Impacts of Erosion on the Sustainability of Organic Olive Groves: A Case Study (Estepa Region, Southwestern Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Data Collection
2.2.1. Data on the Environmental Dimension of the Olive Grove
2.2.2. Data on the Productive and Socio-Economic Dimensions of the Olive Grove
2.3. Statistical Methodology
3. Results
3.1. Influence of Erosion on Environmental Dimension in Organic Olive Groves in the PDO Estepa
3.1.1. Previous Edaphic Results
3.1.2. Original Soil and Biological Variables
3.2. Productive and Socio-Economic Original Results According to the Erosion Level in Organic Olive Groves in the PDO Estepa
3.3. Time Projections and Cumulative Production and Benefits to Analyse Sustainability in Organic Olive Groves
4. Discussion
4.1. Influence of Erosion on the Environmental, Productive and Socio-Economic Dimensions of Organic Olive Grove Management in the PDO Estepa
4.2. Sustainability Assessment of the Organic Olive Grove in the PDO Estepa
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gómez, J.A.; Llewellyn, C.; Basch, G.; Sutton, P.B.; Dyson, J.S.; Jones, C.A. The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use Manag. 2011, 27, 502–514. [Google Scholar] [CrossRef] [Green Version]
- Amate, J.I.; De Molina, M.G.; Vanwalleghem, T.; Fernández, D.S.; Gómez, J.A. Erosion in the Mediterranean: The Case of Olive Groves in the South of Spain (1752–2000). Environ. Hist. 2013, 18, 360–382. [Google Scholar] [CrossRef]
- EUROSTAT. Farm Structure Statistics; Eurostat (European Statistics): Brussels, Belgium, 2018; Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Farm_structure_statistics/es (accessed on 3 May 2021).
- CORINE Land Cover. Copernicus Land Monitoring Service; CORINE Land Cover: Copenhagen, Denmark, 2021; Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 3 May 2021).
- INE. Agriculture and Environment; INE (Instituto Nacional de Estadística/Statistical Spanish Office): Madrid, Spain, 2014; Available online: https://www.ine.es/dyngs/INEbase/es/categoria.htm?c=Estadistica_P&cid=1254735727106 (accessed on 27 April 2021).
- COI. Cifras Aceite de Oliva; COI (Consejo Oleícola Internacional/International Olive Council): Madrid, Spain, 2015; Available online: http://www.internationaloliveoil.org (accessed on 26 April 2021). (In Spanish)
- COI. OLIVE OIL–PROVISIONAL DATA 2018/19 CROP YEAR; COI (Consejo Oleícola Internacional/International Olive Council): Madrid, Spain, 2018; Available online: http://www.internationaloliveoil.org/olive-oil-provisional-data-2018-19-crop-year/ (accessed on 29 April 2021). (In Spanish)
- Rodríguez-Entrena, M.; Arriaza, M. Adoption of conservation agriculture in olive groves: Evidences from southern Spain. Land Use Policy 2013, 34, 294–300. [Google Scholar] [CrossRef]
- BOJA. Plan Director del Olivar Andaluz Decreto 103/2015; BOJA (Boletín Oficial de la Junta de Andalucía/Official Regional Go-vernment of Andalusia Bulletin): Sevilla, Spain, 2015; Available online: http://www.webcitation.org/77MO1YwQe(In Spanish). (accessed on 20 April 2021). (In Spanish)
- Galán, C.; García-Mozo, H.; Vázquez, L.; Ruiz, L.; De La Guardia, C.D.; Domínguez-Vilches, E. Modeling Olive Crop Yield in Andalusia, Spain. Agron. J. 2008, 100, 98–104. [Google Scholar] [CrossRef] [Green Version]
- de la Torre, M.G.M.-V.; Fuentes, J.M.A.; Amador-Hidalgo, L. Olive oil tourism: Promoting rural development in Andalusia (Spain). Tour. Manag. Perspect. 2017, 21, 100–108. [Google Scholar] [CrossRef]
- Montanaro, G.; Xiloyannis, C.; Nuzzo, V.; Dichio, B. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Sci. Hortic. 2017, 217, 92–101. [Google Scholar] [CrossRef]
- Torres-Miralles, M.; Grammatikopoulou, I.; Rescia, A. Employing contingent and inferred valuation methods to evaluate the conservation of olive groves and associated ecosystem services in Andalusia (Spain). Ecosyst. Serv. 2017, 26, 258–269. [Google Scholar] [CrossRef]
- Maldonado, A.D.; Ramos-López, D.; Aguilera, P.A. The Role of Cultural Landscapes in the Delivery of Provisioning Ecosystem Services in Protected Areas. Sustainability 2019, 11, 2471. [Google Scholar] [CrossRef] [Green Version]
- Rey, P.J.; Manzaneda, A.J.; Valera, F.; Alcantara, J.; Tarifa, R.; Isla, J.; Pardo, J.L.M.; Calvo, G.; Salido, T.; Gutiérrez, J.E.; et al. Landscape-moderated biodiversity effects of ground herb cover in olive groves: Implications for regional biodiversity conservation. Agric. Ecosyst. Environ. 2019, 277, 61–73. [Google Scholar] [CrossRef]
- AEMO. Aproximación a los Costes del Cultivo del Olivo. Cuaderno de Conclusiones del Seminario AEMO; AEMO (Asociación Española de Municipios del Olivo/Spanish Association of Municipalities of Olive Groves): Córdoba, Spain, 2012; Available online: http://www.webcitation.org/77MCvuNPx (accessed on 28 April 2021). (In Spanish)
- Romero-Gámez, M.; Castro-Rodriguez, J.; Suarez-Rey, E. Optimization of olive growing practices in Spain from a life cycle assessment perspective. J. Clean. Prod. 2017, 149, 25–37. [Google Scholar] [CrossRef]
- Orlandi, F.; Sgromo, C.; Bonofiglio, T.; Ruga, L.; Romano, B.; Fornaciari, M. A comparison among olive flowering trends in different Mediterranean areas (south-central Italy) in relation to meteorological variations. Theor. Appl. Clim. 2008, 97, 339–347. [Google Scholar] [CrossRef]
- Palese, A.M.; Pergola, M.; Favia, M.; Xiloyannis, C.; Celano, G. A sustainable model for the management of olive orchards located in semi-arid marginal areas: Some remarks and indications for policy makers. Environ. Sci. Policy 2013, 27, 81–90. [Google Scholar] [CrossRef]
- Koulouri, M.; Giourga, C. Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands. Catena 2007, 69, 274–281. [Google Scholar] [CrossRef]
- De Graaff, J.; Duarte, F.; Fleskens, L.; De Figueiredo, T.D.A.F.R. The future of olive groves on sloping land and ex-ante assessment of cross compliance for erosion control. Land Use Policy 2010, 27, 33–41. [Google Scholar] [CrossRef]
- Sal, A.G.; García, A.G. A comprehensive assessment of multifunctional agricultural land-use systems in Spain using a multi-dimensional evaluative model. Agric. Ecosyst. Environ. 2007, 120, 82–91. [Google Scholar] [CrossRef]
- Parra-López, C.; Calatrava-Requena, J.; De-Haro-Giménez, T. A systemic comparative assessment of the multifunctional performance of alternative olive systems in Spain within an AHP-extended framework. Ecol. Econ. 2008, 64, 820–834. [Google Scholar] [CrossRef]
- Rodríguez Sousa, A.A.; Parra-López, C.; Sayadi-Gmada, S.; Barandica, J.; Rescia, A. A multifunctional assessment of integrated and ecological farming in olive agroecosystems in southwestern Spain using the Analytic Hierarchy Process. Ecol. Econ. 2020, 173, 106658. [Google Scholar] [CrossRef]
- Gomez, J.A.; Sobrinho, T.A.; Giraldez, J.; Fereres, E. Soil management effects on runoff, erosion and soil properties in an olive grove of Southern Spain. Soil Tillage Res. 2009, 102, 5–13. [Google Scholar] [CrossRef]
- Vanwalleghem, T.; Amate, J.I.; de Molina, M.G.; Fernández, D.S.; Gomez, J.A. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agric. Ecosyst. Environ. 2011, 142, 341–351. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Kounalaki, A.; Salvati, L.; Kosmas, C. The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use Manag. 2013, 29, 597–606. [Google Scholar] [CrossRef]
- Fernández, J.E.; Moreno, F.; Cabrera, F.; Arrúe, J.L.; Martin-Aranda, J. Drip irrigation, soil characteristics and the root distribution and root activity of olive trees. Plant Soil 1991, 133, 239–251. [Google Scholar] [CrossRef]
- Pleguezuelo, C.R.R.; Zuazo, V.H.D.; Martínez, J.R.F.; Peinado, F.J.M.; Martín, F.M.; Tejero, I.F.G. Organic olive farming in Andalusia, Spain. A review. Agron. Sustain. Dev. 2018, 38, 1–16. [Google Scholar] [CrossRef] [Green Version]
- EC. Facts and Figures on Organic Agriculture in the European Union. Agriculture and Rural Development; EC (European Comission): Brussels, Belgium, 2013; Available online: https://ec.europa.eu/agriculture/sites/agriculture/files/markets-and-prices/more-reports/pdf/organic-2013_en.pdf (accessed on 1 May 2021).
- EC. The Attitudes of European Citizens towards Environment. Special Eurobarometer 217/Wave 62.1—TNS Opinion & Social; EC (Eu-ropean Commission): Brussels, Belgium, 2005; Available online: http://ec.europa.eu/publicopinion/indexen.htm (accessed on 17 April 2021).
- EC. Europeans, Agriculture and the CAP. TNS Opinion & Social. Special Eurobarometer 440; EC (European Commission): Brussels, Belgium, 2016; Available online: http://data.europa.eu/euodp/en/data/dataset/S2087_84_2_440_ENG (accessed on 12 May 2021).
- Buitenhuis, Y.; Candel, J.; Feindt, P.H.; Termeer, K.; Mathijs, E.; Bardají, I.; Black, J.; Martikainen, A.; Moeyersons, M.; Sorrentino, A. Improving the Resilience-enabling Capacity of the Common Agricultural Policy: Policy Recommendations for More Resilient EU Farming Systems. EuroChoices 2020, 19, 63–71. [Google Scholar] [CrossRef]
- Guth, M.; Smędzik-Ambroży, K.; Czyżewski, B.; Stępień, S. The Economic Sustainability of Farms under Common Agricultural Policy in the European Union Countries. Agriculture 2020, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez Sousa, A.A.; Parra-López, C.; Sayadi-Gmada, S.; Barandica, J.M.; Rescia, A.J. Evaluation of the Objectives and Concerns of Farmers to Apply Different Agricultural Managements in Olive Groves: The Case of Estepa Region (Southern, Spain). Land 2020, 9, 366. [Google Scholar] [CrossRef]
- Rodríguez Sousa, A.A.; Barandica, J.M.; Sanz-Cañada, J.; Rescia, A.J. Application of a dynamic model using agronomic and economic data to evaluate the sustainability of the olive grove landscape of Estepa (Andalusia, Spain). Landsc. Ecol. 2019, 34, 1547–1563. [Google Scholar] [CrossRef]
- INE. Economy; INE (Instituto Nacional de Estadística/Statistical Spanish Office): Madrid, Spain, 2018; Available online: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736167628&menu=resultados&idp=1254735576581 (accessed on 22 April 2021).
- Sánchez-Escobar, F.; Coq-Huelva, D.; Sanz-Cañada, J. Measurement of sustainable intensification by the integrated analysis of energy and economic flows: Case study of the olive-oil agricultural system of Estepa, Spain. J. Clean. Prod. 2018, 201, 463–470. [Google Scholar] [CrossRef]
- Cañada, J.S.; Vázquez, A.M. Quality certification, institutions and innovation in local agro-food systems: Protected designations of origin of olive oil in Spain. J. Rural. Stud. 2005, 21, 475–486. [Google Scholar] [CrossRef]
- BOJA. Pliego de Condiciones de la Denominación de Origen Protegida Estepa; BOJA (Boletín Oficial de la Junta de Andalucía/Official Regional Government of Andalusia Bulletin): Sevilla, Spain, 2015; Available online: https://www.webcitation.org/77MOBd5Gh(In Spanish). (accessed on 5 April 2021). (In Spanish)
- BOJA. Ministry of Employment, Business and Commerce; BOJA (Boletín Oficial de la Junta de Andalucía/Official Regional Gov-ernment of Andalusia Bulletin): Andalusia, Spain, 2015; Available online: https://www.juntadeandalucia.es/organismos/empleoempresaycomercio/areas/industria/seguridad/paginas/denominaciones-calidad-aceite-oliva.html (accessed on 8 April 2021). (In Spanish)
- Anaya-Romero, M.; Abd-Elmabod, S.K.; Muñoz-Rojas, M.; Castellano, G.; Ceacero, C.J.; Álvarez, S.; Mendez, M.; De La Rosa, D. Evaluating Soil Threats Under Climate Change Scenarios in the Andalusia Region, Southern Spain. Land Degrad. Dev. 2015, 26, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez Sousa, A.A.; Barandica, J.M.; Rescia, A.J. Estimation of Soil Loss Tolerance in Olive Groves as an Indicator of Sustainability: The Case of the Estepa Region (Andalusia, Spain). Agronomy 2019, 9, 785. [Google Scholar] [CrossRef] [Green Version]
- Arampatzis, G.; Hatzigiannakis, E.; Pisinaras, V.; Kourgialas, N.; Psarras, G.; Kinigopoulou, V.; Panagopoulos, A.; Koubouris, G. Soil water content and olive tree yield responses to soil management, irrigation, and precipitation in a hilly Mediterranean area. J. Water Clim. Chang. 2018, 9, 672–678. [Google Scholar] [CrossRef]
- Capra, A.; Scicolone, B. Irrigation Scheduling Optimisation in Olive Groves. J. Exp. Agric. Int. 2018, 28, 1–19. [Google Scholar] [CrossRef]
- Rodríguez Sousa, A.A.; Barandica, J.M.; Rescia, A. Ecological and Economic Sustainability in Olive Groves with Different Irrigation Management and Levels of Erosion: A Case Study. Sustainability 2019, 11, 4681. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Núñez, C.; Rey, P.J.; Salido, T.; Manzaneda, A.J.; Camacho, F.M.; Isla, J. Ant community potential for pest control in olive groves: Management and landscape effects. Agric. Ecosyst. Environ. 2021, 305, 107185. [Google Scholar] [CrossRef]
- SIOSE. Plan Nacional Para la Observación del Territorio: Sistema de Información Sobre Ocupación del Suelo en España; SIOSE (Sistema de Información sobre Ocupación del Suelo de España/Information System on Land Use in Spain): Madrid, Spain, 2011; Available online: www.siose.es (accessed on 1 April 2021). (In Spanish)
- MAPAMA. Mapa de estados erosivos (1987–2001); MAPAMA (Ministerio de Agricultura, Alimentación y Medio Ambien-te/Ministry of Agriculture, Food and Environment): Madrid, Spain, 2017; Available online: http://www.mapama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/mapas_estados_erosivos.aspx (accessed on 17 April 2021). (In Spanish)
- Moreira-Madueño, J.M. Capacidad de uso y Erosión de Suelos. Una Aproximación a la Evaluación de Tierras en Andalucía; Junta de Andalucía (Andalusia Government): Seville, Spain, 1991; Available online: http://www.juntadeandalucia.es/medioambiente/web/Red_informacion_ambiental/productos/Publicaciones/articulos/articulos_pdf/Paralelo.PDF (accessed on 18 January 2019). (In Spanish)
- Wischmeier, W.H.; Smith, D.D. A universal soil-loss equation to guide conservation farm planning. Trans. Int. Congr. Soil Sci. 1960, 1, 418–425. Available online: https://www.cabdirect.org/cabdirect/abstract/19621901607 (accessed on 29 April 2021).
- Fistikoglu, O.; Harmancioglu, N.B. Integration of GIS with USLE in Assessment of Soil Erosion. Water Resour. Manag. 2002, 16, 447–467. [Google Scholar] [CrossRef]
- Gómez-Calero, J.A. Sostenibilidad de la Producción de Olivar en Andalucía. Instituto de Agricultura Sostenible. Instituto de Agricultura Sostenible, Centro Superior de Investigaciones Científicas; Instituto de Agricultura Sostenible: Córdoba, Spain, 2010; Available online: https://www.ias.csic.es/sostenibilidad_olivar/Sost_2009/Sostenibilidad_de_la_Producci%F3n_de_Olivar_en_Andaluc%EDa3.pdf (accessed on 2 April 2021). (In Spanish)
- Sánchez Escobar, F. Sistemas Complejos: Una Aplicación para el Análisis de los Balances Energéticos y Económicos en el Agrosistema de Olivar de Estepa. Ph.D. Thesis, University of Sevilla, Sevilla, Spain, 2015. [Google Scholar]
- Gisbert Blanquer, J.M.; Ibañez Asensio, S.; Moreno Ramón, H. El Factor K de la Ecuación Universal de Pérdidas de Suelo (USLE); Universitat Politècnica de València: Valencia, Spain, 2012; Available online: http://hdl.handle.net/10251/16850 (accessed on 21 April 2021). (In Spanish)
- Gómez, J.; Battany, M.; Renschler, C.S.; Fereres, E. Evaluating the impact of soil management on soil loss in olive orchards. Soil Use Manag. 2006, 19, 127–134. [Google Scholar] [CrossRef]
- Narayanan, N.; Ramamurthy, K. Structure and properties of aerated concrete: A review. Cem. Concr. Compos. 2000, 22, 321–329. [Google Scholar] [CrossRef]
- Laudicina, V.A.; Novara, A.; Barbera, V.; Egli, M.; Badalucco, L. Long-Term Tillage and Cropping System Effects on Chemical and Biochemical Characteristics of Soil Organic Matter in a Mediterranean Semiarid Environment. Land Degrad. Dev. 2014, 26, 45–53. [Google Scholar] [CrossRef]
- Carlos, F.S.; Schaffer, N.; Marcolin, E.; Fernandes, R.S.; Mariot, R.; Mazzurana, M.; Roesch, L.F.W.; Levandoski, B.; Camargo, F.A.D.O. A long-term no-tillage system can increase enzymatic activity and maintain bacterial richness in paddy fields. Land Degrad. Dev. 2021, 32, 2257–2268. [Google Scholar] [CrossRef]
- Pavlidis, G.; Tsihrintzis, V.A. Environmental Benefits and Control of Pollution to Surface Water and Groundwater by Agroforestry Systems: A Review. Water Resour. Manag. 2018, 32, 1–29. [Google Scholar] [CrossRef]
- Sasakova, N.; Gregova, G.; Takacova, D.; Mojzisova, J.; Papajová, I.; Venglovsky, J.; Szaboova, T.; Kovacova, S. Pollution of Surface and Ground Water by Sources Related to Agricultural Activities. Front. Sustain. Food Syst. 2018, 2, 42. [Google Scholar] [CrossRef] [Green Version]
- De Torres, M.A.R.-R.; Ordóñez-Fernández, R.; Moreno-García, M.; Márquez-García, J.; Carbonell-Bojollo, R.M. Carbon sequestration by grass, crucifer and legume groundcovers in olive orchards. J. Water Clim. Chang. 2018, 9, 748–763. [Google Scholar] [CrossRef] [Green Version]
- Nagendra, H. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl. Geogr. 2002, 22, 175–186. [Google Scholar] [CrossRef]
- Keylock, C.J. Simpson diversity and the Shannon-Wiener index as special cases of a generalized entropy. Oikos 2005, 109, 203–207. [Google Scholar] [CrossRef]
- STELLA. Dynamic System Software; STELLA 9.1.4; Isee Systems Inc.: Lebanon, PA, USA, 2010; Available online: https://www.iseesystems.com/store/products/stella-online.aspx (accessed on 15 April 2021).
- Gómez-Calero, J.A. Olivar Sostenible: Prácticas para una Producción Sostenible de olivar en Andalucía; Instituto de Agricultura Sostenible, Centro Superior de Investigaciones Científicas: Córdoba, Spain, 2010; Available online: https://www.ias.csic.es/sostenibilidad_olivar/BPA_VF_Jan2010.pdf (accessed on 12 April 2021). (In Spanish)
- Yang, Y.; Mathew, T. The simultaneous assessment of normality and homoscedasticity in linear fixed effects models. J. Stat. Theory Pract. 2017, 12, 66–81. [Google Scholar] [CrossRef]
- Ruxton, G.D. The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behav. Ecol. 2006, 17, 688–690. [Google Scholar] [CrossRef]
- Fay, M.P.; Proschan, M.A. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surv. 2010, 4, 1–39. [Google Scholar] [CrossRef]
- RStudio, version 0.98.1102; Open Source and Enterprise-Ready Professional Software for R; RStudio Inc.: Boston, MA, USA, 2009–2014; Available online: https://www.rstudio.com/products/RStudio/ (accessed on 1 April 2021).
- SPSS. IBM Statistical Package for the Social Sciences for Windows; SPSS Version 21.0; IBM Corp: Armonk, NY, USA, 2012; Available online: https://www.ibm.com/es-es/analytics/spss-statistics-software (accessed on 7 April 2021).
- Lawson, J. Design and Analysis of Experiments with R, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2014; pp. 65–150. [Google Scholar]
- Rodriguez-Entrena, M.; Espinosa, M.; Barreiro-Hurle, J. The role of ancillary benefits on the value of agricultural soils carbon sequestration programmes: Evidence from a latent class approach to Andalusian olive groves. Ecol. Econ. 2014, 99, 63–73. [Google Scholar] [CrossRef]
- Guzmán-Álvarez, J.R.; Navarro-Cerrillo, R.M. Modelling potential abandonment and natural restoration of marginal olive groves in Andalusia (south of Spain). J. Land Use Sci. 2008, 3, 113–129. [Google Scholar] [CrossRef]
- Paredes, D.; Karp, D.S.; Chaplin-Kramer, R.; Benítez, E.; Campos, M. Natural habitat increases natural pest control in olive groves: Economic implications. J. Pest Sci. 2019, 92, 1111–1121. [Google Scholar] [CrossRef]
- Michalopoulos, G.; Kasapi, K.A.; Koubouris, G.; Psarras, G.; Arampatzis, G.; Hatzigiannakis, E.; Kavvadias, V.; Xiloyannis, C.; Montanaro, G.; Malliaraki, S.; et al. Adaptation of Mediterranean Olive Groves to Climate Change through Sustainable Cultivation Practices. Climate 2020, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Hermosin, M.; Calderon, M.; Real, M.; Cornejo, J. Impact of herbicides used in olive groves on waters of the Guadalquivir river basin (southern Spain). Agric. Ecosyst. Environ. 2013, 164, 229–243. [Google Scholar] [CrossRef]
- Caravaca, F.; Lax, A.; Albaladejo, J. Soil aggregate stability and organic matter in clay and fine silt fractions in urban refuse-amended semiarid soils. Soil Sci. Soc. Am. J. 2001, 65, 1235–1238. [Google Scholar] [CrossRef]
- Li, Y.; Niu, W.; Wang, J.; Liu, L.; Zhang, M.; Xu, J. Effects of Artificial Soil Aeration Volume and Frequency on Soil Enzyme Activity and Microbial Abundance when Cultivating Greenhouse Tomato. Soil Sci. Soc. Am. J. 2016, 80, 1208–1221. [Google Scholar] [CrossRef]
- Ben-Noah, I.; Friedman, S.P. Review and Evaluation of Root Respiration and of Natural and Agricultural Processes of Soil Aeration. Vadose Zone J. 2018, 17, 170119. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Pintor, A.; Sanz-Cañada, J.; Salas, E.; Rescia, A. Assessment of Agri-Environmental Externalities in Spanish Socio-Ecological Landscapes of Olive Groves. Sustainability 2018, 10, 2640. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.-W.; Xie, Y.; Feng, Y.-J.; Yin, S.-Q. Study on the Method of Soil Productivity Assessment in Black Soil Region of Northeast China. Agric. Sci. China 2009, 8, 472–481. [Google Scholar] [CrossRef]
- Duan, X.; Shi, X.; Li, Y.; Rong, L.; Fen, D. A new method to calculate soil loss tolerance for sustainable soil productivity in farmland. Agron. Sustain. Dev. 2016, 37, 2. [Google Scholar] [CrossRef] [Green Version]
- Tavoni, M.; Kriegler, E.; Riahi, K.; van Vuuren, D.; Aboumahboub, T.; Bowen, A.; Calvin, K.; Campiglio, E.; Kober, T.; Jewell, J.; et al. Post-2020 climate agreements in the major economies assessed in the light of global models. Nat. Clim. Chang. 2015, 5, 119–126. [Google Scholar] [CrossRef]
- Quintero-Angel, M.; González-Acevedo, A. Tendencies and challenges for the assessment of agricultural sustainability. Agric. Ecosyst. Environ. 2018, 254, 273–281. [Google Scholar] [CrossRef]
- Lampridi, M.G.; Sørensen, C.G.; Bochtis, D. Agricultural Sustainability: A Review of Concepts and Methods. Sustainability 2019, 11, 5120. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, E.; Pedrini, P.; Marchetti, M.G.; Fano, E.A.; Castaldelli, G. Life Cycle Based Evaluation of Environmental and Economic Impacts of Agricultural Productions in the Mediterranean Area. Sustainability 2015, 7, 2915–2935. [Google Scholar] [CrossRef] [Green Version]
- Daniel, E. Towards Sustainable Organic Farming Systems. Sustainability 2020, 12, 9832. [Google Scholar] [CrossRef]
- BOE. Ley 5/2011, de 6 de Octubre, del Olivar de Andalucía; BOE (Boletín Oficial del Estado/State Official Bulletin): Andalusia, Spain, 2011; Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2011-17494 (accessed on 27 April 2021). (In Spanish)
- Fukuda-Parr, S. From the Millennium Development Goals to the Sustainable Development Goals: Shifts in purpose, concept, and politics of global goal setting for development. Gend. Dev. 2016, 24, 43–52. [Google Scholar] [CrossRef]
- Biermann, F.; Kanie, N.; Kim, R.E. Global governance by goal-setting: The novel approach of the UN Sustainable Development Goals. Curr. Opin. Environ. Sustain. 2017, 26–27, 26–31. [Google Scholar] [CrossRef]
Management | Erosion Level | Factors | A (t ha−1 year −1) | ||||
---|---|---|---|---|---|---|---|
R (J ha−1) | K (Mg J−1) | LS | C | P | |||
Organic | Null | 109.70 | 0.82 | 0.00 (0%) | 0.06 | 1.00 | --- |
Moderate | 109.70 | 0.56 | 0.70 (7%) | 0.06 | 1.00 | 2.58 |
Variable (Unit) | Organic Olive Groves | p-Value | |
---|---|---|---|
Null Erosion (x ± SD) | Moderate Erosion (x ± SD) | ||
Dry bulk density (g cm−3) | 1.05 ± 0.02 | 1.14 ± 0.03 | <0.001 *** |
Soil depth (cm) | 154.03 ± 1.12 | 119.70 ± 1.01 | <0.001 *** |
Soil weight (t ha−1) | 16,173.15 ± 322.19 | 13,645.80 ± 154,37 | <0.001 *** |
Gravel (%) | 15.73 ± 0.53 | 4.06 ± 0.08 | <0.001 *** |
Sands (%) | 46.75 ± 0.09 | 49.40 ± 0.07 | <0.001 *** |
Silts (%) | 40.84 ± 0.03 | 30.95 ± 0.01 | <0.001 *** |
Clays (%) | 12.41 ± 0.07 | 19.65 ± 0.06 | <0.01 ** |
Porosity (%) | 68.96 ± 0.17 | 66.05 ± 0.12 | <0.001 *** |
Moisture (%) | 24.73 ± 0.21 | 23.42 ± 0.17 | <0.001 *** |
pH (---) | 8.60 ± 0.02 | 8.21 ± 0.02 | <0.001 *** |
Potassium (mg kg−1) | 168.58 ± 3.48 | 161.32 ± 2.64 | <0.001 *** |
Soil texture (---) | Loam | Loam | --- |
Variable (Unit) | Organic Olive Groves | p-Value | |
---|---|---|---|
Null Erosion (x ± SD) | Moderate Erosion (x ± SD) | ||
Fine fractions (%) | 53.36 ± 0.10 | 46.90 ± 1.24 | <0.001 *** |
Aeration (%) | 44.26 ± 0.17 | 42.62 ± 0.11 | <0.001 *** |
Carbon in soil (%) | 2.26 ± 0.03 | 1.55 ± 0.01 | <0.001 *** |
Β-glucosidase (μmol p-nitrophenol gr−1 h−1) | 1.07 ± 0.09 | 2.30 ± 0.25 | <0.001 *** |
Phosphatase (μmol p-nitrophenol gr−1 h−1) | 0.29 ± 0.03 | 1.01 ± 0.05 | <0.001 *** |
Conductivity (μS cm−1) | 182.44 ± 9.48 | 227.05 ± 10.81 | <0.001 *** |
Phosphates (ppm) | 0.12 ± 0.04 | 0.44 ± 0.06 | <0.001 *** |
Nitrates (ppm) | 2.89 ± 0.33 | 3.79 ± 0.20 | <0.001 *** |
Variable (Unit) | Organic Olive Groves | p-Value | |
---|---|---|---|
Null Erosion (x ± SD) | Moderate Erosion (x ± SD) | ||
Plant cover (%) | 71.91 ± 0.62 | 43.55 ± 0.39 | <0.001 *** |
Bare soil (%) | 28.09 ± 0.62 | 56.45 ± 0.39 | <0.001 *** |
Legume richness (sps) | 2.32 ± 0.52 | 0.98 ± 0.78 | <0.001 *** |
Grass richness (sps) | 2.73 ± 0.52 | 0.67 ± 0.51 | <0.001 *** |
Crucifers richness (sps) | 2.56 ± 0.50 | 0.00 ± 0.00 | <0.001 *** |
Shannon Index (H‘, bits) | 2.15 ± 0.06 | 2.05 ± 0.07 | <0.05 * |
Simpson´s Index (D, dimensionless) | 0.84 ± 0.07 | 0.82 ± 0.03 | >0.05 |
Variable (Unit) | Organic Olive Groves | p-Value | |
---|---|---|---|
Null Erosion (x ± SD) | Moderate Erosion (x ± SD) | ||
Plot size (ha) | 7.63 ± 2.78 | 3.00 ± 1.17 | <0.05 * |
Plant density (trees ha−1) | 277.67 ± 36.48 | 384.95 ± 29.90 | <0.05 * |
Productive yield (kg olive ha−1) | 2708.08 ± 3.50 | 3613.04 ± 96.02 | <0.001 *** |
Productive yield (l olive oil ha−1) | 514.84 ± 0.66 | 686.88 ± 18.25 | <0.001 *** |
Variable (Unit) | Organic Olive Groves | p-Value | |
---|---|---|---|
Null Erosion (x ± SD) | Moderate Erosion (x ± SD) | ||
Farm income (€ ha−1) | 1216.47 ± 2.80 | 1090.43 ± 15.21 | <0.001 *** |
Subsidies from CAP (€ ha−1 year−1) | 299.50 ± 0.00 | 299.50 ± 0.00 | --- |
Selling price at origin (€ kg olive−1) | 0.80 ± 0.00 | 0.80 ± 0.00 | --- |
Selling price at origin (€ L olive oil−1) | 4.21 ± 0.00 | 4.21 ± 0.00 | --- |
Farm costs (€ ha−1 year−1) | 1249.50 ± 0.00 | 2099.50 ± 0.00 | <0.001 *** |
Labour force (persons year−1) | 107.00 ± 0.69 | 129.00 ± 0.49 | <0.001 *** |
Degree of satisfaction with organic management | High | High | --- |
Organic certification | Yes | Yes | --- |
Willingness to change the farm management | No | No | --- |
Variable (Unit) | Organic Olive Groves | p-Value | |
---|---|---|---|
Null Erosion | Moderate Erosion | ||
Production (kg olive ha−1) | 406,212 | 538,962 | <0.001 *** |
Production (L olive oil ha−1) | 77,227 | 102,464 | <0.001 *** |
Benefits without CAP (€ ha−1) | 137,545 | 116,245 | <0.05 * |
Benefits with CAP (€ ha−1) | 182,470 | 161,170 | <0.05 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez Sousa, A.A.; Parra-López, C.; Sayadi-Gmada, S.; Barandica, J.M.; Rescia, A.J. Impacts of Erosion on the Sustainability of Organic Olive Groves: A Case Study (Estepa Region, Southwestern Spain). Sustainability 2021, 13, 7983. https://doi.org/10.3390/su13147983
Rodríguez Sousa AA, Parra-López C, Sayadi-Gmada S, Barandica JM, Rescia AJ. Impacts of Erosion on the Sustainability of Organic Olive Groves: A Case Study (Estepa Region, Southwestern Spain). Sustainability. 2021; 13(14):7983. https://doi.org/10.3390/su13147983
Chicago/Turabian StyleRodríguez Sousa, Antonio Alberto, Carlos Parra-López, Samir Sayadi-Gmada, Jesús M. Barandica, and Alejandro J. Rescia. 2021. "Impacts of Erosion on the Sustainability of Organic Olive Groves: A Case Study (Estepa Region, Southwestern Spain)" Sustainability 13, no. 14: 7983. https://doi.org/10.3390/su13147983
APA StyleRodríguez Sousa, A. A., Parra-López, C., Sayadi-Gmada, S., Barandica, J. M., & Rescia, A. J. (2021). Impacts of Erosion on the Sustainability of Organic Olive Groves: A Case Study (Estepa Region, Southwestern Spain). Sustainability, 13(14), 7983. https://doi.org/10.3390/su13147983