Examining Land Use/Land Cover Change and Its Prediction Based on a Multilayer Perceptron Markov Approach in the Luki Biosphere Reserve, Democratic Republic of Congo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Classification and Accuracy Assessment
2.3. MLPNN_Markov Chain Model for LUC Change Prediction
2.3.1. MLP Neural Network Model
2.3.2. Markov Chain Analysis
2.3.3. Implementation of the MLPNN_Markov Modeling
2.3.4. Variables Selection
2.3.5. Model Validation
2.4. Gradient Direction Analysis
2.5. Landscape Metrics Analysis
3. Results
3.1. Land Use/Land Cover Change of the Luki Biosphere Reserve
3.2. Transition among Land Use/Land Cover Types from 1987 to 2038
3.3. Land Use/Land Cover Change at Different Zonal Levels of the Luki Biosphere Zone
3.4. Landscape Metrics Analysis at the Luki Biosphere Reserve
3.5. Impact of Village Expansion on Land Use/Land Cover Change
4. Discussion
4.1. Land Use Change of the Luki Biosphere Reserve
4.2. Prediction of Land Use/Land Cover Change
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, H.; Yang, C.; Song, J. Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing China. Sustainability 2015, 7, 4260–4279. [Google Scholar] [CrossRef] [Green Version]
- Rawat, J.S.; Kumar, M. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2015, 18, 77–84. [Google Scholar] [CrossRef] [Green Version]
- McConnell, W.J. Land Change: The Merger of Land Cover and Land use Dynamics. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Elsevier: Oxford, UK, 2015; pp. 220–223. [Google Scholar]
- Lambin, E. Land Cover Assessment and Monitoring. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Hyandye, C.; Martz, L.W. A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. Int. J. Remote Sens. 2016, 38, 64–81. [Google Scholar] [CrossRef]
- Galicia, L.; Garcia-Romero, A. Land use and land cover change in highland temperate forests in the Izta-Popo National Park, central Mexico. Mt. Res. Dev. 2007, 27, 48–57. [Google Scholar] [CrossRef]
- Fox, J.; Vogler, J.B. Land-use and land-cover change in montane mainland Southeast Asia. Environ. Manag. 2005, 36, 394–403. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Tigabu, M.; Savadogo, P.; Compaoré, H.; Odén, P.C.; Ouadba, J.M. Land cover change and its relation with population dynamics in Burkina Faso, West Africa. Land Degrad. Dev. 2010, 21, 453–462. [Google Scholar] [CrossRef]
- Ernst, C.; Verhegghen, A.; Mayaux, P.; Hansen, M.; Defourny, P. Cartographie du couvert forestier et des changements du couvert forestier en Afrique centrale. In Les Forets du Bassin du Congo—Etat des Forets 2010; De Wasseige, C., De Marcken, P., Bayol, N., Hiol Hiol, F., Mayaux, P., Desclee, B., Billand, A., Nasi., R., Eds.; Office des Publications de l’Union Europeenne: Luxembourg, 2012; pp. 23–42. [Google Scholar] [CrossRef]
- Devers, D.; Van de Weghe, J.P. (Eds.) Les Forêts du Bassin du Congo. État des forêts 2006. Partenariat pour les forêts du Bassin du Congo; United States Agency for International Development: Washington, DC, USA, 2007; 256p. Available online: http://carpe.umd.edu/Documents/2006/LES_FORETS_DU_BASSIN_DU_CONGO_Etat_des_Forets_2006.pdf (accessed on 8 May 2021).
- Gillet, P.; Vermeulen, C.; Feintrenie, L.; Dessard, H.; Garcia, C. Quelles sont les causes de la deforestation dans le bassin du Congo? Synthese bibliographique et etudes de cas. BASE 2016, 20, 183–194. [Google Scholar]
- Potapov, P.V.; Turubanova, S.V.; Hansen, M.C.; Adusei, B.; Broich, M.; Altstatt, A.; Mane, L.; Justice, C.O. Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data. Remote Sens. Environ. 2012, 122, 106–116. [Google Scholar] [CrossRef]
- Duveiller, G.; Defourny, P.; Desclee, B.; Mayaux, P. Deforestation in Central Africa: Estimates at regional, national and landscape levels by advanced processing of systematically- distributed Landsat extracts. Remote Sens. Environ. 2008, 112, 1969–1981. [Google Scholar] [CrossRef]
- Muyaya, K.B.; Rudant, J.P.; Lumbuenamo, R.; Beland, M.; Riera, B. Dynamique spatiale du domaine de chasse et reserve de Bombo Lumene entre 2000 et 2015 par imagerie satellitaire optique. Int. J. Innov. Appl. Stud. 2016, 2, 559–568. [Google Scholar]
- De Wasseige, C.; de Marcken, P.; Bayol, N.; Hiol, F.; Mayaux, P.; Desclee, B.; Billand, A.; Nasi, R. Les Forets du Bassin du Congo –Etat des Forets 2010; Office des publications de l’Union europeenne: Luxembourg, 2012; 276p. [Google Scholar]
- Molinario, G.; Hansen, M.C.; Potapov, P.V. Forest cover dynamics of shifting cultivation in the Democratic Republic of Congo: A remote sensing-based assessment for 2000–2010. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- Pendje, G.; Mbaya, M. La réserve de Biosphère de Luki, Patrimoine Floristique et Faunique en Péril; UNESCO: Paris, France, 1992; 62p. [Google Scholar]
- Doumenge, C. La Conservation des Écosystèmes Forestiers du Zaïre; UICN: Gland, Switzerland, 1990; p. 242. [Google Scholar]
- Gata, D. Etudes des Impacts Humains, Estimation De Degré de Péril de la Biodiversité et Principes Directeurs pour une Gestion Durable des Ressources Disponibles; MAB: Kinshasa, Democratic Republic of the Congo, 1997; 37p. [Google Scholar]
- Nyange, N.M. Participation des communautés locales et gestion durable des forêts: Cas de la réserve de la biosphère de Luki en République Démocratique du Congo. Ph.D. Thesis, Université Laval Québec, Québec, QC, Canada, 2014; 227p. Available online: https://corpus.ulaval.ca/jspui/bitstream/20.500.11794/25349/1/30892.pdf (accessed on 2 May 2021).
- Cromley, R.; Hanink, D. Coupling land use allocation models with raster GIS. J. Geograph. Syst. 1999, 1, 137–153. [Google Scholar] [CrossRef]
- Sahebgharani, A. Multi-objective land use optimization through parallel particle swarm algorithm: Case study Baboldasht district of Isfahan, Iran. J. Urban Environ. Eng. 2016, 10, 42–49. [Google Scholar] [CrossRef]
- Opelele, O.M.; Fan, W.Y.; Yu, Y.; Kachaka, S.K. Analysis of land use/land cover change and its prediction in the mambasa sector, democratic republic of Congo. Appl. Ecol. Environ. Res. 2020, 18, 5627–5644. [Google Scholar] [CrossRef]
- Abdulrahman, A.I.; Ameen, S.A. Predicting Land use and land cover spatiotemporal changes utilizing CA-Markov model in Duhok district between 1999 and 2033. Acad. J. Nawroz Univ. 2020, 9, 71–80. [Google Scholar] [CrossRef]
- Mondal, B.; Das, D.N.; Bhatta, B. Integrating cellular automata and Markov techniques to generate urban development potential surface: A study on Kolkata agglomeration. Geocarto Int. 2017, 32, 401–419. [Google Scholar] [CrossRef]
- QuanLi, X.; Kun, Y.; GuiLin, W.; YuLian, Y. Agent-based modeling and simulations of land-use and land-cover change according to ant colony optimization: A case study of the Erhai Lake Basin, China. Nat. Hazards 2015, 75, 95–118. [Google Scholar] [CrossRef]
- Mishra, V.N.; Rai, P.K. A remote sensing aided multilayer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arab. J. Geosci. 2016, 9. [Google Scholar] [CrossRef]
- Balzter, H. Markov chain models for vegetation dynamics. Ecol. Modell. 2000, 126, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.N.; Rai, P.K.; Prasad, R.; Punia, M.; Nistor, M.M. Prediction of spatio-temporal land use/land cover dynamics in rapidly developing Varanasi district of Uttar Pradesh, India, using geospatial approach: A comparison of hybrid models. Appl. Geomat. 2018, 10, 257–276. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y. A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing. Int. J. Geogr. Inf. Sci. 2012, 27, 449–466. [Google Scholar] [CrossRef]
- National Research Council. Advancing Land Change Modeling: Opportunities and Research Requirements; The National Academies Press: Washington, DC, USA, 2014; ISBN 978-0-309-28833-0. [Google Scholar]
- Ansari, A.; Golabi, M.H. Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands—A case study: Meighan Wetland, Iran. Int. Soil Water Conserv. Res. 2019, 7, 64–70. [Google Scholar] [CrossRef]
- Mozumder, C.; Tripathi, N.K. Geospatial scenario based modelling of urban and agricultural intrusions in Ramsar wetland deepor beel in northeast India using a multilayer perceptron neural network. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 92–104. [Google Scholar] [CrossRef]
- Bhatti, S.S.; Tripathi, N.K.; Nitivattananon, V.; Rana, I.A.; Mozumder, C. A multi-scale modeling approach for simulating urbanization in a metropolitan region. Habitat Int. 2015, 50, 354–365. [Google Scholar] [CrossRef] [Green Version]
- Shoyama, K.; Matsui, T.; Hashimoto, S.; Kabaya, K.; Oono, A.; Saito, O. Development of land-use scenarios using vegetation inventories in Japan. Sustain. Sci. 2019, 14, 39–52. [Google Scholar] [CrossRef]
- Ye, B.; Bai, Z. Simulating land use/cover changes of Nenjiang County based on CA-Markov model. Comput. Comput. Technol. Agric. 2008, 1, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Pontius, G.R.; Malanson, J. Comparison of the structure and accuracy of two land change models. Int. J. Geogr. Inf. Sci. 2005, 19, 243–265. [Google Scholar] [CrossRef]
- Parsamehr, K.; Gholamalifard, M.; Kooch, Y. Comparing three transition potential modeling for identifying suitable sites for REDD+ projects. Spat. Inf. Res. 2020, 28, 159–171. [Google Scholar] [CrossRef]
- Muller, M.R.; Middleton, J. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landsc. Ecol. 1994, 9, 151–157. [Google Scholar] [CrossRef]
- Sinha, P.; Kimar, L. Markov land cover change modeling using pairs of time-series satellite images. Photogramm. Eng. Remote Sens. 2013, 79, 1037–1051. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D.H. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Vadrevu, K.P. Introduction to Remote Sensing. In The Photogrammetric Record, 5th ed.; Campbell, J.B., Wynne, R.H., Eds.; Guilford Press: New York, NY, USA, 2013. [Google Scholar]
- Keshtkar, H.; Voigt, W.; Alizadeh, E. Land-cover classification and analysis of change using machine learning classifiers and multi-temporal remote sensing imagery. Arab. J. Geosci. 2017, 10. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Pithadia, S.; Shellito, B.A. Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. Int. J. Geogr. Inf. Sci. 2005, 19, 197–215. [Google Scholar] [CrossRef]
- Congalton, R.G.; Mead, R.A. A quantitative method to test for consistency and correctness in photo-interpretation. Photogramm. Eng. Remote Sens. 1983, 49, 69–74. [Google Scholar]
- Ju, W.; Lam, N. Urban land use classification: Applying texture analysis and artificial intelligence. Imaging Notes 2007, 22, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yeh, A.G.O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Okwuashi, O.; Isong, M.; Eyo, E.; Eyoh, A.; Nwanekezie, O.; Olayinka, D.N.; Udoudo, D.O.; Ofem, B. GIS Cellular automata using artificial neural network for land use change simulation of Lagos, Nigeria. J. Geogr. Geol. 2012, 4. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, Y.; Venkatachalam, P. Neural network based cellular automata model for dynamic spatial modeling in GIS. In Computational Science and Its Applications—ICCSA 2009; Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 341–352. [Google Scholar]
- Civco, D.L. Artificial neural networks for land-cover classification and mapping. Int. J. Geogr. Inf. Syst. 1993, 7, 173–186. [Google Scholar] [CrossRef]
- Haykin, S. Redes Neurais; Bookman: Porto Alegre, Brazil, 2001; p. 900. [Google Scholar]
- Atkinson, P.M.; Tatnall, A.R.L. Introduction neural networks in remote sensing. Int. J. Remote Sens. 1997, 18, 699–709. [Google Scholar] [CrossRef]
- Eastman, J.R. IDRISI Taiga Guide to GIS and Image Processing; Manual Version 16.02; Clark Labs: Worcester, MA, USA, 2009. [Google Scholar]
- Karul, C.; Soyupak, S. A comparison between neural network based and multiple regression models for chlorophyll-a estimation. In Ecological Informatics; Recknagel, F., Ed.; Springer: Berlin, Germany, 2006; pp. 309–323. [Google Scholar] [CrossRef]
- Yang, J.; Su, J.; Chen, F.; Xie, P.; Ge, Q. A local land-use competition cellular automata model and its application. ISPRS Int. J. Geo-Inf. 2016, 5, 106. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.N.; Rai, P.K.; Mohan, K. Prediction of land use changes based on land change modeler (LCM) using remote sensing: A case study of Muzaffarpur (Bihar), India. J. Geogr. Inst. Jovan Cvijic SASA 2014, 64, 111–127. [Google Scholar] [CrossRef]
- Yousheng, W.; Xinxiao, Y.; Kangning, H.; Qingyun, L.; Yousong, Z.; Siming, S. Dynamic simulation of land use change in Jihe watershed based on CA-Markov model. Trans. Chin. Soc. Agric. Eng. 2011, 27, 330–336. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, G.Y.; Zhang, X.C.; Zhao, Y.J.; Li, H.Y. Application of Markov model in wetland change dynamics in Tianjin Coastal Area, China. Procedia Environ. Sci. 2012, 13, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Math. Comput. Model 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Kumar, S.; Radhakrishnan, N.; Mathew, S. Land use change modelling using a Markov model and remote sensing. Geomat. Nat. Hazards Risk 2014, 5, 145–156. [Google Scholar] [CrossRef]
- Cramér, H. Methods of estimation. In Mathematical Methods of Statistics, 19th ed.; Princeton University Press: Princeton, NJ, USA, 1999; Chapter 33; pp. 497–506. [Google Scholar]
- Hamdy, O.; Zhao, S.; Salheen, M.A.; Eid, Y.Y. Analyses the driving forces for urban growth by using IDRISI Selva Models Abouelreesh—Aswan as a Case Study. Int. J. Eng. Technol. 2017, 9, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Valdivieso, F.O.; Sendra, J.B. Application of GIS and remote sensing techniques in generation of land use scenarios for hydrological modeling. J. Hydrol. 2010, 395, 256–263. [Google Scholar] [CrossRef]
- Liebertrau, A.M. Measures of Association; Sage Publications: Newbury Park, CA, USA, 1983; Quantitative. [Google Scholar]
- Islam, K.; Rahman, M.F.; Jashimuddin, M. Modeling land use change using cellular automata and artificial neural network: The case of Chunati Wildlife Sanctuary, Bangladesh. Ecol. Indic. 2018, 88, 439–453. [Google Scholar] [CrossRef]
- Brown, D.G.; Goovaerts, P.; Burnicki, A.; Li, M.Y. Stochastic simulation of land cover change using geostatistics and generalized additive models. Photogramm. Eng. Remote Sens. 2002, 68, 1051–1061. [Google Scholar]
- Badoe, D.A.; Miller, E.J. Transportation–land-use interaction: Empirical findings in North America, and their implications for modeling. Transp. Res. Part D Transp. Environ. 2000, 5, 235–263. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Bayes, A.; Raquib, A. Modeling urban land cover growth dynamics using multioral satellite images: A case study of Dhaka, Bangladesh. ISPRS Int. J. Geo-Inf. 2012, 1, 3–31. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Liu, J.; Fu, C.; Zhang, W.; Wang, G.; Yang, G.; Luo, L. Urban Expansion and Its Impact on the Land Use Pattern in Xishuangbanna since the Reform and Opening up of China. Remote Sens. 2017, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.; Ma, J.; Twibell, R.W.; Underhill, K. Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics. Comput. Environ. Urban Syst. 2006, 30, 861–879. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M. Quantifying Spatiotemporal Patterns of Urban Land-use Change in Four Cities of China with Time Series Landscape Metrics. Landsc. Ecol. 2005, 20, 871–888. [Google Scholar] [CrossRef]
- Martin, J. LecoS—A python plugin for automated landscape ecology analysis. Ecol. Inform. 2016, 31, 18–21. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, S.Q.; Qu, W.Y. Quantifying spatiotemporal patterns of urban expansion in three capital cities in Northeast China over the past three decades using satellite data sets. Environ. Earth Sci. 2015, 73, 7221–7235. [Google Scholar] [CrossRef]
- Qi, Z.-F.; Ye, X.-Y.; Zhang, H.; Yu, Z.-L. Land fragmentation and variation of ecosystem services in the context of rapid urbanization: The case of Taizhou city, China. Stoch. Environ. Res. Risk Assess. 2013, 28, 843–855. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Aithal, B.H.; Sanna, D.D. Insights to urban dynamics through landscape spatial pattern analysis. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 329–343. [Google Scholar] [CrossRef]
- Liu, H.; Weng, Q. Landscape metrics for analysing urbanization-induced land use and land cover changes. Geocarto Int. 2013, 28, 582–593. [Google Scholar] [CrossRef]
- Su, S.; Jiang, Z.; Zhang, Q.; Zhang, Y. Transformation of agricultural landscapes under rapid urbanization: A threat to sustainability in Hang-Jia-Hu region, China. Appl. Geogr. 2011, 31, 439–449. [Google Scholar] [CrossRef]
- He, X.; Gao, Y.; Niu, J.; Zhao, Y. Landscape Pattern Changes under the Impacts of Urbanization in the Yellow River Wetland––King Zhengzhou as an example. Procedia Environ. Sci. 2011, 10, 2165–2169. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Myint, S.W.; Fan, P.; Stuhlmacher, M.; Yang, J. The impact of urban expansion on the regional environment in Myanmar: A case study of two capital cities. Landsc. Ecol. 2018, 33, 765–782. [Google Scholar] [CrossRef]
- Arifwidodo, S.D.; Tanaka, T. The Characteristics of Urban Heat Island in Bangkok, Thailand. Procedia Soc. Behav. Sci. 2015, 195, 423–428. [Google Scholar] [CrossRef]
- Pakarnseree, R.; Chunkao, K.; Bualert, S. Physical characteristics of Bangkok and its urban heat island phenomenon. Build. Environ. 2018, 143, 561–569. [Google Scholar] [CrossRef]
- Ali, G.; Pumijumnong, N.; Cui, S. Valuation and validation of carbon sources and sinks through land cover/use change analysis: The case of Bangkok metropolitan area. Land Use Policy 2018, 70, 471–478. [Google Scholar] [CrossRef]
- Bamba, I. Anthropisation et dynamique spatio-temporelle de paysages forestiers en République démocratique du Congo. Available online: https://www.congoforum.be/Upldocs/Forets%20These_finale_IBAMBA.pdf (accessed on 7 May 2021).
- Ciza, S.K.; Mikwa, J.F.; Malekezi, A.C.; Gond, V.; Bosela, F.B. Identification des moteurs de déforestation dans la région d’Isangi, République démocratique du Congo. Bois Forets des Tropiques 2015, 324, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Mpoyi, A.M.; Nyamwoga, F.B.; Kabamba, F.M.; Assembe-mvondo, S. Le Contexte de la REDD+ en République Démocratique du Congo Causes, Agents et Institutions; CIFOR: Bogor, Indonesia, 2013. [Google Scholar] [CrossRef]
- Ngabinzeke, J.S.; Linchant, J.; Quevauvillers, S.; Muhongya, J.M.K.; Lejeune, P.; Vermeulen, C. Cartographie de la dynamique de terroirs villageois à l’aide d’un drone dans les aires protégées de la République démocratique du Congo. Bois Forets des Tropiques 2016, 315, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, A.D.; Fox, J.M.; Xu, J. The rubber juggernaut. Science 2009, 324, 1024–1025. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, J.; Guo, H.; Hu, H.; Chen, A.; Cui, J. Agrobiodiversity loss and livelihood vulnerability as a consequence of converting from subsistence farming systems to commercial plantation-dominated systems in Xishuangbanna, Yunnan, China: A household level analysis. Land Degrad. Dev. 2010, 21, 274–284. [Google Scholar] [CrossRef]
- Shrestha, M.K.; York, A.M.; Boone, C.G.; Zhang, S. Land fragmentation due to rapid urbanization in the Phoenix Metropolitan Area: Analyzing the spatiotemporal patterns and drivers. Appl. Geogr. 2012, 32, 522–531. [Google Scholar] [CrossRef]
- Munroe, D.K.; Croissant, C.; York, A.M. Land use policy and landscape fragmentation in an urbanizing region: Assessing the impact of zoning. Appl. Geogr. 2005, 25, 121–141. [Google Scholar] [CrossRef]
- Gkyer, E. Understanding Landscape Structure Using Landscape Metrics. Advances in Landscape Architecture; InTech: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Stewart, A.B.; Sritongchuay, T.; Teartisup, P.; Kaewsomboon, S.; Bumrungsri, S. Habitat and landscape factors influence pollinators in a tropical megacity, Bangkok, Thailand. PeerJ 2018, 6, e5335. [Google Scholar] [CrossRef] [PubMed]
- Chaiyarat, R.; Wutthithai, O.; Punwong, P.; Taksintam, W. Relationships between urban parks and bird diversity in the Bangkok metropolitan area, Thailand. Urban Ecosyst. 2018, 22, 201–212. [Google Scholar] [CrossRef]
Data Type | Name | Pixel Size | Wavelength | Description | Year |
---|---|---|---|---|---|
Landsat 4 TM | B1 | 30 m | 0.45–0.52 µm | Blue | 1987 |
B2 | 30 m | 0.52–0.60 µm | Green | ||
B3 | 30 m | 0.63–0.69 µm | Red | ||
B4 | 30 m | 0.76–0.90 µm | Near infrared | ||
B5 | 30 m | 1.55–1.75 µm | Shortwave infrared 1 | ||
B6 | 30 m | 10.40–12.50 µm | Thermal Infrared 1. | ||
B7 | 30 m | 2.08–2.35 µm | Shortwave infrared 2 | ||
Landsat 7 ETM+ | B1 | 30 m | 0.45–0.52 µm | Blue | 2002 |
B2 | 30 m | 0.52–0.60 µm | Green | ||
B3 | 30 m | 0.63–0.69 µm | Red | ||
B4 | 30 m | 0.77–0.90 µm | Near infrared | ||
B5 | 30 m | 1.55–1.75 µm | Shortwave infrared 1 | ||
B6 | 30 m | 10.40–12.50 µm | Low-gain Thermal Infrared 1 | ||
B6 | 30 m | 10.40–12.50 µm | High-gain Thermal Infrared 1 | ||
B7 | 30 m | 2.08–2.35 µm | Shortwave infrared 2 | ||
B8 | 15 m | 0.52–0.90 µm | Panchromatic | ||
Landsat 8 OLI/TIRS | B1 | 30 m | 0.43–0.45 µm | Coastal aerosol | 2017 and 2020 |
B2 | 30 m | 0.45–0.51 µm | Blue | ||
B3 | 30 m | 0.53–0.59 µm | Green | ||
B4 | 30 m | 0.64–0.67 µm | Red | ||
B5 | 30 m | 0.85–0.88 µm | Near infrared | ||
B6 | 30 m | 1.57–1.65 µm | Shortwave infrared 1 | ||
B7 | 30 m | 2.11–2.29 µm | Shortwave infrared 2 | ||
B8 | 15 m | 0.52–0.90 µm | Band 8 Panchromatic | ||
B9 | 15 m | 1.36–1.38 µm | Cirrus | ||
B10 | 30 m | 10.60–11.19 µm | Thermal infrared 1 | ||
B11 | 30 m | 11.50–12.51 µm | Thermal infrared 2 |
Explanatory Variable | Cramer’s V | p-Value |
---|---|---|
Distance from roads | 0.4097 | 0.0000 |
Distance from villages | 0.2372 | 0.0000 |
Distance from farmland | 0.3254 | 0.0000 |
Slope | 0.1624 | 0.0000 |
Elevation | 0.3281 | 0.0000 |
Definition | Description | Reference |
---|---|---|
aij = area (m2) of patch ij. A = total landscape area (m2). | [74,75,76] | |
COHESION = | pij* = perimeter of patch ij in terms of number of cell surfaces. aij* = area of patch ij in terms of number of cells. Z = total number of cells in the landscape. | [77] |
gii = number of like adjacencies (joins) between pixels of patch type (class) I based on the single-count method. max→gii = maximum number of like adjacencies (joins) between pixels of patch type (class) i based on the single-count method. | [78] | |
Pi = proportion of the landscape occupied by patch type (class) i. gik = number of adjacencies (joins) between pixels of patch types (classes) i and k based on the double-count method. m = number of patch types (classes) present in the landscape, including the landscape border if present. | [79] |
LULC Categories | 1987 | 2002 | 2020 | |||
---|---|---|---|---|---|---|
Producer’s Accuracy (%) | User’s Accuracy (%) | Producer’s Accuracy (%) | User’s Accuracy (%) | Producer’s Accuracy (%) | User’s Accuracy (%) | |
Primary forest | 90.7 | 91.9 | 93.9 | 96.3 | 99.05 | 98.05 |
Savannah | 86.7 | 86.7 | 93.3 | 91.3 | 89.28 | 97.16 |
Secondary forest | 89.7 | 90.2 | 91.1 | 94.2 | 92.3 | 94.1 |
Fallow land and fields | 92.3 | 90.6 | 94.7 | 92.3 | 96.19 | 75.75 |
Built-up area | 90.3 | 90.3 | 91.7 | 91.7 | 98.48 | 66.41 |
Overall accuracy (%) | 89.16 | 93.6 | 97.17 | |||
Kappa coefficient | 0.86 | 0.91 | 0.92 |
LULC Categories | 1987 | 2002 | 2020 | |||
---|---|---|---|---|---|---|
Area/ha | Area (%) | Area/ha | Area (%) | Area/ha | Area (%) | |
Primary forest | 28842.2 | 87.59 | 25781.19 | 78.29 | 24030.27 | 72.02 |
Secondary forest | 1959.2 | 5.95 | 3080.13 | 9.3 | 3129.17 | 9.38 |
Savannah | 491.1 | 1.49 | 648.75 | 1.97 | 577.58 | 1.73 |
Fallow land and fields | 1584.5 | 4.81 | 3353.2 | 10.18 | 5505.05 | 16.5 |
Built-up area | 52.8 | 0.16 | 66.6 | 0.2 | 120.3 | 0.36 |
Land Use Class | Primary Forest | Secondary Forest | Savannah | Fallow Land | Built-Up Area | |
---|---|---|---|---|---|---|
1987 to 2020 | Primary forest | 82.12 | 4.06 | 0.48 | 13.26 | 0.08 |
Secondary forest | 0.005 | 90.88 | 0.799 | 7.865 | 0.45 | |
Savannah | 0.000 | 7.9824 | 83.449 | 1.556 | 7.012 | |
Fallow land | 0.267 | 7.46 | 0.346 | 91.418 | 0.510 | |
Built-up area | 0.0000 | 2.555 | 9.000 | 0.852 | 87.5639 | |
1987 to 2038 | Primary forest | 80.3971 | 3.1577 | 0.2781 | 16.0690 | 0.0980 |
Secondary forest | 0.1290 | 73.7975 | 1.0689 | 23.9403 | 1.0643 | |
Savannah | 0.2220 | 10.6938 | 48.2701 | 29.7132 | 11.1008 | |
Fallow land | 0.8718 | 11.6752 | 0.5413 | 86.3761 | 0.5356 | |
Built-up area | 0.3407 | 3.9182 | 5.4514 | 7.1550 | 83.1346 |
Land Use Category | Area in 1987 | % | Area in 2002 | % | Area in 2020 | % |
---|---|---|---|---|---|---|
Fallow land and fields | 33.9 | 0.4 | 58.9 | 0.7 | 228.4 | 2.7 |
Primary forest | 8488.6 | 98.8 | 8383.23 | 97.6 | 8201.1 | 95.4 |
Secondary forest | 69.8 | 0.8 | 150.17 | 1.7 | 162.8 | 1.9 |
Total | 8592.3 | 100 | 8592.3 | 100.0 | 8592.3 | 100.0 |
Land Use Category | Area in 1987 | % | Area in 2002 | % | Area in 2020 | % |
---|---|---|---|---|---|---|
Built-up | 1.8 | 0.03 | 3.87 | 0.06 | 4.59 | 0.07 |
Savannah | 3.06 | 0.05 | 3.9 | 0.06 | 9.98 | 0.16 |
Fallow land and fields | 176.88 | 2.78 | 540.62 | 8.5 | 881.61 | 13.88 |
Primary forest | 6022.74 | 94.8 | 5567.02 | 87.68 | 5203.76 | 81.91 |
Secondary forest | 148.78 | 2.34 | 237.85 | 3.7 | 253.32 | 3.98 |
Total | 6353.26 | 100.0 | 6353.26 | 100.0 | 6353.26 | 100.0 |
Land Use Category | Area in 1987 | % | Area in 2002 | % | Area in 2020 | % |
---|---|---|---|---|---|---|
Built-up | 50.45 | 0.3 | 62.5 | 0.35 | 115.28 | 0.64 |
Savannah | 484.24 | 2.7 | 643.85 | 3.58 | 556.63 | 3.1 |
Fallow land and fields | 1380.51 | 7.7 | 2765.79 | 15.36 | 4335.14 | 24.1 |
Primary forest | 14,344.66 | 79.7 | 11,832.81 | 65.73 | 10,304.11 | 57.2 |
Secondary forest | 1743.26 | 9.7 | 2698.17 | 14.99 | 2691.96 | 14.96 |
Total | 18,003.12 | 100.0 | 18,003.12 | 100.0 | 18,003.12 | 100.0 |
Name of Component | Model |
---|---|
MLP Markov | |
Persistence simulated correctly | 95.62% |
Change simulated correctly | 0.79% |
Total agreement | 96.40% |
Change simulated as persistence | 1.91% |
Persistence simulated as change | 1.66% |
Change simulated as change to incorrect category | 0.02% |
Total disagreement | 3.60% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michel, O.O.; Ying, Y.; Wenyi, F.; Chen, C.; Kaiko, K.S. Examining Land Use/Land Cover Change and Its Prediction Based on a Multilayer Perceptron Markov Approach in the Luki Biosphere Reserve, Democratic Republic of Congo. Sustainability 2021, 13, 6898. https://doi.org/10.3390/su13126898
Michel OO, Ying Y, Wenyi F, Chen C, Kaiko KS. Examining Land Use/Land Cover Change and Its Prediction Based on a Multilayer Perceptron Markov Approach in the Luki Biosphere Reserve, Democratic Republic of Congo. Sustainability. 2021; 13(12):6898. https://doi.org/10.3390/su13126898
Chicago/Turabian StyleMichel, Opelele Omeno, Yu Ying, Fan Wenyi, Chen Chen, and Kachaka Sudi Kaiko. 2021. "Examining Land Use/Land Cover Change and Its Prediction Based on a Multilayer Perceptron Markov Approach in the Luki Biosphere Reserve, Democratic Republic of Congo" Sustainability 13, no. 12: 6898. https://doi.org/10.3390/su13126898