Influence of Population Income on Energy Consumption and CO2 Emissions in Buildings of Cities
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Classification of Cities by the Income of Their Inhabitants
3.2. Equivalized Disposable Income
3.3. Electric and Thermal Energy Consumption
3.4. CO2 Emissions
4. Application of This Study to the Case of Spain
4.1. Classification of Spanish Cities by Equivalized Disposable Income
4.2. Thermal and Electric Energy Consumption of Spanish Cities
4.3. CO2 Emissions of Spanish Cities
5. Results and Discussion
5.1. Sample of the Study
5.2. Total Energy Consumption
5.3. Energy Consumptions per Household
5.4. Energy Consumptions per Inhabitant
5.5. CO2 Emissions
6. Conclusions
Author Contributions
Funding
Informed Consent statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Parliament News. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20180301STO98928/greenhouse-gas-emissions-bycountry-and-sector-infographic (accessed on 12 October 2020).
- International Energy Agency. 2018 Global Status Report: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; United Nations Environment Programme: Pris, France, 2018. [Google Scholar]
- Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 13 May 2020).
- Department of Economic and Social Affairs. Available online: https://sdgs.un.org/goals/goal11 (accessed on 14 September 2020).
- European Parliament News. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20200618STO81513/green-deal-key-to-a-climate-neutral-and-sustainable-eu (accessed on 25 July 2020).
- COM. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Gaglia, A.G.; Balaras, C.A.; Mirasgedis, S.; Georgopoulou, E.; Sarafidis, Y.; Lalas, D.P. Empirical assessment of the Hellenic non-residential building stock, energy consumption, emissions and potential energy savings. Energy Conv. Manag. 2007, 48, 1160–1175. [Google Scholar] [CrossRef]
- Gagliano, A.; Nocera, F.; D’Amico, A.; Spataru, C. Geographical information system as support tool for sustainable energy action plan. Energy Procedia 2015, 83, 310–319. [Google Scholar] [CrossRef] [Green Version]
- Moreno, A.G.; Vélez, F.; Alpagut, B.; Hernández, P.; Montalvillo, C.S. How to achieve positive energy districts for sustainable cities: A proposed calculation methodology. Sustainability 2021, 13, 710. [Google Scholar] [CrossRef]
- Jiang, L.; Xing, R.; Chen, X.; Xue, B. A survey-based investigation of greenhouse gas and pollutant emissions from household energy consumption in the Qinghai-Tibet Plateau of China. Energy Build. 2021, 235, 110753. [Google Scholar] [CrossRef]
- Zarco-Soto, I.M.; Zarco-Periñán, P.J.; Sánchez-Durán, R. Influence of cities population size on their energy consumption and CO2 emissions: The case of Spain. Environ. Sci. Pollut. Res. 2021, 28, 28146–28147. [Google Scholar] [CrossRef]
- Huo, T.; Ren, H.; Cai, W. Estimating urban residential building-related energy consumption and energy intensity in China based on improved building stock turnover model. Sci. Total Environ. 2019, 650, 427–437. [Google Scholar] [CrossRef]
- Nageli, C.; Camarasa, C.; Jakob, M.; Catenazzi, G.; Ostermeyer, Y. Synthetic building stocks as a way to assess the energy demand and greenhouse gas emissions of national building stocks. Energy Build. 2018, 173, 443–460. [Google Scholar] [CrossRef]
- Mutumbi, U.; Thondhlana, G.; Ruwanza, S. Reported behavioural patterns of electricity use among low-income households in Makhanda, South Africa. Sustainability 2021, 13, 7271. [Google Scholar] [CrossRef]
- Williams, S.P.; Thondhlana, G.; Kua, H.W. Electricity use behaviour in a high-income neighbourhood in Johannesburg, South Africa. Sustainability 2020, 12, 4571. [Google Scholar] [CrossRef]
- Mir, A.A.; Alghassab, M.; Ullah, K.; Khn, Z.A.; Lu, Y.; Imran, M. A review of electricity demand forecasting in low and middle income countries: The demand determinants and horizons. Sustainability 2020, 12, 5931. [Google Scholar] [CrossRef]
- Anagnostis, A.; Papageorgiou, E.; Bochtis, D. Application of artificial neural networks for natural gas consumption forecasting. Sustainability 2020, 12, 6409. [Google Scholar] [CrossRef]
- Botzen, W.J.W.; Nees, T.; Estrada, F. Temperature effects on electricity and gas consumption: Empirical evidence from Mexico and projections under future climate conditions. Sustainability 2021, 13, 305. [Google Scholar] [CrossRef]
- Liu, W.C. The relationship between primaty energy consumption and real gross domestic product: Evidence from major Asian countries. Sustainability 2020, 12, 2568. [Google Scholar] [CrossRef] [Green Version]
- Balatsky, A.V.; Balatsky, G.I.; Borysov, S.S. Resource demand growth and sustainability due to increased world consumption. Sustainability 2015, 7, 3430–3440. [Google Scholar] [CrossRef] [Green Version]
- Vieira, F.; Ribeiro, M.A.; Francisco, A.C.; Lenzi, G.G. Influence of extreme events in electric energy consumption and gross domestic product. Sustainability 2019, 11, 672. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.T. The factors affecting electricity consumption and the consumption characteristics in the residential sector—A case example of Taiwan. Sustainability 2017, 9, 1484. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.C. Electricity consumption and economic growth: Evidence from 17 Taiwanese industries. Sustainability 2017, 9, 50. [Google Scholar] [CrossRef]
- Karanfil, F.; Li, Y. Electricity consumption and economic growth: Exploring panel-specific differences. Energy Policy 2015, 82, 264–277. [Google Scholar] [CrossRef]
- Tiba, S.; Omri, A. Literature survey on the relationships between energy, environment and economic growth. Renew. Sust. Energ. Rev. 2017, 69, 1129–1146. [Google Scholar] [CrossRef]
- Omri, A. An international literature survey on energy-economic growth nexus: Evidence from country-specific studies. Renew. Sust. Energ. Rev. 2014, 38, 951–959. [Google Scholar] [CrossRef] [Green Version]
- Wadud, Z.; Dey, H.S.; Kabir, M.d.A.; Khan, S.I. Modeling and forecasting natural gas demand in Bangladesh. Energy Policy 2011, 39, 7372–7380. [Google Scholar] [CrossRef] [Green Version]
- Bianco, V.; Scarpa, F.; Tagliafico, L.A. Analysis and future outlook of natural gas consumption n the Italian residential sector. Energy Conv. Manag. 2014, 87, 754–764. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, B. Analysis on the influence of China’s energy consumption on economic growth. Sustainability 2019, 11, 3982. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Qu, J.; Maraseni, T.N.; Niu, Y.; Zeng, J.; Zhang, L.; Xu, L. Household CO2 emissions: Current status and future perspectives. Int. J. Environ. Res. Public Health. 2020, 17, 7077. [Google Scholar] [CrossRef]
- Lyons, S.; Pentecost, A.; Tol, R.S.J. Socioeconomic distribution of emissions and resource use in Ireland. J. Environ. Manag. 2012, 112, 186–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chancel, L. Are younger generations higher carbon emitters than their elders? Inequalities, generations and CO2 emissions in France and in the USA. Ecol. Econ. 2014, 100, 195–207. [Google Scholar] [CrossRef]
- Qu, J.; Zeng, J.; Li, Y.; Wang, Q.; Maraseni, T.; Zhang, L.; Zhang, Z.; Clarque-Sather, A. Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China. Energy Policy 2013, 57, 133–140. [Google Scholar] [CrossRef]
- Golley, J.; Meng, X. Income inequality and carbon dioxide emissions: The case of Chinese urban households. Energy Econ. 2012, 34, 1864–1872. [Google Scholar] [CrossRef]
- Wang, S.; Guangdong, L.; Fang, C. Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence form countries with different income level. Renew. Sust. Energ. Rev. 2018, 81, 2144–2159. [Google Scholar] [CrossRef]
- Xing, R.; Hanaoka, T.; Kanamori, Y.; Masui, T. Greenhouse gas and air pollutant emissions of China’s residential sector: The importance of considering energy transition. Sustainability 2017, 9, 614. [Google Scholar] [CrossRef] [Green Version]
- Ameyaw, B.; Yao, L. Analyzing the impact of GDP on CO2 emissions and forecasting Africa’s total CO2 emissions with non-assumption driven bidirectional long short-term memory. Sustainability 2018, 10, 3110. [Google Scholar] [CrossRef] [Green Version]
- Tian, C.; Feng, G.; Li, S.; Xu, F. Scenario analysis on energy consumption and CO2 emissions reduction potential in building heating sector al community level. Sustainability 2019, 11, 5392. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Song, C.; Yuan, R. CO2 emissions from electricity generation in China during 1997–2040: The roles of energy transition and thermal power generation efficiency. Sci. Total Environ. 2021, 773, 145026. [Google Scholar] [CrossRef] [PubMed]
- Tachega, M.A.; Yao, X.; Liu, Y.; Ahmed, D.; Ackaah, W.; Gabir, M.; Gyimah, J. Income heterogeneity and the environmental Kuznets curve turning points: Evidence from Africa. Sustainability 2021, 13, 5634. [Google Scholar] [CrossRef]
- Mitic, P.; Ivanovic, O.M.; Zdravkovic, A. A cointegration analysis of real GDP and CO2 emissions in transitional countries. Sustainability 2017, 9, 568. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Shi, J.; Shen, B.; Li, S.; Wang, Y. Nexus among energy consumption, economic growth, urbanization and carbon emissions: Heterogeneous panel evidence considering China’s regional differences. Sustainability 2018, 10, 2383. [Google Scholar] [CrossRef] [Green Version]
- Mardani, A.; Streimikiene, D.; Cavallaro, F.; Loganathan, N.; Khoshniudi, M. Carbon dioxide (CO2) emissions and economic growth: A systematic review of two decades of research from 1995 to 2017. Sci. Total Environ. 2019, 649, 31–49. [Google Scholar] [CrossRef]
- Shikwambana, L.; Mhangara, P.; Kganyago, M. Assessing the relationship between economic growth and emissions levels in South Africa between 1994 and 2019. Sustainability 2021, 13, 2645. [Google Scholar] [CrossRef]
- Khan, M.K.; Teng, J.; Khan, U.I.; Khan, M.O. Impact of globalization, economic factors and energy consumption on CO2 emissions in Pakistan. Sci. Total Environ. 2019, 688, 424–436. [Google Scholar] [CrossRef]
- Ma, X.; Wang, C.; Dong, B.; Gu, G.; Chen, R.; Li, Y.; Zou, H.; Zhang, W.; Li, Q. Carbon emissions from energy consumption in China: Its measurement and driving factors. Sci. Total Environ. 2019, 648, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Ali, M.; Hashmi, S.H.; Shabir, M. Income inequality and CO2 emissions in developing countries: The moderating role of financial instability. Sustainability 2020, 12, 6810. [Google Scholar] [CrossRef]
- Sohag, K.; Mamun, M.d.A.; Uddin, G.S.; Ahmed, A.M. Sectoral output, energy use, and CO2 emission in middle-income countries. Environ. Sci. Pollut. Res. 2017, 24, 9754–9764. [Google Scholar] [CrossRef] [Green Version]
- Yeo, Y.; Shim, D.; Lee, J.D.; Altmann, J. Driving forces of CO2 emissions in emerging countries: LDMI decomposition analysis on China and India’s residential sector. Sustainability 2015, 7, 16108–16129. [Google Scholar] [CrossRef] [Green Version]
- Hirano, Y.; Ihara, T.; Hara, M.; Honjo, K. Estimation of direct and indirect household CO2 emissions in 49 Japanese cities with consideration of regional conditions. Sustainability 2020, 12, 4678. [Google Scholar] [CrossRef]
- Kennedy, C.; Steinberger, J.; Gasson, B.; Hansen, Y.; Hillman, T.; Havránek, M.; Pataki, D.; Phdunngsilp, A.; Ramaswami, A.; Mendez, G.V. Greenhouse gas emissions from global cities. Environ. Sci. Technol. 2009, 43, 7297–7302. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Cai, W.; Ma, M. Carbon dioxide intensity and income level in the Chinese megacities’ residential building sector: Decomposition and decoupling analyses. Sci. Total Environ. 2019, 677, 315–327. [Google Scholar] [CrossRef]
- Zheng, H.; Hu, J.; Guan, R.; Wang, S. Examining determinants of CO2 emissions in 73 cities in China. Sustainability 2016, 8, 1296. [Google Scholar] [CrossRef]
- Eurostat. European Commission. 2020. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20200203-2 (accessed on 12 October 2020).
- Zarco-Soto, I.M.; Zarco-Periñán, P.J.; Sánchez-Durán, R. Influence of climate on energy consumption and CO2 emissions: The case of Spain. Environ. Sci. Pollut. Res. 2020, 27, 15645–15662. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Equivalised_disposable_income (accessed on 8 December 2019).
- Eurostat Methodologies and Working Papers. Statistical Classification of Economic Activities in the European Community; Europen Commission: Luxembourg, 2008. [Google Scholar]
- Eurostat. Available online: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (accessed on 25 July 2020).
- Instituto Nacional de Estadística. Cifras de población, Ministerio de Asuntos Económicos y Transformación Digital. Available online: http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176951&menu=ultiDatos&idp=1254735572981 (accessed on 12 October 2020).
- Ministerio de Empleo y Seguridad Social. Real Decreto 1171/2015, de 29 de diciembre, por el que se fija el salario mínimo interprofesional para 2016. In Boletín Oficial del Estado; Agencia Estatal Boletín Oficial del Estado: Madrid, Spain, 2015. [Google Scholar]
- Instituto Nacional de Estadística. Demografía y población, Ministerio de Asuntos Económicos y Transformación Digital. Available online: http://www.ine.es/ss/Satellite?L=es_ES&c=Page&cid=1254735910183&p=1254735910183&pagename=INE%2FINELayout (accessed on 1 November 2020).
- Comisión Nacional de los Mercados y la Competencia. Informe de Supervisión del Mercado de Gas Natural en España; Ministerio de Economía, Industria y Competitividad: Madrid, Spain, 2017. [Google Scholar]
- Secretaría de Estado de la Energía. Estadísticas y Balances Energéticos; Ministerio para la Transición Ecológica: Madrid, Spain, 2018. [Google Scholar]
- Ministerio de Industria, Energía y Turismo; Ministerio de Fomento. Factores de emisión de CO2 y Coeficientes de Paso a Energía Primaria de Diferentes Fuentes de Energía Final Consumidas en el Sector de Edificios de España. Available online: https://energia.gob.es/desarrollo/EficienciaEnergetica/RITE/Reconocidos/Paginas/IndexDocumentosReconocidos.aspx (accessed on 19 March 2020).
Equivalized Disposable Income | Cities |
---|---|
Group 1: income less than 2 times the NMW | Alcalá de Guadaíra, Alcoy/Alcoi, Arona, Arrecife, Benalmádena, Benidorm, Chiclana de la Frontera, Dos Hermanas, Ejido (El), Elche/Elx, Elda, Estepona, Fuengirola, Gandía, Jerez de la Frontera, Linares, Línea de la Concepción (La), Lorca, Marbella, Mijas, Motril, Orihuela, Parla, Puerto de Santa María, Roquetas de Mar, San Bartolomé de Tirajana, San Fernando, San Vicente del Raspeig, Sanlúcar de Barrameda, Santa Coloma de Gramenet, Santa Lucía de Tirajana, Talavera de la Reina, Telde, Torremolinos, Torrent, Torrevieja, Utrera, Vélez-Málaga, |
Group 2: income between 2 and 2.5 times the NMW | Albacete, Alcalá de Henares, Alcorcón, Algeciras, Alicante/Alacant, Almería, Aranjuez, Arganda del Rey, Ávila, Avilés, Badajoz, Badalona, Cáceres, Cádiz, Cartagena, Castellón de la Plana, Ceuta, Ciudad Real, Collado Villalba, Córdoba, Cornellà de Llobregat, Coslada, Cuenca, Ferrol, Fuenlabrada, Getafe, Gijón, Granada, Guadalajara, Huelva, Huesca, Jaén, Las Palmas, Leganés, L’Hospitalet de Llobregat, Lleida, Logroño, Lugo, Málaga, Manresa, Mataró, Melilla, Mérida, Molina de Segura, Mollet del Vallès, Móstoles, Murcia, Ourense, Palencia, Palma de Mallorca, Paterna, Pinto, Ponferrada, Pontevedra, Prat de Llobregat (El), Reus, Rubí, Sabadell, Sagunto/Sagunt, Salamanca, San Cristóbal de la Laguna, Sant Boi de Llobregat, Santa Cruz de Tenerife, Segovia, Sevilla, Siero, Terrassa, Torrejón de Ardoz, Torrelavega, Valdemoro, Valencia, Vigo, Viladecans, Vilanova i la Geltrú, Vila-Real, Zamora |
Group 3: income between 2.5 and 3 times the NMW | A Coruña, Barakaldo, Burgos, Cerdanyola del Vallès, Girona, Granollers, Irún, León, Oviedo, Pamplona/Iruña, Rivas-Vaciamadrid, San Sebastián de los Reyes, Santander, Santiago de Compostela, Tarragona, Toledo, Valladolid, Zaragoza |
Group 4: income between 3 and 4 times the NMW | Alcobendas, Barcelona, Bilbao, Castelldefels, Getxo, Madrid, San Sebastián/Donostia, Vitoria/Gasteiz |
Group 5: income greater than 4 times the NMW | Boadilla del Monte, Majadahonda, Pozuelo de Alarcón, Rozas de Madrid (Las), Sant Cugat del Vallès |
POPULATION | NUMBER OF HOUSEHOLDS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Equivalized Disposable Income | Total | Mean | Std. Dev. | Median | Maximum | Minimum | Total | Mean | Std. Dev. | Median | Maximum | Minimum |
Group 1 | 3,310,409 | 87,116 | 38,473 | 76,624 | 228,675 | 52,620 | 1,220,128 | 32,109 | 13,571 | 29,249 | 83,182 | 18,927 |
Group 2 | 11,954,158 | 157,292 | 140,553 | 104,380 | 787,808 | 50,334 | 4,517,519 | 59,441 | 53,452 | 41,936 | 312,339 | 17,901 |
Group 3 | 2,960,859 | 164,492 | 142,846 | 112,815 | 664,938 | 57,723 | 1,188,755 | 66,042 | 59,001 | 46,331 | 269,347 | 21,470 |
Group 4 | 5,841,470 | 730,184 | 1,116,856 | 216,673 | 3,182,981 | 65,954 | 2,345,167 | 293,146 | 445,649 | 90,617 | 1,262,282 | 23,811 |
Group 5 | 392,954 | 78,591 | 17,530 | 85,605 | 95,071 | 51,463 | 122,900 | 24,580 | 5963 | 26,291 | 29,937 | 15,434 |
TOTAL (MWh/Year) | THERMAL (MWh/Year) | ELECTRIC (MWh/Year) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Equivalized Disposable Income | Total | Mean | Std. Dev. | Median | Max. | Min. | Total | Mean | Std. Dev. | Median | Max. | Min. | Total | Mean | Std. Dev. | Median | Max. | Min. |
Group 1 | 10,345,841 | 272,259 | 145,888 | 223,314 | 761,870 | 140,786 | 1,501,718 | 39,519 | 67,369 | 19,955 | 354,793 | 0 | 8,844,123 | 232,740 | 104,758 | 203,870 | 680,622 | 123,033 |
Group 2 | 47,058,447 | 619,190 | 480,191 | 396,286 | 2,805,385 | 143,830 | 14,435,580 | 189,942 | 171,343 | 140,476 | 643,146 | 0 | 32,622,868 | 429,248 | 385,145 | 272,946 | 2,162,239 | 120,861 |
Group 3 | 15,227,161 | 848,731 | 822,745 | 575,094 | 3,717,939 | 276,233 | 6,815,922 | 378,662 | 400,478 | 234,313 | 1,627,614 | 78,422 | 8,461,239 | 470,069 | 443,435 | 335,943 | 2,090,324 | 153,439 |
Group 4 | 31,445,001 | 3,930,625 | 6,339,155 | 1,204,894 | 18,400,465 | 315,622 | 15,059,610 | 1,882,451 | 3,062,082 | 550,718 | 8,969,965 | 140,304 | 16,385,391 | 2,048,174 | 3,282,922 | 550,588 | 9,430,500 | 175,318 |
Group 5 | 2,182,520 | 436,504 | 95,100 | 428,378 | 549,595 | 297,502 | 1,045,547 | 209,109 | 47,470 | 200,928 | 267,920 | 145,028 | 1,136,973 | 227,395 | 49,041 | 237,951 | 281,675 | 152,474 |
TOTAL (MWh/Year) | THERMAL (MWh/Year) | ELECTRIC (MWh/Year) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Equivalized Disposable Income | Mean | Std. Dev. | Median | Max. | Min. | Mean | Std. Dev. | Median | Max. | Min. | Mean | Std. Dev. | Median | Max. | Min. |
Group 1 | 8.25 | 1.99 | 7.81 | 17.00 | 5.99 | 1.11 | 1.57 | 0.69 | 8.29 | 0.00 | 7.14 | 0.77 | 7.07 | 9.05 | 5.99 |
Group 2 | 11.05 | 3.26 | 11.01 | 17.28 | 5.66 | 3.89 | 2.72 | 4.36 | 8.43 | 0.00 | 7.17 | 1.10 | 6.98 | 9.64 | 5.30 |
Group 3 | 12.69 | 2.59 | 12.52 | 17.17 | 8.90 | 5.53 | 2.15 | 5.67 | 8.65 | 1.94 | 7.16 | 1.09 | 7.19 | 8.80 | 5.42 |
Group 4 | 13.04 | 2.35 | 12.42 | 17.34 | 10.18 | 6.29 | 1.63 | 5.79 | 8.80 | 4.44 | 6.75 | 1.04 | 6.37 | 8.89 | 5.74 |
Group 5 | 17.60 | 1.84 | 18.44 | 18.79 | 14.36 | 8.46 | 1.17 | 8.99 | 9.16 | 6.38 | 9.14 | 0.67 | 9.45 | 9.63 | 7.97 |
TOTAL (MWh/Year) | THERMAL (MWh/Year) | ELECTRIC (MWh/Year) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Equivalized Disposable Income | Mean | Std. Dev. | Median | Max. | Min. | Mean | Std. Dev. | Median | Max. | Min. | Mean | Std. Dev. | Median | Max. | Min. |
Group 1 | 3.09 | 0.67 | 2.99 | 5.78 | 2.40 | 0.41 | 0.55 | 0.26 | 2.82 | 0.00 | 2.68 | 0.28 | 2.73 | 3.04 | 2.25 |
Group 2 | 4.22 | 1.16 | 4.37 | 6.01 | 1.67 | 1.48 | 1.00 | 1.76 | 3.28 | 0.00 | 2.73 | 0.37 | 2.66 | 3.86 | 1.67 |
Group 3 | 5.01 | 0.88 | 4.79 | 6.47 | 3.74 | 2.18 | 0.82 | 2.13 | 3.64 | 0.81 | 2.83 | 0.33 | 2.91 | 3.29 | 2.32 |
Group 4 | 5.13 | 0.74 | 4.87 | 6.32 | 4.31 | 2.48 | 0.64 | 2.28 | 3.76 | 1.88 | 2.65 | 0.21 | 2.61 | 2.96 | 2.43 |
Group 5 | 5.58 | 0.45 | 5.78 | 5.78 | 4.79 | 2.68 | 0.31 | 2.82 | 2.82 | 2.13 | 2.90 | 0.14 | 2.96 | 2.96 | 2.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarco-Soto, I.M.; Zarco-Soto, F.J.; Zarco-Periñán, P.J. Influence of Population Income on Energy Consumption and CO2 Emissions in Buildings of Cities. Sustainability 2021, 13, 10230. https://doi.org/10.3390/su131810230
Zarco-Soto IM, Zarco-Soto FJ, Zarco-Periñán PJ. Influence of Population Income on Energy Consumption and CO2 Emissions in Buildings of Cities. Sustainability. 2021; 13(18):10230. https://doi.org/10.3390/su131810230
Chicago/Turabian StyleZarco-Soto, Irene M., Fco. Javier Zarco-Soto, and Pedro J. Zarco-Periñán. 2021. "Influence of Population Income on Energy Consumption and CO2 Emissions in Buildings of Cities" Sustainability 13, no. 18: 10230. https://doi.org/10.3390/su131810230
APA StyleZarco-Soto, I. M., Zarco-Soto, F. J., & Zarco-Periñán, P. J. (2021). Influence of Population Income on Energy Consumption and CO2 Emissions in Buildings of Cities. Sustainability, 13(18), 10230. https://doi.org/10.3390/su131810230