Soil and Water Management Practices as a Strategy to Cope with Climate Change Effects in Smallholder Potato Production in the Eastern Highlands of Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Areas
2.2. Source of Data and Sampling Design
2.3. Method of Data Collection
2.4. Survey Data Analysis
2.5. Climate Data Analysis
2.5.1. Analyzing Rainfall and Temperature Trends
2.5.2. Rainfall Variability
3. Results and Discussion
3.1. Commonly Grown Potato Cultivars
3.2. Maintaining Soil Fertility
3.3. Fertilizer Management Practices
3.3.1. Amount of NPS and Urea Applied
3.3.2. Timing and Methods of Applying Urea and NPS Fertilizers
3.3.3. Management Practices of Farmyard Manure (FYM)
3.3.4. Constraints in the Use of Urea and NPS
3.3.5. Constraints in the Use of FYM
3.4. Irrigation Water Management Practices
3.4.1. Source of Irrigation Water and Methods of Irrigation
3.4.2. Supplemental Irrigation
3.4.3. Time of Irrigation, Irrigating Interval, and Irrigation Depth
3.4.4. Constraints in the Use of Irrigation Water
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mulatu, E.; Ibrahim, O.E.; Bekele, E. Policy Changes to Improve Vegetable Production and Seed Supply in Hararghe, Eastern Ethiopia. Veg. Sci. 2005, 11, 81–106. [Google Scholar] [CrossRef]
- Gelmesa, D. Promoting Drought and Heat Resilient Potato Genotypes in Eastern Ethiopia; Drylands Coordination Group (DGC): Addis Ababa, Ethiopia, 2018; pp. 1–77. [Google Scholar]
- Tadesse, Y.; Almekinders, C.; Schulte, R.P.O.; Struik, P.C. Potatoes and Livelihoods in Chencha, Southern, Ethiopia. Wagening. J. Life Sci. 2019, 88, 105–111. [Google Scholar] [CrossRef]
- Wassihun, A.N.; Koye, T.D.; Koye, A.D. Analysis of Technical Efficiency of Potato (Solanum tuberosum L.) Production in Chilga District, Amhara National Regional State, Ethiopia. J. Econ. Struct. 2019, 8, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Ketema, K.; Ayele, S.; Teha, A.; Nur, J. Linking Agricultural Research Center with Seed Producer Cooperatives Farmers for Solving Seed Value Chain Bottlenecks. Int. J. Agric. Agribus. 2019, 6, 56–63. [Google Scholar]
- CSA (Central Statistical Agency of Ethiopia). Report on Area and Production of Major Crops; CSA: Addis Ababa, Ethiopia, 2019; pp. 1–54. [Google Scholar]
- Koch, M.; Naumann, M.; Pawelzik, E.; Gransee, A.; Thiel, H. The Importance of Nutrient Management for Potato (Solanum tuberosum L.) Production part I: Plant Nutrition and Yield. Potato Res. 2019, 63, 97–119. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Mohammed, M.; Dechasa, N.; Abduselam, F. Effects of Integrated Nutrient Management on Potato (Solanum tuberosum L.) Growth, Yield and Yield Components at Haramaya Watershed, Eastern Ethiopia. Open Access Libr. J. 2018, 5, 1–20. [Google Scholar] [CrossRef]
- Yebo, B. Integrated Soil Fertility Management for Better Crop Production in Ethiopia. Int. J. Soil Sci. 2015, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gebremedhin, Y.; Berhe, A.A. Impact of Climate Change on Potato Yield (Solanum tuberosum L.) at Mekelle Areas, in Northern Ethiopia. World J. Agric. Sci. 2015, 11, 62–69. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Summary for policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, P., Zhai, H.O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., et al., Eds.; IPCC: Cambridge, UK; New York, NY, USA, 2018; pp. 1–24. [Google Scholar]
- Raymundo, R.; Asseng, S.; Robertson, R.; Petsakos, A.; Hoogenboom, G.; Quiroz, R.; Hareau, G.; Wolf, J. Climate Change Impact on Global Potato Production. Eur. J. Agron. 2018, 100, 87–98. [Google Scholar] [CrossRef]
- Ahmed, S.M. Impacts of Drought, Food Security Policy and Climate Change on Performance of Irrigation Schemes in Sub-saharan Africa: The case of Sudan. Agric. Water Manag. 2020, 232, 1–9. [Google Scholar] [CrossRef]
- Gonzalez-Orrozco, C.E.; Porcel, M.; Alzate, D.F.; Orduz-Rodriguez, J.O. Extreme Climate Variability Weakens a Major Tropical Agricultural Hub. Ecol. Indic. 2020, 111, 1–9. [Google Scholar] [CrossRef]
- IGAD (Intergovernmental Autority for Development). Report on Historical Climate Baseline Statistics for East and West Hararghe Zones. Clim. Pred. Appl. 2017, 2, 1–48. [Google Scholar]
- Alvarenga, P.; Carneiro, J.P.; Fangueiro, D.; Cordovil, C.M.D.S.; Bernal, M.P. Managing Organic Amendments in Agroecosystems to Enhance Soil Carbon Storage and Mitigate Climate Change, 2nd ed.; Elsevier: Murcia, Spain, 2020; pp. 89–141. [Google Scholar] [CrossRef]
- Ofiti, N.O.E.; Zosso, C.U.; Soong, J.L.; Solly, E.F.; Torn, M.S.; Wiesenberg, G.L.B.; Schmidt, M.W.I. Warming Promotes Loss of Subsoil Carbon through Accelerated Degradation of Plant-Derived Organic Matter. Soil Biol. Biochem. 2021, 156, 1–10. [Google Scholar] [CrossRef]
- Whalen, J.K. Managing Soil Biota-Mediated Decomposition and Nutrient Mineralization in Sustainable Agroecosystems. Adv. Agric. 2014, 13, 1–13. [Google Scholar] [CrossRef]
- Butcher, K.R.; Nasto, M.K.; Norton, J.M.; Stark, J.M. Physical Mechanisms for Soil Moisture Effects on Microbial Carbon-Use Efficiency in a Sandy Loam Soil in the Western United States. Soil Biol. Biochem. 2020, 150, 2–10. [Google Scholar] [CrossRef]
- Dechassa, N.; Schenk, M.K.; Claassen, N.; Steingrobe, B. Phosphorus Efficiency of Cabbage (Brassica oleraceae L. vat. capitata), Carrot (Daucus carota L.), and Potato (Solanum tuberosum L.). Plant Soil 2003, 250, 215–224. [Google Scholar] [CrossRef]
- Joshi, M.; Fogelman, E.; Belausov, E.; Ginzberg, I. Potato (Solanum tuberosum L.) Root System Development and Factors that Determine its Architecture. J. Plant Physiol. 2016, 205, 113–123. [Google Scholar] [CrossRef]
- Dechassa, N.; Ketema, N.; Deressa, H.; Kinati, W.; Amanu, T.; Birru, O.; Tegene, S.; Ayele, S. Participatory Rural Appraisal Report: Haramaya Woreda, Eastern Oromia Region; CASCAPE: Haramaya, Ethiopia, 2014. [Google Scholar]
- Tekeste, N.; Dechassa, N.; Kebede, W.; Lemma, D.; Abuhay, T. Characterization of Soil Nutrient Management and Post-Harvest Handling Practices for Onion (Allium cepa L.) Production in the Central Rift Valley Region of Ethiopia. Agric. For. Fish. 2013, 2, 184–195. [Google Scholar] [CrossRef] [Green Version]
- Keraita, B.; Cofie, O. Irrigation and Soil Fertility Management Practices; Accra: Kumasi, Ghana, 2010; pp. 74–88. [Google Scholar]
- Wawire, A.W.; Csorba, A.; Toth, J.A.; Micheli, E.; Szalai, M.; Mutuma, E.; Kovacs, E. Soil Fertility Management Among Smallholder Farmers in Mount Kenya East Region. Heliyon 2021, 7, 2–11. [Google Scholar] [CrossRef]
- Yohannes, D.F.; Ritsema, C.J.; Solomon, H.; Froebrich, J.; Van Dam, J.C. Irrigation Water Management: Farmers’ Practices, Perceptions, and Adaptations at Gumselassa Irrigation Scheme, North Ethiopia. Agric. Water Manag. 2017, 191, 16–28. [Google Scholar] [CrossRef]
- Etissa, E.; Dechassa, N.; Alamirew, T.; Alemayehu, Y.; Desalegne, L. Irrigation Water Management Practices in Smallholder Vegetable Crops Production: The case of the Central Rift Valley of Ethiopia. Sci. Technol. Arts Res. J. 2014, 3, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Mfitumukiza, D.; Barasa, B.; Kiggundu, N.; Nyarwaya, A.; Muzei, J.P. Smallholder Farmers’ Perceived Evaluation of Agricultural Drought Adaptation Technologies Used in Uganda: Constraints and opportunities. J. Arid Environ. 2020, 177, 104–137. [Google Scholar] [CrossRef]
- Talanow, K.; Topp, E.N.; Loss, J.; Martin-Lopez, B. Farmers’ Perceptions of Climate Change and adaptation Strategies in South Africa’s Western Cape. J. Rural Stud. 2020, 81, 203–219. [Google Scholar] [CrossRef]
- Kibret, K. Characterization of Agricultural Soils in CASCAPE Intervention Woredas in Eastern Region of Ethiopia. Final Report. 2014, pp. 1–263. Available online: https://edepot.wur.nl/481240 (accessed on 20 May 2021).
- Yamane, T. Statistics: An Introduction Analysis; Harper and Row: New York, NY, USA, 1967. [Google Scholar]
- Cochran, W. Sampling Techniques; Harvard University: Cambridge, MA, USA, 1977. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment; Cambridge University: Cambridge, UK, 1999; pp. 1–878. [Google Scholar]
- Gebru, H.; Mohammed, A.; Dechassa, N.; Belew, D. Assessment of Production Practices of Smallholder Potato (Solanum tuberosum L.) Farmers in Wolaita Zone, Southern Ethiopia. Agric. Food Secur. 2017, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Partal, T.; Kahya, E. Trend Analysis in Turkish Precipitation Data. Hydrol. Process. 2006, 20, 2011–2026. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Koudahe, K.; Kayode, A.J.; Samson, A.O.; Adebola, A.A.; Djaman, K. Trend Analysis in Standardized Precipitation Index and Standardized Anomaly Index in the Context of Climate Change in Southern Togo. Atmos. Clim. Sci. 2017, 7, 401. [Google Scholar] [CrossRef] [Green Version]
- De Luís, M.; Raventós, J.; González-Hidalgo, J.C.; Sánchez, J.R.; Cortina, J. Spatial Analysis of Rainfall Trends in the Region of valencia (East Spain). Climatology 2000, 20, 1451–1469. [Google Scholar] [CrossRef]
- Oliver, J.E. Monthly Precipitation Distribution: A comparative index. Prof. Geogr. 1980, 32, 300–309. [Google Scholar] [CrossRef]
- Hare, W. Assessment of Knowledge on Impacts of Climate Change, Contribution to the Specification of Art, 2 of the UNFCCC; WBGU: Berlin, Germany, 2003; pp. 1–104. [Google Scholar]
- Tessema, L.; Mohammed, W.; Abebe, T. Evaluation of Potato (Solanum tuberosum L.) Varieties for Yield and Some Agronomic Traits. Open Agric. 2020, 5, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, W. Genetic Variability in Potato (Solanum tuberosum L.) Genotypes for Late blight [Phytophthora infestans]. East Afr. J. Sci. 2014, 8, 13–28. [Google Scholar]
- Dechassa, N.; Ketema, N.; Deressa, H.; Kinati, W.; Amanu, T.; Birru, O.; Tegene, S.; Ayele, S. Participatory Rural Appraisal Report: Kombolcha Woreda, Eastern Oromia Region; CASCAPE: Kombolcha, Ethiopia, 2014. [Google Scholar]
- Eastern Harargeh Agricultural Office. Management Practices of Crops in the Eastern Highlands of Ethiopia; Eastern Harargeh Agricultural Office: Harar, Ethiopia, 2019; pp. 1–59. [Google Scholar]
- Emana, B.; Nigussie, M. Potato Value Chain Analysis and Development in Ethiopia Case of Tigray and SNNP Regions; CIP-Ethiopia: Addis Ababa, Ethiopia, 2011; pp. 1–71. [Google Scholar]
- Souza, E.F.C.; Soratto, R.P.; Sandaña, P.; Venterea, R.T.; Rosen, C.J. Split Application of Stabilized Ammonium Nitrate Improved Potato (Solanum tuberosum L.) Yield and Nitrogen-Use Efficiency with Reduced Application Rate in Tropical Sandy soils. Field Crops Res. 2020, 254, 1–13. [Google Scholar] [CrossRef]
- Rosen, C.J.; Kelling, K.A.; Stark, J.C.; Porter, G.A. Optimizing Phosphorus Fertilizer Management in Potato (Solanum tuberosum L.) Production. Potato Res. 2014, 91, 145–160. [Google Scholar] [CrossRef]
- Meena, B.P. Sustainability of Popcorn-Potato Cropping System Improves due to Organic Manure Application and its Effect on Soil Health. Potato Res. 2019, 62, 253–279. [Google Scholar] [CrossRef]
- Gildemacher, P.R.; Kaguongo, W.; Ortiz, O.; Tesfaye, A.; Woldegiorgis, G.; Wagoire, W.W.; Kakuhenzire, R.; Kinyae, P.M.; Nyongesa, M.; Struik, P.C.; et al. Improving Potato (Solanum tuberosum L.) Production in Kenya, Uganda and Ethiopia: A system diagnosis. Potato Res. 2009, 52, 173–205. [Google Scholar] [CrossRef]
- Asresie, H.; Alemu, W.; Molla, T.; Mekonen, T.; Abel, A.; Seferew, D.; Yihenew, S.G.; Desallegn, M.; Tesfaye, A. Best Fit Practice Manual for Potato Production and Utilization; Tigray, Ethiopia, 2015; pp. 1–37. Available online: https://www.researchgate.net/publication/341050872_Best_Fit_Practice_Manual_for_Potato_Production_and_Utilization_in_Tigray_Region_Ethiopia (accessed on 20 May 2021).
- Shumetie, A.; Mamo, K. Effect of Cropland and Livestock Ownership on Child Labour in Eastern Ethiopia: Empirical Examination of the Wealth Paradox. Int. J. Child Care Educ. Policy 2019, 13, 1–15. [Google Scholar] [CrossRef]
- Tucho, G.T.; Nonhebel, S. Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia. Energies 2015, 8, 9565–9583. [Google Scholar] [CrossRef] [Green Version]
- Aderinoye, M.; Salami, S.T. Assessment of Organic Fertilizer Usage by Vegetable Farmers in Asa Local Government Area of Kwara State, Nigeria. Agrosearch 2017, 17, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Sable, R.S.; Kolekar, A.; Gawdel, S.; Takle, H.; Adesh, P. A review on Different Irrigation Methods. Appl. Agric. Res. 2019, 14, 49–60. [Google Scholar]
- Belaud, G.; Mateos, L.; Aliod, R.; Buisson, M.C.; Faci, E.; Gendre, S.; Ghinassi, G.; Gonzales, P.R.; Lejars, C.; Maruejols, F.; et al. Irrigation and Energy: Issues and Challenges. Irrig. Drain. 2020, 69, 177–185. [Google Scholar] [CrossRef]
Major Feature | District | |||
---|---|---|---|---|
Haramaya | Chiro | Qarsa | Kombolcha | |
Altitude (m a.s.l.) | 1400–2340 | 1500–2800 | 1550–2800 | 1200–2460 |
Total cultivated land (ha) | 24,000 | 35,840 | 21,130 | 12,604 |
Mean annual rainfall (mm) | 816 | 798 | 743 | 807 |
Mean maximum temperature (°C) | 25 | 27.9 | 24.6 | 27.8 |
Mean minimum temperature (°C) | 10.3 | 13.9 | 12.2 | 14.6 |
Number of peasant association | 33 | 40 | 35 | 19 |
Total number of households | 36,961 | 34,410 | 28,950 | 25,600 |
Total population | 314,780 | 201,705 | 231,659 | 190,544 |
Sample Districts | Sample PAs | TNHPP | Sample Size | Percent |
---|---|---|---|---|
Haramaya | Kuro Jalala | 550 | 59 | 16.55 |
Tuji Gabisa | 520 | 56 | 15.64 | |
Qarsa | Bela Langie | 450 | 48 | 13.54 |
Madda Oda | 290 | 31 | 8.72 | |
Kombolcha | Bilisuma | 480 | 52 | 14.44 |
Qerensa | 570 | 61 | 17.15 | |
Chiro | Arbarakate | 159 | 17 | 4.78 |
Funyan Dimo | 305 | 33 | 9.18 | |
Total | 3324 | 357 | 100 |
Variables | Season | ||
---|---|---|---|
Belg | Kiremt | Annual | |
Sen’s slope | Sen’s slope | Sen’s slope | |
Rainfall totals | |||
Haramaya | −2.744 ns | 2.93 ns | −0.589 ns |
Qarsa | −3.368 ns | 3.26 ns | 0 ns |
Kombolcha | −3.829 ns | −1.529 ns | −6.15 ns |
Chiro | −3.613 ns | −0.259 ns | −4.76 ns |
Tmax | |||
Haramaya | 0.025 ns | 0.22 * | 0.2 * |
Qarsa | 0.033 * | 0.036 ns | 0.028 ns |
Kombolcha | 0.061 * | 0.027 ns | 0.039 ns |
Chiro | −0.014 ns | 0.00 ns | −0.009 ns |
Tmin | |||
Haramaya | −0.008 ns | 0.018 ns | 0 ns |
Qarsa | 0.015 ns | 0.024 * | 0.023 ns |
Kombolcha | 0.025 * | 0.02 * | 0.2 * |
Chiro | 0.112 ns | 0.112 ns | 0.114 ns |
Ranking | ||||||||
---|---|---|---|---|---|---|---|---|
Constraints | 1st | 2nd | 3rd | 4th | 5th | 6th | Index | Rank |
High cost | 48 | 20 | 14 | 42 | 0 | 0 | 0.42792 | 1 |
Poor knowledge & Ext.ser. | 0 | 0 | 0 | 13 | 22 | 17 | 0.07507 | 5 |
Absence of access to credit | 14 | 12 | 12 | 10 | 6 | 12 | 0.18468 | 3 |
Limited availability on time | 13 | 17 | 14 | 10 | 5 | 3 | 0.19669 | 2 |
Inaccessibility | 0 | 9 | 14 | 5 | 13 | 12 | 0.11561 | 4 |
Total | 75 | 58 | 54 | 80 | 46 | 44 |
Ranking | ||||||||
---|---|---|---|---|---|---|---|---|
Constraints | 1st | 2nd | 3rd | 4th | 5th | 6th | Index | Rank |
Limited availability | 27 | 19 | 16 | 15 | 0 | 0 | 0.257203 | 2 |
Bulkiness for transport | 30 | 24 | 23 | 20 | 0 | 0 | 0.317639 | 1 |
Poor knowledge and Ext.Ser. | 17 | 16 | 20 | 13 | 18 | 11 | 0.244554 | 3 |
Spread weeds | 0 | 0 | 9 | 11 | 10 | 5 | 0.066058 | 5 |
Absence of own land | 0 | 0 | 14 | 29 | 10 | 0 | 0.114547 | 4 |
Total | 74 | 59 | 82 | 88 | 38 | 16 |
Ranking | ||||||||
---|---|---|---|---|---|---|---|---|
Constraints | 1st | 2nd | 3rd | 4th | 5th | 6th | Index | Rank |
Lack of drought-tolerant potato var. | 11 | 17 | 22 | 31 | 0 | 0 | 0.21503 | 3 |
High cost of fuel for water pump | 30 | 41 | 32 | 0 | 0 | 0 | 0.33225 | 1 |
Scarcity of irrigation water | 24 | 19 | 23 | 12 | 3 | 0 | 0.24158 | 2 |
Land scarcity | 10 | 8 | 15 | 7 | 6 | 2 | 0.12630 | 4 |
High cost of irrigation equipment | 0 | 0 | 12 | 21 | 9 | 2 | 0.08484 | 5 |
Total | 75 | 85 | 104 | 71 | 18 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woldeselassie, A.; Dechassa, N.; Alemayehu, Y.; Tana, T.; Bedadi, B. Soil and Water Management Practices as a Strategy to Cope with Climate Change Effects in Smallholder Potato Production in the Eastern Highlands of Ethiopia. Sustainability 2021, 13, 6420. https://doi.org/10.3390/su13116420
Woldeselassie A, Dechassa N, Alemayehu Y, Tana T, Bedadi B. Soil and Water Management Practices as a Strategy to Cope with Climate Change Effects in Smallholder Potato Production in the Eastern Highlands of Ethiopia. Sustainability. 2021; 13(11):6420. https://doi.org/10.3390/su13116420
Chicago/Turabian StyleWoldeselassie, Ashenafi, Nigussie Dechassa, Yibekal Alemayehu, Tamado Tana, and Bobe Bedadi. 2021. "Soil and Water Management Practices as a Strategy to Cope with Climate Change Effects in Smallholder Potato Production in the Eastern Highlands of Ethiopia" Sustainability 13, no. 11: 6420. https://doi.org/10.3390/su13116420
APA StyleWoldeselassie, A., Dechassa, N., Alemayehu, Y., Tana, T., & Bedadi, B. (2021). Soil and Water Management Practices as a Strategy to Cope with Climate Change Effects in Smallholder Potato Production in the Eastern Highlands of Ethiopia. Sustainability, 13(11), 6420. https://doi.org/10.3390/su13116420