | Rupture Typology | Schema |
---|---|---|---|---|
Deviated Grain | Splitting and progressive divarication among the fibres | Sharp | Brittle | |
Knot | Circumferential to the knot shape | Moderately jagged/fibrous | Quasi-brittle/Pseudo-ductile * | |
Shrinkage Check | Divarication | Sharp/fibrous | Brittle/Pseudo-ductile * | |
Hole | Perpendicular to the longitudinal beam axis | Fibrous | Brittle | |
Internal anomalies | Crack perpendicular to the tree axis; Fibers divarication | Sharp | Brittle | |
Fibres Continuity (not squared beam) | Local crushing and fibres separation; corrugation | Sharp | Pseudo-ductile | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggieri, N. In Situ Observations on the Crack Morphology in the Ancient Timber Beams. Sustainability 2021, 13, 439. https://doi.org/10.3390/su13010439
Ruggieri N. In Situ Observations on the Crack Morphology in the Ancient Timber Beams. Sustainability. 2021; 13(1):439. https://doi.org/10.3390/su13010439
Chicago/Turabian StyleRuggieri, Nicola. 2021. "In Situ Observations on the Crack Morphology in the Ancient Timber Beams" Sustainability 13, no. 1: 439. https://doi.org/10.3390/su13010439
APA StyleRuggieri, N. (2021). In Situ Observations on the Crack Morphology in the Ancient Timber Beams. Sustainability, 13(1), 439. https://doi.org/10.3390/su13010439