Convergence or Divergence? Emission Performance in the Regional Comprehensive Economic Partnership Countries
Abstract
:1. Introduction
2. Methods and Data
2.1. Convergence Analysis
2.2. Emission Performance Index
- (i)
- If (x, y, b)∈ Tech and 0 ≤ θ ≤ 1, then (x, θy, θb)∈ Tech
- (ii)
- If (x, y, b)∈ Tech and b = 0, then y = 0
2.3. Data
3. Empirical Results
3.1. Per Capita Emission Convergence
3.2. Per Capita Emission Convergence
3.2.1. Emission Performance of the RCEP Countries
3.2.2. Converging Emission Performance in the RCEP Countries
4. Discussion
5. Conclusive Remarks and Policy Implications
- (1)
- With the establishment of the RCEP free trade agreement, this paper is the first to investigate the feasibility of cooperative CO2 mitigation in the participating countries.
- (2)
- To this end, a dynamic β-convergence approach with instrumental variables is adopted based on the previous cross-sectional β-convergence. This enables the investigation of the converging process in a panel data setting.
- (3)
- We adopt the DEA model and construct an array of emission performance indicators that consider multiple production factors and reconfirm the convergence of the RCEP countries in connection to these performance indicators.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petri, P.A.; Plummer, M.G. East Asia Decouples from the United States: Trade War, COVID-19, and East Asia’s New Trade Blocs. Available online: https://ideas.repec.org/p/iie/wpaper/wp20-09.html (accessed on 20 December 2020).
- Kalirajan, K.; Liu, Y. Renewable Energy Trade within Regional Comprehensive Economic Partnership (RCEP) Countries: An Exploratory Analysis. Available online: https://acde.crawford.anu.edu.au/sites/default/files/publication/acde_crawford_anu_edu_au/2016-09/wp2016-05_kalirajan_liu.pdf (accessed on 20 December 2020).
- Shi, Y.; Paramati, S.R.; Ren, X. The Growth of Carbon Markets in Asia: The Potential Challenges for Future Development. Available online: https://www.econstor.eu/handle/10419/222754 (accessed on 20 December 2020).
- Partnership for Market Readiness Australia and China Strengthen Carbon Market Collaboration. Available online: https://www.thepmr.org/content/australia-and-china-strengthen-carbon-market-collaboration (accessed on 20 December 2020).
- Bayer, P.; Aklin, M. The European Union Emissions Trading System reduced CO2 emissions despite low prices. Proc. Natl. Acad. Sci. USA 2020, 117, 8804–8812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newell, R.G.; Pizer, W.A.; Raimi, D. Carbon market lessons and global policy outlook. Science 2014, 343, 1316–1317. [Google Scholar] [CrossRef] [PubMed]
- Nordhaus, W. The climate club: How to fix a failing global effort. Foreign Aff. 2020, 99, 10. [Google Scholar]
- Chang, Y.; Li, Y. Renewable energy and policy options in an integrated ASEAN electricity market: Quantitative assessments and policy implications. Energy Policy 2015, 85, 39–49. [Google Scholar] [CrossRef]
- Acar, S.; Söderholm, P.; Brännlund, R. Convergence of per capita carbon dioxide emissions: Implications and meta-analysis. Clim. Policy 2017, 18, 512–525. [Google Scholar] [CrossRef]
- Soderholm, P.; Acar, S.; Maddison, D.; Pettersson, F. Convergence of Carbon Dioxide Emissions: A Review of the Literature. Int. Rev. Environ. Resour. Econ. 2014, 7, 141–178. [Google Scholar]
- Aldy, J.E. Per Capita Carbon Dioxide Emissions: Convergence or Divergence? Environ. Resour. Econ. 2006, 33, 533–555. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lin, B. Global convergence in per capita CO2 emissions. Renew. Sustain. Energy Rev. 2013, 24, 357–363. [Google Scholar] [CrossRef]
- Lawson, L.A.; Martino, R.; Nguyen-Van, P. Environmental convergence and environmental Kuznets curve: A unified empirical framework. Ecol. Model. 2020, 437, 109289. [Google Scholar] [CrossRef]
- Ang, J.B. CO2 emissions, energy consumption, and output in France. Energy Policy 2007, 35, 4772–4778. [Google Scholar] [CrossRef]
- Chen, J.; Xu, C.; Managi, S.; Song, M. Energy-carbon performance and its changing trend: An example from China’s construction industry. Resour. Conserv. Recycl. 2019, 145, 379–388. [Google Scholar] [CrossRef]
- Sheng, X.; Peng, B.; Elahi, E.; Wei, G. Regional convergence of energy-environmental efficiency: From the perspective of environmental constraints. Environ. Sci. Pollut. Res. Int. 2019, 26, 25467–25475. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China. Energy Econ. 2015, 48, 230–241. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data envelopment analysis. In Handbook on Data Envelopment Analysis, 1st ed.; Cooper, W.W., Seiford, L.M., Zhu, J., Eds.; Springer: Boston, MA, USA, 2000; pp. 1–40. [Google Scholar]
- Baumol, W.J. Productivity growth, convergence, and welfare: What the long-run data show. Am. Econ. Rev. 1986, 76, 1072–1085. [Google Scholar]
- Zhu, Y.; Liang, D.; Liu, T. Can China’s underdeveloped regions catch up with green economy? A convergence analysis from the perspective of environmental total factor productivity. J. Clean. Prod. 2020, 255, 120216. [Google Scholar] [CrossRef]
- Judson, R.A.; Owen, A.L. Estimating dynamic panel data models: A practical guide for macroeconomists. Econ. Lett. 1999, 65, 9–15. [Google Scholar] [CrossRef]
- Gu, H.; Yan, W.; Elahi, E.; Cao, Y. Air pollution risks human mental health: An implication of two-stages least squares estimation of interaction effects. Environ. Sci. Pollut. Res. Int. 2020, 27, 2036–2043. [Google Scholar] [CrossRef]
- Frankel, J.; Romer, D. Does Trade Cause Growth. Am. Econ. Rev. 1999, 89, 379–399. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Ren, R.; Zhang, Q.; Zhang, T. Air pollution and tourism development: An interplay. Ann. Tour. Res. 2020, 85, 103032. [Google Scholar] [CrossRef]
- Anderson, T.W.; Hsiao, C. Estimation of dynamic models with error components. J. Am. Stat. Assoc. 1981, 76, 598–606. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Wu, S. Effects of local and civil environmental regulation on green total factor productivity in China: A spatial Durbin econometric analysis. J. Clean. Prod. 2017, 153, 342–353. [Google Scholar] [CrossRef]
- Antweiler, W.; Copeland, B.R.; Taylor, M.S. Is free trade good for the environment? Am. Econ. Rev. 2001, 91, 877–908. [Google Scholar] [CrossRef] [Green Version]
- Acheampong, A.O. Economic growth, CO2 emissions and energy consumption: What causes what and where? Energy Econ. 2018, 74, 677–692. [Google Scholar] [CrossRef]
- Abbas, A.; Yang, M.; Yousaf, K.; Ahmad, M.; Elahi, E.; Iqbal, T. Improving energy use efficiency of corn production by using data envelopment analysis (a non-parametric approach). Fresenius Environ. Bull. 2018, 27, 4725–4733. [Google Scholar]
- Lee, H.; Choi, Y.; Yang, F.; Debbarma, J. The governance of airports in the sustainable local economic development. Sustain. Cities Soc. 2021, 74, 103235. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. A note on the evolution of directional distance function and its development in energy and environmental studies 1997–2013. Renew. Sustain. Energy Rev. 2014, 33, 50–59. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, Y.; Choi, Y. Is it feasible for China to enhance its air quality in terms of the efficiency and the regulatory cost of air pollution? Sci. Total Environ. 2020, 709, 136149. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Ang, B.W.; Wang, H. Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach. Eur. J. Oper. Res. 2012, 221, 625–635. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, P.; Choi, Y. Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis. Energy Policy 2013, 56, 653–662. [Google Scholar] [CrossRef]
- Liu, G.; Wang, B.; Cheng, Z.; Zhang, N. The drivers of China’s regional green productivity, 1999–2013. Resour. Conserv. Recycl. 2020, 153, 104561. [Google Scholar] [CrossRef]
- Yang, F.; Choi, Y.; Lee, H. Life-cycle data envelopment analysis to measure efficiency and cost-effectiveness of environmental regulation in China’s transport sector. Ecol. Indic. 2021, 126, 107717. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects, the 2019 Revision Volume I: Comprehensive Tables; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Ritchie, H.; Roser, M. CO2 and Greenhouse Gas Emissions. Available online: https://ourworldindata.org/ (accessed on 20 January 2021).
- Schwartz, G. Making Public Investment More Efficient; International Monetary Fund: Washington, DC, USA, 2015. [Google Scholar]
- Gupta, S.; Kangur, A.; Papageorgiou, C.; Wane, A. Efficiency-Adjusted Public Capital and Growth. World Dev. 2014, 57, 164–178. [Google Scholar] [CrossRef]
- International Monetary Fund. Investment and Capital Stock Dataset. 2017. Available online: https://data.world/imf/investment-and-capital-stock-i (accessed on 20 January 2021).
- World Energy Balance. Available online: https://www.iea.org/data-and-statistics/data-browser?country=WORLD&fuel=Energy%20supply&indicator=TPESbySource (accessed on 20 January 2021).
- World Bank Indicators. Available online: https://data.worldbank.org/indicator (accessed on 22 January 2021).
- Wan, J.; Baylis, K.; Mulder, P. Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries. Energy Econ. 2015, 48, 253–264. [Google Scholar] [CrossRef]
- Staiger, D.; Stock, J.H. Instrumental variables regression with weak instruments. Econometrica 1997, 65, 557–586. [Google Scholar] [CrossRef]
- Petrakos, G.; Kallioras, D.; Anagnostou, A. Regional convergence and growth in Europe: Understanding patterns and determinants. Eur. Urban Reg. Stud. 2011, 18, 375–391. [Google Scholar] [CrossRef]
- Quah, D.T. Empirics for economic growth and convergence. Eur. Econ. Rev. 1996, 40, 1353–1375. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Luo, H.-L.; Wang, C. Progress and trends of global carbon neutrality pledges. Adv. Clim. Chang. Res. 2020, 17, 88–97. [Google Scholar]
- Plumer, B.; Popovich, N. The World Still Isn’t Meeting Its Climate Goals. The New York Times, 7 December 2018. [Google Scholar]
- Bhattacharya, M.; Inekwe, J.N.; Sadorsky, P. Convergence of energy productivity in Australian states and territories: Determinants and forecasts. Energy Econ. 2020, 85, 104538. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, Z.; Lee, J. Dynamic Convergence of Green Total Factor Productivity in Chinese Cities. Sustainability 2020, 12, 4883. [Google Scholar] [CrossRef]
- Panopoulou, E.; Pantelidis, T. Club convergence in carbon dioxide emissions. Environ. Resour. Econ. 2009, 44, 47–70. [Google Scholar] [CrossRef]
- Choi, Y.; Yang, F.; Lee, H. On the Unbalanced Atmospheric Environmental Performance of Major Cities in China. Sustainability 2020, 12, 5391. [Google Scholar] [CrossRef]
- Yang, M.; Hou, Y.; Ji, Q.; Zhang, D. Assessment and optimization of provincial CO2 emission reduction scheme in China: An improved ZSG-DEA approach. Energy Econ. 2020, 91, 104931. [Google Scholar] [CrossRef]
- Pang, R.-Z.; Deng, Z.-Q.; Chiu, Y.-H. Pareto improvement through a reallocation of carbon emission quotas. Renew. Sustain. Energy Rev. 2015, 50, 419–430. [Google Scholar] [CrossRef]
- Mak, H.W.L.; Lam, Y.F. Comparative assessments and insights of data openness of 50 smart cities in air quality aspects. Sustain. Cities Soc. 2021, 69, 102868. [Google Scholar] [CrossRef]
- Labzovskii, L.D.; Mak, H.W.L.; Takele Kenea, S.; Rhee, J.-S.; Lashkari, A.; Li, S.; Goo, T.-Y.; Oh, Y.-S.; Byun, Y.-H. What can we learn about effectiveness of carbon reduction policies from interannual variability of fossil fuel CO2 emissions in East Asia? Environ. Sci. Policy 2019, 96, 132–140. [Google Scholar] [CrossRef]
Variables | Unit | Mean | St. Dev. | Minimum | Maximum |
---|---|---|---|---|---|
Population | 103 persons | 143,071.83 | 330,902.45 | 333.17 | 1,421,021.79 |
Capital | 109 US dollars | 4558.09 | 9297.97 | 13.83 | 64,687.64 |
Energy | 103 t oil-eq | 159,549.39 | 376,253.62 | 551.00 | 2,005,821.00 |
GDP | 109 US dollars | 714.38 | 1460.25 | 1.72 | 5623.04 |
CO2 emissions | 106 t CO2-eq | 706.17 | 1886.25 | 0.96 | 9838.75 |
Export | 109 US dollars | 214.20 | 349.12 | 0.28 | 1809.34 |
(1) RCEPs | (2) ASEANs | (3) Non-ASEANs | (4) East Asians | |
---|---|---|---|---|
β | −0.0475 *** (0.001) | −0.0621 ** (0.026) | −0.0867 *** (0.001) | −0.1022 *** (0.001) |
α | −0.0959 *** (0.002) | −0.0030 ** (0.043) | −0.2210 *** (0.000) | −0.3357 *** (0.000) |
Eeq | NA | NA | NA | NA |
CT | NA | NA | NA | NA |
First-stage F | 17.38 | 8.28 | 31.85 | 34.55 |
Region | RCEPs | |||||
---|---|---|---|---|---|---|
Index | CEE | CPP | CPR | |||
(1) | (2) | (3) | (4) | (5) | (6) | |
β | 0.0816 ** (0.023) | 0.0857 ** (0.021) | 0.0463 ** (0.013) | 0.0568 ** (0.012) | −0.0437 *** (0.001) | −0.0417 *** (0.001) |
Ln(EX) | 0.0171 (0.788) | 0.0225 (0.638) | 0.0242 (0.713) | |||
α | −0.0156 (0.129) | −0.0032 (0.963) | −0.0110 (0.238) | −0.0818 (0.178) | −0.0103 (0.193) | −0.0763 (0.178) |
Eeq | 0.8187 | 0.9611 | 0.7831 | 0.2269 | NA | NA |
CT | 3.1996 | 3.1606 | 3.7659 | 3.5621 | NA | NA |
First-stage F | 11.37 | 11.88 | 12.02 | 12.5492 | 19.33 | 20.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Choi, Y.; Lee, H. Convergence or Divergence? Emission Performance in the Regional Comprehensive Economic Partnership Countries. Sustainability 2021, 13, 10135. https://doi.org/10.3390/su131810135
Yang F, Choi Y, Lee H. Convergence or Divergence? Emission Performance in the Regional Comprehensive Economic Partnership Countries. Sustainability. 2021; 13(18):10135. https://doi.org/10.3390/su131810135
Chicago/Turabian StyleYang, Fan, Yongrok Choi, and Hyoungsuk Lee. 2021. "Convergence or Divergence? Emission Performance in the Regional Comprehensive Economic Partnership Countries" Sustainability 13, no. 18: 10135. https://doi.org/10.3390/su131810135
APA StyleYang, F., Choi, Y., & Lee, H. (2021). Convergence or Divergence? Emission Performance in the Regional Comprehensive Economic Partnership Countries. Sustainability, 13(18), 10135. https://doi.org/10.3390/su131810135