Review of Transit Data Sources: Potentials, Challenges and Complementarity
Abstract
:1. Introduction
2. Endogenous Data Sources
2.1. Automatic Vehicle Location
2.2. Automatic Fare Collection
2.3. Automatic Passenger Counting
3. Exogenous Data Sources
3.1. Weather
3.2. Traffic
3.3. Social Media
3.4. Smartphone
3.5. Survey
4. Data-Driven Implications
4.1. Acquisition
4.1.1. Infrastructure
4.1.2. Storage
4.1.3. Digital Twin
4.2. Integration
4.2.1. Standardization
4.2.2. Validation
4.2.3. Matching
4.3. Processing
4.3.1. Data Analytics
4.3.2. Machine Learning
4.3.3. Privacy and Security
4.4. Exploitation
4.4.1. Visualization
4.4.2. Service Optimization
5. An Information Management Framework
5.1. Three-Layer Model
5.2. Use Cases
6. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AFC | Automatic fare collection |
APC | Automatic passenger counting |
API | Application programming interface |
AVL | Automatic vehicle location |
AVM | Automatic vehicle monitoring |
CEN | Comité Européen de Normalisation (European committee for standardization) |
DGPS | Differential global positioning system |
FCD | Floating car data |
GNSS | Global navigation satellite system |
GPS | Global positioning system |
GTFS | General transit feed specification |
HVV | Hamburger Verkehrsverbund (Hamburg transport association) |
IoT | Internet of things |
IM | Information management |
IT | Information and communication technologies |
MAC | Media access control |
ML | Machine learning |
NeTEx | Network timetable exchange |
O-D | Origin-destination |
RFID | Radio frequency identification |
TRB | Transportation Research Board |
VDV | Verband Deutscher Verkehrsunternehmen |
(Association of German transport companies) | |
XML | Extensible markup language |
References
- Kaplan, S.; Monteiro, M.M.; Anderson, M.K.; Nielsen, O.A.; Santos, E.M.D. The role of information systems in non-routine transit use of university students: Evidence from Brazil and Denmark. Transp. Res. Part A Policy Pract. 2017, 95, 34–48. [Google Scholar] [CrossRef]
- Jevinger, Å.; Persson, J.A. Exploring the potential of using real-time traveler data in public transport disturbance management. Public Transp. 2019, 11, 413–441. [Google Scholar] [CrossRef] [Green Version]
- Daduna, J.R.; Voß, S. (Eds.) Informationsmanagement im Verkehr; Physica: Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Schneidereit, G.; Daduna, J.R.; Voß, S. Informationsdistribution über Netzdienste am Beispiel des Öffentlichen Personenverkehrs. VDI-Berichte 1998, 1372, 217–236. [Google Scholar]
- Armoogum, J.; Ellison, A.B.; Kalter, M.J.O. Workshop Synthesis: Representativeness in surveys: Challenges and solutions. Transp. Res. Procedia 2018, 32, 224–228. [Google Scholar] [CrossRef]
- Hahne, F. Kürzeste und Schnellste Wege in Digitalen Straßenkarten. Ph.D. Thesis, University Hildesheim, Hildesheim, Germany, 2001. [Google Scholar]
- Lu, K.; Liu, J.; Zhou, X.; Han, B. A Review of Big Data Applications in Urban Transit Systems. IEEE Trans. Intell. Transp. Syst. 2020, 1–18. [Google Scholar] [CrossRef]
- Welch, T.F.; Widita, A. Big data in public transportation: A review of sources and methods. Transp. Rev. 2019, 39, 795–818. [Google Scholar] [CrossRef]
- Zannat, K.E.; Choudhury, C.F. Emerging Big Data Sources for Public Transport Planning: A Systematic Review on Current State of Art and Future Research Directions. J. Indian Inst. Sci. 2019, 99, 601–619. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.; Zhu, J.; Zhong, R. The rise of big data on urban studies and planning practices in China: Review and open research issues. J. Urban Manag. 2015, 4, 92–124. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Yu, F.R.; Wang, Y.; Ning, B.; Tang, T. Big Data Analytics in Intelligent Transportation Systems: A Survey. IEEE Trans. Intell. Transp. Syst. 2019, 20, 383–398. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, W.; Wang, P.; Shen, D.; Chen, S.; Wang, X.; Zhang, Q.; Yang, L. Big data for social transportation. IEEE Trans. Intell. Transp. Syst. 2015, 17, 620–630. [Google Scholar] [CrossRef]
- Iliopoulou, C.; Kepaptsoglou, K. Combining ITS and optimization in public transportation planning: State of the art and future research paths. Eur. Transp. Res. Rev. 2019, 11, 27. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Managing Data from Emerging Transportation Technologies to Support Decision-Making; The National Academies Press: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Analyst Toolbox: Analysis and Approaches for Reporting, Communicating, and Examining Transit Data; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Lawson, C.T.; Tomchik, P.; Muro, A.; Krans, E. Translation software: An alternative to transit data standards. Transp. Res. Interdiscip. Perspect. 2019, 2, 100028. [Google Scholar] [CrossRef]
- Voß, S.; Gutenschwager, K. Informationsmanagement; Springer: Berlin, Germany, 2001. [Google Scholar] [CrossRef] [Green Version]
- Ait-Ali, A.; Eliasson, J. The value of additional data for public transport origin–destination matrix estimation. Public Trans. 2021. Oine Available. [Google Scholar] [CrossRef]
- Lobo, A.X. A review of automatic vehicle location technology and its real-time applications. Transp. Rev. 1998, 18, 165–191. [Google Scholar] [CrossRef]
- Cevallos, F. Transit Service Reliability: Analyzing Automatic Vehicle Location (AVL) Data for On-Time Performance and to Identify Conditions Leading to Service Degradation; Technical Report; University of South Florida: Tampa, FL, USA, 2016. [Google Scholar] [CrossRef]
- Mintsis, G.; Basbas, S.; Papaioannou, P.; Taxiltaris, C.; Tziavos, I.N. Applications of GPS technology in the land transportation system. Eur. J. Oper. Res. 2004, 152, 399–409. [Google Scholar] [CrossRef]
- Numrich, J.; Ruja, S.; Voß, S. Global Navigation Satellite System based tolling: State-of-the-art. Netnomics 2012, 13, 93–123. [Google Scholar] [CrossRef]
- Putera, R.; Santoso, A.; Sondang, I.; Pratama, O.; Nandhito, G.; Suyanti, E. Efficiency of public transportation using global navigation satellite system. Int. J. GEOMATE 2017, 13, 26–30. [Google Scholar] [CrossRef]
- Daduna, J.R. Evolution of Public Transport in Rural Areas – New Technologies and Digitization. Lect. Notes Comput. Sci. 2020, 12202, 82–99. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N.; Liu, L.; Qin, Y.; Gao, Y.; Weng, Y.; Liu, J. Application and Prospect of BeiDou Navigation Satellite System in the Transportation Industry. Aerosp. China 2020, 21, 50–57. [Google Scholar] [CrossRef]
- Varisteas, G.; Frank, R.; Robinet, F. RoboBus: A Diverse and Cross-Border Public Transport Dataset. In Proceedings of the 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (PerCom Workshops), Kassel, Germany, 22–26 March 2021; pp. 269–274. [Google Scholar] [CrossRef]
- Daduna, J.R.; Voß, S. Efficient technologies for passenger information systems in public mass transit. In Proceedings of the first INFORMS Conference on Information Systems and Technology, INFORMS, Washington, DC, USA, 5–8 May 1996; pp. 386–391. [Google Scholar]
- Dessouky, M.; Hall, R.; Nowroozi, A.; Mourikas, K. Bus dispatching at timed transfer transit stations using bus tracking technology. Transp. Res. Part C Emerg. Technol. 1999, 7, 187–208. [Google Scholar] [CrossRef]
- Camus, R.; Longo, G.; Macorini, C. Estimation of transit reliability level-of-service based on automatic vehicle location data. Transp. Res. Rec. 2005, 1927, 277–286. [Google Scholar] [CrossRef]
- Chapleau, R.; Trépanier, M.; Chu, K.K. The ultimate survey for transit planning: Complete information with smart card data and GIS. In Proceedings of the 8th International Conference on Survey Methods in Transport: Workshop B1 Paper, Annecy, France, 25–31 May 2008; pp. 25–31. [Google Scholar]
- Cevallos, F.; Wang, X.; Chen, Z.; Gan, A. Using AVL data to improve transit on-time performance. J. Public Transp. 2011, 14, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Mandelzys, M.; Hellinga, B. Identifying causes of performance issues in bus schedule adherence with automatic vehicle location and passenger count data. Transp. Res. Rec. J. Transp. Res. Board 2010, 2143, 9–15. [Google Scholar] [CrossRef]
- Barabino, B.; Di Francesco, M.; Mozzoni, S. An offline framework for the diagnosis of time reliability by automatic vehicle location data. IEEE Trans. Intell. Transp. Syst. 2016, 18, 583–594. [Google Scholar] [CrossRef]
- Barabino, B.; Di Francesco, M.; Mozzoni, S. Rethinking bus punctuality by integrating Automatic Vehicle Location data and passenger patterns. Transp. Res. Part A Policy Pract. 2015, 75, 84–95. [Google Scholar] [CrossRef]
- Barabino, B.; Lai, C.; Casari, C.; Demontis, R.; Mozzoni, S. Rethinking Transit Time Reliability by Integrating Automated Vehicle Location Data, Passenger Patterns, and Web Tools. IEEE Trans. Intell. Transp. Syst. 2017, 18, 756–766. [Google Scholar] [CrossRef]
- Wessel, N.; Allen, J.; Farber, S. Constructing a Routable Retrospective Transit Timetable from a Real-time Vehicle Location Feed and GTFS. J. Transp. Geogr. 2017, 62, 92–97. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, Y.; Jiao, J.; Yin, K. Route-Based Transit Signal Priority Using Connected Vehicle Technology to Promote Bus Schedule Adherence. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1174–1184. [Google Scholar] [CrossRef]
- Fournier, S.M.; Hülse, E.O.; Pinheiro, É.V. A*-guided heuristic for a multi-objective bus passenger trip planning problem. Public Trans. 2019. [Google Scholar] [CrossRef]
- Hunter, T.; Abbeel, P.; Bayen, A. The Path Inference Filter: Model-Based Low-Latency Map Matching of Probe Vehicle Data. IEEE Trans. Intell. Transp. Syst. 2014, 15, 507–529. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Marais, J.; Betaille, D.; Berbineau, M. GNSS Position Integrity in Urban Environments: A Review of Literature. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2762–2778. [Google Scholar] [CrossRef] [Green Version]
- Osang, G.; Cook, J.; Fabrikant, A.; Gruteser, M. LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. In Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 2244–2251. [Google Scholar] [CrossRef]
- Islam, R.U.; Hossain, M.S.; Andersson, K. A novel anomaly detection algorithm for sensor data under uncertainty. Soft Comput. 2016, 22, 1623–1639. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, M.-P.; Trépanier, M.; Morency, C. Smart card data use in public transit: A literature review. Transp. Res. Part C Emerg. Technol. 2011, 19, 557–568. [Google Scholar] [CrossRef]
- Li, T.; Sun, D.; Jing, P.; Yang, K. Smart Card Data Mining of Public Transport Destination: A Literature Review. Information 2018, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Fleishman, D.; Shaw, N.; Joshi, A.; Freeze, R.; Oram, R. Fare Policies, Structures, and Technologies; Number Project A-1 FY’92; The National Academies Press: Washington, DC, USA, 1996. [Google Scholar]
- Olivková, I. Comparison and evaluation of fare collection technologies in the public transport. Procedia Eng. 2017, 178, 515–525. [Google Scholar] [CrossRef]
- Barabino, B.; Lai, C.; Olivo, A. Fare evasion in public transport systems: A review of the literature. Public Transp. 2020, 12, 27–88. [Google Scholar] [CrossRef]
- Egu, O.; Bonnel, P. Can we estimate accurately fare evasion without a survey? Results from a data comparison approach in Lyon using fare collection data, fare inspection data and counting data. Public Transp. 2021. [Google Scholar] [CrossRef]
- Cui, Z.; Long, Y. Perspectives on stability and mobility of transit passenger’s travel behaviour through smart card data. IET Intell. Transp. Syst. 2019, 13, 1761–1769. [Google Scholar] [CrossRef] [Green Version]
- Mulley, C.; Nelson, J.; Ison, S. (Eds.) The Routledge Handbook of Public Transport; Routledge: London, UK, 2021. [Google Scholar] [CrossRef]
- Tao, S.; Rohde, D.; Corcoran, J. Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap. J. Transp. Geogr. 2014, 41, 21–36. [Google Scholar] [CrossRef]
- Voß, S.; Mejia, G.; Voß, A. Mystery Shopping in Public Transport: The Case of Bus Station Design. Lect. Notes Comput. Sci. 2020, 12423, 527–542. [Google Scholar] [CrossRef]
- HVV. Hamburger Verkehrsverbund, HVV-Qualitätsbericht 2017. 2017. (In German). Available online: https://www.hvv.de/resource/blob/22478/1122dfd0c06dc3a249b3cdbf5898bcb9/hvv_qualitaetsbericht_2017.pdf (accessed on 15 April 2021).
- Qdbus. Qingdao Bus: Customer Satisfaction and Loyalty Evaluation Report. 2014. Available online: http://gzw.qingdao.gov.cn/n28356025/n30142503/140813145100327435.html (accessed on 15 April 2021).
- Dailyqd. Survey on passenger satisfaction of Qingdao Metro. Qingdao Daily 2019. Available online: http://www.shiminjia.com/news/detail/MDAwMDAwMDAwMKOyyqO808GM (accessed on 15 April 2021).
- Espinoza, C.; Munizaga, M.; Bustos, B.; Trépanier, M. Assessing the public transport travel behavior consistency from smart card data. Transp. Res. Procedia 2018, 32, 44–53. [Google Scholar] [CrossRef]
- Cheon, S.H.; Lee, C.; Shin, S. Data-driven stochastic transit assignment modeling using an automatic fare collection system. Transp. Res. Part C Emerg. Technol. 2019, 98, 239–254. [Google Scholar] [CrossRef]
- Briand, A.-S.; Côme, E.; Trépanier, M.; Oukhellou, L. Analyzing year-to-year changes in public transport passenger behaviour using smart card data. Transp. Res. Part C Emerg. Technol. 2017, 79, 274–289. [Google Scholar] [CrossRef]
- Frumin, M.; Zhao, J. Analyzing Passenger Incidence Behavior in Heterogeneous Transit Services Using Smartcard Data and Schedule-Based Assignment. Transp. Res. Rec. J. Transp. Res. Board 2012, 2274, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Corcoran, J.; Papamanolis, M. Route choice stickiness of public transport passengers: Measuring habitual bus ridership behaviour using smart card data. Transp. Res. Part C Emerg. Technol. 2017, 83, 146–164. [Google Scholar] [CrossRef]
- Qiu, G.; Song, R.; He, S.; Xu, W.; Jiang, M. Clustering passenger trip data for the potential passenger investigation and line design of customized commuter bus. IEEE Trans. Intell. Transp. Syst. 2018, 20, 3351–3360. [Google Scholar] [CrossRef]
- Zou, Q.; Yao, X.; Zhao, P.; Wei, H.; Ren, H. Detecting home location and trip purposes for cardholders by mining smart card transaction data in Beijing subway. Transportation 2018, 45, 919–944. [Google Scholar] [CrossRef]
- Kon, F.; Ferreira, E.C.; de Souza, H.A.; Duarte, F.; Santi, P.; Ratti, C. Abstracting mobility flows from bike-sharing systems. Public Transp. 2021. [Google Scholar] [CrossRef]
- Egu, O.; Bonnel, P. How comparable are origin-destination matrices estimated from automatic fare collection, origin-destination surveys and household travel survey? An empirical investigation in Lyon. Transp. Res. Part A Policy Pract. 2020, 138, 267–282. [Google Scholar] [CrossRef]
- Munizaga, M.; Devillaine, F.; Navarrete, C.; Silva, D. Validating travel behavior estimated from smartcard data. Transp. Res. Part C Emerg. Technol. 2014, 44, 70–79. [Google Scholar] [CrossRef]
- Nunes, A.A.; Dias, T.G.; e Cunha, J.F. Passenger Journey Destination Estimation From Automated Fare Collection System Data Using Spatial Validation. IEEE Trans. Intell. Transp. Syst. 2016, 17, 133–142. [Google Scholar] [CrossRef]
- Kang, M.J.; Ataeian, S.; Amiripour, S.M.M. A procedure for public transit OD matrix generation using smart card transaction data. Public Transp. 2020, 13, 81–100. [Google Scholar] [CrossRef]
- Kumar, P.; Khani, A.; He, Q. A robust method for estimating transit passenger trajectories using automated data. Transp. Res. Part C Emerg. Technol. 2018, 95, 731–747. [Google Scholar] [CrossRef]
- Google. GTFS Static Overview. 2021. Available online: https://developers.google.com/transit/gtfs (accessed on 13 June 2021).
- Assemi, B.; Alsger, A.; Moghaddam, M.; Hickman, M.; Mesbah, M. Improving alighting stop inference accuracy in the trip chaining method using neural networks. Public Transp. 2019, 12, 89–121. [Google Scholar] [CrossRef]
- Chidlovskii, B. Mining Smart Card Data for Travellers’ Mini Activities. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3676–3685. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, J.; Schonfeld, P.M. Identifying passenger flow characteristics and evaluating travel time reliability by visualizing AFC data: A case study of Shanghai Metro. Public Transp. 2016, 8, 341–363. [Google Scholar] [CrossRef]
- Wu, L.; Kang, J.E.; Chung, Y.; Nikolaev, A. Inferring origin-Destination demand and user preferences in a multi-modal travel environment using automated fare collection data. Omega 2021, 101, 102260. [Google Scholar] [CrossRef]
- Yap, M.; Cats, O.; van Arem, B. Crowding valuation in urban tram and bus transportation based on smart card data. Transp. A: Transp. Sci. 2018, 16, 23–42. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.G.; Hickman, M. Trip purpose inference using automated fare collection data. Public Transp. 2014, 6, 1–20. [Google Scholar] [CrossRef]
- Yu, W.; Bai, H.; Chen, J.; Yan, X. Analysis of Space-Time Variation of Passenger Flow and Commuting Characteristics of Residents Using Smart Card Data of Nanjing Metro. Sustainability 2019, 11, 4989. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Liu, F.; Guo, X.; Lei, X. Assessing the Distribution of Commuting Trips and Jobs-Housing Balance Using Smart Card Data: A Case Study of Nanjing, China. Sustainability 2019, 11, 5346. [Google Scholar] [CrossRef] [Green Version]
- Aslam, N.S.; Cheng, T.; Cheshire, J. A high-precision heuristic model to detect home and work locations from smart card data. Geo-Spat. Inf. Sci. 2019, 22, 1–11. [Google Scholar] [CrossRef]
- He, L.; Trepanier, M.; Agard, B. Space–time classification of public transit smart card users’ activity locations from smart card data. Public Transp. 2021. [Google Scholar] [CrossRef]
- Mützel, C.M.; Scheiner, J. Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data. Public Transp. 2021. [Google Scholar] [CrossRef]
- Ingvardson, J.B.; Nielsen, O.A.; Raveau, S.; Nielsen, B.F. Passenger arrival and waiting time distributions dependent on train service frequency and station characteristics: A smart card data analysis. Transp. Res. Part C Emerg. Technol. 2018, 90, 292–306. [Google Scholar] [CrossRef] [Green Version]
- Tavassoli, A.; Mesbah, M.; Shobeirinejad, A. Modelling passenger waiting time using large-scale automatic fare collection data: An Australian case study. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 500–510. [Google Scholar] [CrossRef]
- Mohamed, K.E.M.; Côme, E.; Oukhellou, L.; Verleysen, M. Clustering smart card data for urban mobility analysis. IEEE Trans. Intell. Trans. Syst. 2016, 18, 712–728. [Google Scholar] [CrossRef]
- Ge, L.; Voß, S.; Xie, L. Robustness and Disturbances in Public Transport; Technical Report; Institute of Information Systems, Leuphana University of Lüneburg and Institute of Information Systems (IWI), University of Hamburg: Hamburg, Germany, 2020. [Google Scholar]
- Dekker, M.M.; van Lieshout, R.N.; Ball, R.C.; Bouman, P.C.; Dekker, S.C.; Dijkstra, H.A.; Goverde, R.M.P.; Huisman, D.; Panja, D.; Schaafsma, A.A.M.; et al. A next step in disruption management: Combining operations research and complexity science. Public Transp. 2021. [Google Scholar] [CrossRef]
- Hu, S.; Chen, P. Who left riding transit? Examining socioeconomic disparities in the impact of COVID-19 on ridership. Transp. Res. Part D Transp. Environ. 2021, 90, 102654. [Google Scholar] [CrossRef]
- Hamidi, S.; Hamidi, I. Subway Ridership, Crowding, or Population Density: Determinants of COVID-19 Infection Rates in New York City. Am. J. Prev. Med. 2021. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, W. Extracting bus transit boarding stop information using smart card transaction data. J. Mod. Transp. 2018, 26, 209–219. [Google Scholar] [CrossRef] [Green Version]
- TRB. Smartcard Interoperability Issues for the Transit Industry; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- Monsalve, M.C.; Wolanski, M.P.; Burden, M.; Krukowski, P.J.; Czapski, R.; Michnowska, M.; Wang, W.G. Public Transport Automatic Fare Collection Interoperability Assessing Options for Poland; Technical Report; The World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Covic, F.; Voß, S. Interoperable smart card data management in public mass transit. Public Transp. 2019, 11, 523–548. [Google Scholar] [CrossRef]
- Bagchi, M.; White, P. The potential of public transport smart card data. Transp. Policy 2005, 12, 464–474. [Google Scholar] [CrossRef]
- Chandesris, M.; Nazem, M. Workshop Synthesis: Smart card data, new methods and applications for public transport. Transp. Res. Procedia 2018, 32, 16–23. [Google Scholar] [CrossRef]
- Yu, W.; Bai, H.; Chen, J.; Yan, X. Anomaly Detection of Passenger OD on Nanjing Metro Based on Smart Card Big Data. IEEE Access 2019, 7, 138624–138636. [Google Scholar] [CrossRef]
- Tavassoli, A.; Mesbah, M.; Hickman, M. Application of smart card data in validating a large-scale multi-modal transit assignment model. Public Transp. 2018, 10, 1–21. [Google Scholar] [CrossRef]
- TRB. Passenger Counting Systems; The National Academies Press: Washington, DC, USA, 2008. [Google Scholar] [CrossRef]
- TRB. Using Archived AVL-APC Data to Improve Transit Performance and Management; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- Dessouky, M.; Hall, R.; Zhang, L.; Singh, A. Real-time control of buses for schedule coordination at a terminal. Transp. Res. Part A Policy Pract. 2003, 37, 145–164. [Google Scholar] [CrossRef]
- Hellinga, B.; Yang, F.; Hart-Bishop, J. Estimating signalized intersection delays to transit vehicles: Using archived data from automatic vehicle location and passenger counting system. Transp. Res. Rec. J. Transp. Res. Board 2011, 2259, 158–167. [Google Scholar] [CrossRef]
- Nielsen, B.F.; Frølich, L.; Nielsen, O.A.; Filges, D. Estimating passenger numbers in trains using existing weighing capabilities. Transp. A Transp. Sci. 2013, 10, 502–517. [Google Scholar] [CrossRef]
- Barabino, B.; Di Francesco, M.; Mozzoni, S. An Offline Framework for Handling Automatic Passenger Counting Raw Data. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2443–2456. [Google Scholar] [CrossRef]
- Sun, S.; Akhtar, N.; Song, H.; Zhang, C.; Li, J.; Mian, A. Benchmark Data and Method for Real-Time People Counting in Cluttered Scenes Using Depth Sensors. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3599–3612. [Google Scholar] [CrossRef]
- Kocak, Y.P.; Sevgen, S. Detecting and counting people using real-time directional algorithms implemented by compute unified device architecture. Neurocomputing 2017, 248, 105–111. [Google Scholar] [CrossRef]
- Liu, G.; Yin, Z.; Jia, Y.; Xie, Y. Passenger flow estimation based on convolutional neural network in public transportation system. Knowl.-Based Syst. 2017, 123, 102–115. [Google Scholar] [CrossRef]
- Rajbhandari, R.; Chien, S.I.; Daniel, J.R. Estimation of Bus Dwell Times with Automatic Passenger Counter Information. Transp. Res. Rec. J. Transp. Res. Board 2003, 1841, 120–127. [Google Scholar] [CrossRef]
- Nuzzolo, A.; Crisalli, U.; Comi, A.; Rosati, L. A mesoscopic transit assignment model including real-time predictive information on crowding. J. Intell. Transp. Syst. 2016, 20, 316–333. [Google Scholar] [CrossRef]
- Siebert, M.; Ellenberger, D. Validation of automatic passenger counting: Introducing the t-test-induced equivalence test. Transportation 2020, 47, 3031–3045. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, M.; Hellinga, B.; Casello, J. Automated Quality Assurance Methodology for Archived Transit Data from Automatic Vehicle Location and Passenger Counting Systems. Transp. Res. Rec. J. Transp. Res. Board 2011, 2256, 130–141. [Google Scholar] [CrossRef]
- TRB. Open Data: Challenges and Opportunities for Transit Agencies; The National Academies Press: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- Singhal, A.; Kamga, C.; Yazici, A. Impact of weather on urban transit ridership. Transp. Res. Part A Policy Pract. 2014, 69, 379–391. [Google Scholar] [CrossRef]
- Miao, Q.; Welch, E.W.; Sriraj, P. Extreme weather, public transport ridership and moderating effect of bus stop shelters. J. Transp. Geogr. 2019, 74, 125–133. [Google Scholar] [CrossRef]
- Wu, J.; Liao, H. Weather, travel mode choice, and impacts on subway ridership in Beijing. Transp. Res. Part A Policy Pract. 2020, 135, 264–279. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Xing, Z.; Luan, X.; Jiang, Y. Weather and cycling: Mining big data to have an in-depth understanding of the association of weather variability with cycling on an off-road trail and an on-road bike lane. Transp. Res. Part A Policy Pract. 2018, 111, 119–135. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Chen, D.; Godding, L. Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing. J. Transp. Geogr. 2018, 66, 356–368. [Google Scholar] [CrossRef]
- Kashfi, S.A.; Bunker, J.M.; Yigitcanlar, T. Modelling and analysing effects of complex seasonality and weather on an area’s daily transit ridership rate. J. Transp. Geogr. 2016, 54, 310–324. [Google Scholar] [CrossRef]
- Ma, L.; Xiong, H.; Wang, Z.; Xie, K. Impact of weather conditions on middle school students’ commute mode choices: Empirical findings from Beijing, China. Transp. Res. Part D Transp. Environ. 2019, 68, 39–51. [Google Scholar] [CrossRef]
- Arana, P.; Cabezudo, S.; Peñalba, M. Influence of weather conditions on transit ridership: A statistical study using data from Smartcards. Transp. Res. Part A Policy Pract. 2014, 59, 1–12. [Google Scholar] [CrossRef]
- Liu, C.; Susilo, Y.O.; Karlström, A. The influence of weather characteristics variability on individual’s travel mode choice in different seasons and regions in Sweden. Transp. Policy 2015, 41, 147–158. [Google Scholar] [CrossRef]
- Hyland, M.; Frei, C.; Frei, A.; Mahmassani, H.S. Riders on the storm: Exploring weather and seasonality effects on commute mode choice in Chicago. Travel Behav. Soc. 2018, 13, 44–60. [Google Scholar] [CrossRef]
- Böcker, L.; Dijst, M.; Faber, J. Weather, transport mode choices and emotional travel experiences. Transp. Res. Part A Policy Pract. 2016, 94, 360–373. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, D.; Li, Q.; Yue, Y.; Tu, W.; Cao, R. Impacts of weather on public transport ridership: Results from mining data from different sources. Transp. Res. Part C Emerg. Technol. 2017, 75, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Liu, Y.; Sigler, T.; Liu, X.; Corcoran, J. The influence of weather conditions on adult transit ridership in the sub-tropics. Transp. Res. Part A Policy Pract. 2019, 125, 106–118. [Google Scholar] [CrossRef]
- Mesbah, M.; Lin, J.; Currie, G. “Weather” transit is reliable? Using AVL data to explore tram performance in Melbourne, Australia. J. Traffic Transp. Eng. 2015, 2, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Breusegem, V.V.; Campion, G.; Bastin, G. Traffic modeling and state feedback control for metro lines. IEEE Trans. Autom. Control 1991, 36, 770–784. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Chan, J.; Ristanoski, G.; Rajasegarar, S.; Leckie, C. Bus travel time prediction with real-time traffic information. Transp. Res. Part C Emerg. Technol. 2019, 105, 536–549. [Google Scholar] [CrossRef]
- Barnes, R.; Buthpitiya, S.; Cook, J.; Fabrikant, A.; Tomkins, A.; Xu, F. BusTr: Predicting Bus Travel Times from Real-Time Traffic. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 6–10 July 2020. [Google Scholar] [CrossRef]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic Flow Prediction With Big Data: A Deep Learning Approach. IEEE Trans. Intell. Transp. Syst. 2014, 16, 865–873. [Google Scholar] [CrossRef]
- D’Andrea, E.; Marcelloni, F. Detection of traffic congestion and incidents from GPS trace analysis. Expert Syst. Appl. 2017, 73, 43–56. [Google Scholar] [CrossRef]
- Rehrl, K.; Henneberger, S.; Leitinger, S.; Wagner, A.; Wimmer, M. Towards a National Floating Car Data Platform for Austria. In Proceedings of the 25th ITS World Congress, Copenhagen, Denmark, 17–21 September 2018. [Google Scholar]
- Zhou, F.; Li, L.; Zhang, K.; Trajcevski, G. Urban flow prediction with spatial–temporal neural ODEs. Transp. Res. Part C Emerg. Technol. 2021, 124, 102912. [Google Scholar] [CrossRef]
- Sun, Z.; Zan, B.; Ban, X.J.; Gruteser, M. Privacy protection method for fine-grained urban traffic modeling using mobile sensors. Transp. Res. Part B Methodol. 2013, 56, 50–69. [Google Scholar] [CrossRef]
- Nguyen-Phuoc, D.Q.; Currie, G.; Gruyter, C.D.; Kim, I.; Young, W. Modelling the net traffic congestion impact of bus operations in Melbourne. Transp. Res. Part A Policy Pract. 2018, 117, 1–12. [Google Scholar] [CrossRef]
- Chen, Y.; Lv, Y.; Wang, X.; Li, L.; Wang, F.Y. Detecting Traffic Information From Social Media Texts With Deep Learning Approaches. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3049–3058. [Google Scholar] [CrossRef]
- Rashidi, T.H.; Abbasi, A.; Maghrebi, M.; Hasan, S.; Waller, T.S. Exploring the capacity of social media data for modelling travel behaviour: Opportunities and challenges. Transp. Res. Part C Emerg. Technol. 2017, 75, 197–211. [Google Scholar] [CrossRef]
- Haghighi, N.N.; Liu, X.C.; Wei, R.; Li, W.; Shao, H. Using Twitter data for transit performance assessment: A framework for evaluating transit riders opinions about quality of service. Public Transp. 2018, 10, 363–377. [Google Scholar] [CrossRef]
- Zhang, Z.; He, Q.; Gao, J.; Ni, M. A deep learning approach for detecting traffic accidents from social media data. Transp. Res. Part C Emerg. Technol. 2018, 86, 580–596. [Google Scholar] [CrossRef] [Green Version]
- Cottrill, C.; Gault, P.; Yeboah, G.; Nelson, J.D.; Anable, J.; Budd, T. Tweeting Transit: An examination of social media strategies for transport information management during a large event. Transp. Res. Part C Emerg. Technol. 2017, 77, 421–432. [Google Scholar] [CrossRef]
- Huang, A.; Gallegos, L.; Lerman, K. Travel analytics: Understanding how destination choice and business clusters are connected based on social media data. Transp. Res. Part C Emerg. Technol. 2017, 77, 245–256. [Google Scholar] [CrossRef]
- Ni, M.; He, Q.; Gao, J. Forecasting the Subway Passenger Flow Under Event Occurrences with Social Media. IEEE Trans. Intell. Transp. Syst. 2016, 18, 1623–1632. [Google Scholar] [CrossRef]
- Google. GTFS Realtime Reference. 2021. Available online: https://developers.google.com/transit/gtfs-realtime/reference/ (accessed on 13 June 2021).
- Bjerre-Nielsen, A.; Minor, K.; Sapieżyński, P.; Lehmann, S.; Lassen, D.D. Inferring transportation mode from smartphone sensors: Evaluating the potential of Wi-Fi and Bluetooth. PLoS ONE 2020, 15, e0234003. [Google Scholar] [CrossRef]
- Kong, X.; Xia, F.; Li, J.; Hou, M.; Li, M.; Xiang, Y. A Shared Bus Profiling Scheme for Smart Cities Based on Heterogeneous Mobile Crowdsourced Data. IEEE Trans. Ind. Inform. 2020, 16, 1436–1444. [Google Scholar] [CrossRef]
- Kong, L.; Wu, Z.; Chen, G.; Qiu, M.; Mumtaz, S.; Rodrigues, J.J.P.C. Crowdsensing-Based Cross-Operator Switch in Rail Transit Systems. IEEE Trans. Commun. 2020, 68, 7938–7947. [Google Scholar] [CrossRef]
- Harrison, G.; Grant-Muller, S.M.; Hodgson, F.C. New and emerging data forms in transportation planning and policy: Opportunities and challenges for “Track and Trace” data. Transp. Res. Part C Emerg. Technol. 2020, 117, 102672. [Google Scholar] [CrossRef]
- Berggren, U.; Brundell-Freij, K.; Svensson, H.; Wretstrand, A. Effects from usage of pre-trip information and passenger scheduling strategies on waiting times in public transport: An empirical survey based on a dedicated smartphone application. Public Transp. 2019. [Google Scholar] [CrossRef] [Green Version]
- Rowe, F. Contact tracing apps and values dilemmas: A privacy paradox in a neo-liberal world. Int. J. Inf. Manag. 2020, 55, 102178. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qi, X.; Shu, L.; Deng, D.; Rodrigues, J.J. Toward trustworthy crowdsourcing in the social internet of things. IEEE Wirel. Commun. 2016, 23, 30–36. [Google Scholar] [CrossRef]
- Shu, J.; Jia, X.; Yang, K.; Wang, H. Privacy-Preserving Task Recommendation Services for Crowdsourcing. IEEE Trans. Serv. Comput. 2021, 14, 235–247. [Google Scholar] [CrossRef]
- Gadziński, J. Perspectives of the use of smartphones in travel behaviour studies: Findings from a literature review and a pilot study. Transp. Res. Part C Emerg. Technol. 2018, 88, 74–86. [Google Scholar] [CrossRef]
- Gündling, F.; Hopp, F.; Weihe, K. Efficient monitoring of public transport journeys. Public Transp. 2020, 12, 631–645. [Google Scholar] [CrossRef]
- Tu, W.; Cao, J.; Yue, Y.; Shaw, S.L.; Zhou, M.; Wang, Z.; Chang, X.; Xu, Y.; Li, Q. Coupling mobile phone and social media data: A new approach to understanding urban functions and diurnal patterns. Int. J. Geogr. Inf. Sci. 2017, 31, 2331–2358. [Google Scholar] [CrossRef]
- Mukheja, P.; K, M.K.; Velaga, N.R.; Sharmila, R. Smartphone-based crowdsourcing for position estimation of public transport vehicles. IET Intell. Transp. Syst. 2017, 11, 588–595. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Lian, H. A route-planning method for long-distance commuter express bus service based on OD estimation from mobile phone location data: The case of the Changping Corridor in Beijing. Public Transp. 2020, 13, 101–125. [Google Scholar] [CrossRef]
- Lee, W.K.; Sohn, S.Y.; Heo, J. Utilizing mobile phone-based floating population data to measure the spatial accessibility to public transit. Appl. Geogr. 2018, 92, 123–130. [Google Scholar] [CrossRef]
- Kujala, R.; Weckström, C.; Darst, R.K.; Mladenović, M.N.; Saramäki, J. A collection of public transport network data sets for 25 cities. Sci. Data 2018, 5, 180089. [Google Scholar] [CrossRef] [Green Version]
- Kaeoruean, K.; Phithakkitnukoon, S.; Demissie, M.G.; Kattan, L.; Ratti, C. Analysis of demand–supply gaps in public transit systems based on census and GTFS data: A case study of Calgary, Canada. Public Transp. 2020, 12, 483–516. [Google Scholar] [CrossRef]
- Lock, O.; Bednarz, T.; Pettit, C. The visual analytics of big, open public transport data – a framework and pipeline for monitoring system performance in Greater Sydney. Big Earth Data 2021, 5, 134–159. [Google Scholar] [CrossRef]
- Sahu, P.K.; Mehran, B.; Mahapatra, S.P.; Sharma, S. Spatial data analysis approach for network-wide consolidation of bus stop locations. Public Transp. 2021. [Google Scholar] [CrossRef]
- Bonnel, P.; Munizaga, M.A. Transport survey methods-in the era of big data facing new and old challenges. Transp. Res. Procedia 2018, 32, 1–15. [Google Scholar] [CrossRef]
- Saghapour, T.; Moridpour, S.; Thompson, R.G. Public transport accessibility in metropolitan areas: A new approach incorporating population density. J. Transp. Geogr. 2016, 54, 273–285. [Google Scholar] [CrossRef]
- Urbanek, A. Potential of modal shift from private cars to public transport: A survey on the commuters’ attitudes and willingness to switch—A case study of Silesia Province, Poland. Res. Transp. Econ. 2021, 85, 101008. [Google Scholar] [CrossRef]
- Ermagun, A.; Tilahun, N. Equity of transit accessibility across Chicago. Transp. Res. Part D Transp. Environ. 2020, 86, 102461. [Google Scholar] [CrossRef]
- Chapleau, R.; Gaudette, P.; Spurr, T. Strict and Deep Comparison of Revealed Transit Trip Structure between Computer-Assisted Telephone Interview Household Travel Survey and Smart Cards. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 13–22. [Google Scholar] [CrossRef]
- Poonawala, H.; Kolar, V.; Blandin, S.; Wynter, L.; Sahu, S. Singapore in motion: Insights on public transport service level through farecard and mobile data analytics. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Association for Computing Machinery: New York, NY, USA, 2016; pp. 589–598. [Google Scholar] [CrossRef]
- Ji, Y.; Mishalani, R.G.; McCord, M.R. Transit passenger origin–destination flow estimation: Efficiently combining onboard survey and large automatic passenger count datasets. Transp. Res. Part C Emerg. Technol. 2015, 58, 178–192. [Google Scholar] [CrossRef]
- Wolf, J.; Guensler, R.; Bachman, W. Elimination of the Travel Diary: Experiment to Derive Trip Purpose from Global Positioning System Travel Data. Transp. Res. Rec. J. Transp. Res. Board 2001, 1768, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Vij, A.; Shankari, K. When is big data big enough? Implications of using GPS-based surveys for travel demand analysis. Transp. Res. Part C Emerg. Technol. 2015, 56, 446–462. [Google Scholar] [CrossRef] [Green Version]
- Verzosa, N.; Greaves, S.; Ellison, R.; Ellison, A.; Davis, M. Eliciting preferences for ‘gamified’ travel surveys: A best-worst approach. Transp. Res. Procedia 2018, 32, 211–223. [Google Scholar] [CrossRef]
- Toprak, C.; Platt, J.; Ho, H.Y.; Mueller, F. Cart-Load-o-Fun: Designing Digital Games for Trams. In CHI ’13 Extended Abstracts on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2013; pp. 2877–2878. [Google Scholar] [CrossRef]
- Chen, C.; Ma, J.; Susilo, Y.; Liu, Y.; Wang, M. The promises of big data and small data for travel behavior (aka human mobility) analysis. Transp. Res. Part C Emerg. Technol. 2016, 68, 285–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson Kuitu, J. Visualizing Public Transport with Heat-Maps: Comparing the Scalability of SVG and Canvas for Heat-Maps. Bachelor’s Thesis, Mid Sweden University, Östersund, Sweden, 2020. [Google Scholar]
- Dong, H.; Wang, Y. Bus passenger flow and running status analyzation system based on MAC address. In Proceedings of the International Conference on Transportation and Development 2018, Pittsburg, PA, USA, 15–18 July 2018; pp. 208–217. [Google Scholar] [CrossRef]
- Li, Z.; Chen, C.; Wang, K. Cloud Computing for Agent-Based Urban Transportation Systems. IEEE Intell. Syst. 2011, 26, 73–79. [Google Scholar] [CrossRef]
- Heilig, L.; Voß, S. A Scientometric Analysis of Cloud Computing Literature. IEEE Trans. Cloud Comput. 2014, 2, 266–278. [Google Scholar] [CrossRef]
- White, G.; Zink, A.; Codecá, L.; Clarke, S. A digital twin smart city for citizen feedback. Cities 2021, 110, 103064. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Xu, N. Digital Twin for Sustainability Evaluation of Railway Station Buildings. Front. Built Environ. 2018, 4, 77. [Google Scholar] [CrossRef] [Green Version]
- Tibaut, A.; Kaučič, B.; Rebolj, D. A standardised approach for sustainable interoperability between public transport passenger information systems. Comput. Ind. 2012, 63, 788–798. [Google Scholar] [CrossRef]
- Google. Google Maps. 2021. Available online: https://www.google.com/maps/ (accessed on 31 July 2021).
- NeTEx. Network Timetable Exchange. 2021. Available online: http://netex-cen.eu/ (accessed on 31 July 2021).
- Scholz, G. IT-Systeme für Verkehrsunternehmen; dpunkt: Heidelberg, Germany, 2012. [Google Scholar]
- VDV. Soll-Daten-Schnittstellen: Europäische Norm NeTEx (CEN). 2021. (In German). Available online: https://www.vdv.de/netex.aspx (accessed on 31 July 2021).
- Jongo, P.L.N.; Meyer, M.; Steinmetz, R. Overview of Mobile Passenger Information Systems in Public Transportation; KOM-TR-2010-02, Technical Report; KOM, TU Darmstadt: Darmstadt, Germany, 2010. [Google Scholar]
- Liu, Y.; Weng, X.; Wan, J.; Yue, X.; Song, H.; Vasilakos, A.V. Exploring Data Validity in Transportation Systems for Smart Cities. IEEE Commun. Mag. 2017, 55, 26–33. [Google Scholar] [CrossRef]
- Hagenauer, J.; Helbich, M. A comparative study of machine learning classifiers for modeling travel mode choice. Expert Syst. Appl. 2017, 78, 273–282. [Google Scholar] [CrossRef]
- Cui, L.; Su, D.; Zhou, Y.; Zhang, L.; Wu, Y.; Chen, S. Edge Learning for Surveillance Video Uploading Sharing in Public Transport Systems. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2274–2285. [Google Scholar] [CrossRef]
- Liu, Y.; Lyu, C.; Liu, X.; Liu, Z. Automatic Feature Engineering for Bus Passenger Flow Prediction Based on Modular Convolutional Neural Network. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2349–2358. [Google Scholar] [CrossRef]
- Jahangiri, A.; Rakha, H.A. Applying Machine Learning Techniques to Transportation Mode Recognition Using Mobile Phone Sensor Data. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2406–2417. [Google Scholar] [CrossRef]
- Elhamod, M.; Levine, M.D. Automated Real-Time Detection of Potentially Suspicious Behavior in Public Transport Areas. IEEE Trans. Intell. Transp. Syst. 2013, 14, 688–699. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Saunier, N.; Sun, L. Scalable low-rank tensor learning for spatiotemporal traffic data imputation. Transp. Res. Part C Emerg. Technol. 2021, 129, 103226. [Google Scholar] [CrossRef]
- Zúñiga, F.; Muñoz, J.C.; Giesen, R. Estimation and prediction of dynamic matrix travel on a public transport corridor using historical data and real-time information. Public Transp. 2021, 13, 59–80. [Google Scholar] [CrossRef]
- Nimpanomprasert, T.; Xie, L.; Kliewer, N. Comparing Two Hybrid Neural Network Models to Predict Real-World Bus Travel Time; Technical Report; Institute of Information Systems, Leuphana University of Lüneburg: Lüneburg, Germany, 2021. [Google Scholar]
- Julio, N.; Giesen, R.; Lizana, P. Real-time prediction of bus travel speeds using traffic shockwaves and machine learning algorithms. Res. Transp. Econ. 2016, 59, 250–257. [Google Scholar] [CrossRef]
- Steinfeld, A.; Zimmerman, J.; Tomasic, A.; Yoo, D.; Aziz, R.D. Mobile Transit Information from Universal Design and Crowdsourcing. Transp. Res. Rec. 2011, 2217, 95–102. [Google Scholar] [CrossRef]
- Chen, M.; Liu, X.; Xia, J.; Chien, S.I. A dynamic bus-arrival time prediction model based on APC data. Comput.-Aided Civ. Infrastruct. Eng. 2004, 19, 364–376. [Google Scholar] [CrossRef]
- Webb, A.; Kumar, P.; Khani, A. Estimation of passenger waiting time using automatically collected transit data. Public Transp. 2020, 12, 299–311. [Google Scholar] [CrossRef]
- Li, Y.; Yang, D.; Hu, X. A differential privacy-based privacy-preserving data publishing algorithm for transit smart card data. Transp. Res. Part C Emerg. Technol. 2020, 115, 102634. [Google Scholar] [CrossRef]
- Sarkar, C.; Treurniet, J.J.; Narayana, S.; Prasad, R.V.; de Boer, W. SEAT: Secure Energy-Efficient Automated Public Transport Ticketing System. IEEE Trans. Green Commun. Netw. 2018, 2, 222–233. [Google Scholar] [CrossRef]
- Stockburger, L.; Kokosioulis, G.; Mukkamala, A.; Mukkamala, R.R.; Avital, M. Blockchain-enabled decentralized identify management: The case of self-sovereign identity in public transportation. Blockchain Res. Appl. 2021, 100014. [Google Scholar] [CrossRef]
- Corsar, D.; Edwards, P.; Nelson, J.; Baillie, C.; Papangelis, K.; Velaga, N. Linking open data and the crowd for real-time passenger information. J. Web Semant. 2017, 43, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Prommaharaj, P.; Phithakkitnukoon, S.; Demissie, M.G.; Kattan, L.; Ratti, C. Visualizing public transit system operation with GTFS data: A case study of Calgary, Canada. Heliyon 2020, 6, e03729. [Google Scholar] [CrossRef]
- Cheng, T.; Tanaksaranond, G.; Brunsdon, C.; Haworth, J. Exploratory visualisation of congestion evolutions on urban transport networks. Transp. Res. Part C Emerg. Technol. 2013, 36, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Brakewood, C.; Watkins, K. A literature review of the passenger benefits of real-time transit information. Transp. Rev. 2019, 39, 327–356. [Google Scholar] [CrossRef]
- Lin, H.; Tang, C. Analysis and optimization of urban public transport lines based on multiobjective adaptive particle swarm optimization. IEEE Trans. Intell. Transp. Syst. 2021, 1–13. [Google Scholar] [CrossRef]
- Lyu, C.; Wu, X.; Liu, Y.; Liu, Z. A Partial-Fréchet-Distance-Based Framework for Bus Route Identification. IEEE Trans. Intell. Transp. Syst. 2021, 1–6. [Google Scholar] [CrossRef]
- Wollnik, M. Ein Referenzmodell des Informationsmanagements. Inf. Manag. 1988, 3, 34–43. [Google Scholar]
- Grisé, E.; Wasfi, R.; Ross, N.A.; El-Geneidy, A. Evaluating methods for measuring daily walking to public transport: Balancing accuracy and data availability. J. Transp. Health 2019, 15, 100638. [Google Scholar] [CrossRef]
- Hadas, Y. Assessing public transport systems connectivity based on Google Transit data. J. Transp. Geogr. 2013, 33, 105–116. [Google Scholar] [CrossRef]
- Pereira, F.C.; Rodrigues, F.; Ben-Akiva, M. Using Data From the Web to Predict Public Transport Arrivals Under Special Events Scenarios. J. Intell. Transp. Syst. 2015, 19, 273–288. [Google Scholar] [CrossRef]
- Yu, J.; Voß, S.; Cammin, P. Cruise Passenger-Oriented Evaluation System for the Public Transport of Hinterland Destinations; Technical Report; Institute of Information Systems, University of Hamburg: Hamburg, Germany, 2021. [Google Scholar]
- Hensher, D.A.; Rose, J.M.; Collins, A.T. Identifying commuter preferences for existing modes and a proposed Metro in Sydney, Australia with special reference to crowding. Public Transp. 2011, 3, 109–147. [Google Scholar] [CrossRef]
- Redmond, M.; Campbell, A.M.; Ehmke, J.F. Data-driven planning of reliable itineraries in multi-modal transit networks. Public Transp. 2019, 12, 171–205. [Google Scholar] [CrossRef]
Ref. | Aspect | Methodology | Potential |
---|---|---|---|
[29] | Reliability | Qualitative approaches | Introduction of a new index (measure) |
[32] | System performance | Causal inference | A large number of stops do not meet performance measures |
[31] | On-time performance | A Gaussian probabilistic approach | - Update bus timetables - Maximize on-time performance |
[39] | Location estimation | - Expectation-maximization - Probabilistic map matching | Reconstruct vehicle trajectories from sparse sequences of GPS points |
[34] | Data punctuality | - Control dashboards - Empirical measures | Match processed AVL data with passenger patterns |
[33] | Time reliability | - Control dashboards - Data analytics | - Characterize bus stops for routes where reliability is insufficient - Identify the causes - Provide preventive strategies |
[35] | Time reliability and punctuality | Information retrieval | - Handle anomalies in AVL raw data - Connect the measurements of regularity and punctuality to passenger patterns - Propose a web platform to support transit |
[41] | Travel changes | A scoring method | - Match observations of the trajectories of transit vehicles with the routes they serve - Detect travel changes |
[37] | Bus schedule adherence | - Connected vehicle technologies - Adaptive optimization model | - Optimize signal synchronization - Improve the reliability of the bus service by prioritizing public transport signals |
Ref. | Aspect | Methodology | Potential | Data |
---|---|---|---|---|
[59] | Passenger incidence behavior | Schedule-based assignment | Estimate causes of incidence headway | - |
[65] | O-D matrix | Comparison with real data | Validate the results of the survey | - AVL - Survey |
[51] | O-D matrix | Visualization | Examine the spatio–temporal behavioral dynamics of bus passenger travels | AVL |
[72] | Reliability | Visualization | - Identify characteristics of passenger flows - Analyze travel time, reliability from users’ perspective | - |
[58] | Travel behavior | Gaussian mixture model | - Cluster passengers based on their temporal habits - Extract patterns for each cluster | - |
[60] | Passengers’ habitual route choice | A stickiness concept | Quantify bus passengers’ route stickiness based on a stickiness index | - |
[56] | Travel behavior | - A probability matrix - A spatio-temporal method | - Measure the consistency of public transport travel behavior - The consistency is highly dependent on the metric | - |
[95] | Transit assignment model | Validation framework | Validation and case study | GTFS, AFC, smart card |
[62] | Trip purpose and home location | - A center-point based algorithm - A rule-based approach | - Infer the home location for one-trip passengers - Identify indicators in view of time, space and travel regularity | - |
[68] | O-D matrix | A trip-chaining method | - Inference of trips - find the most likely trajectory | AVL |
[71] | O-D matrix | A Markov chain Monte Carlo method | Detect travelers’ mini-activities | - |
[81] | Waiting time | Probabilistic modeling | - Estimate passenger waiting times - Many passengers arrive in a timely manner | - |
[61] | Customized service | Density-based spatial clustering | - Cluster bus passengers - Recommend customized bus lines | - |
[91] | Interoperability | - A holistic conceptual model - Interviews | - Explore the requirements to enable a model application in an interoperable environment - A four-step procedure for standardized data handling and management | Survey |
[57] | Travel behavior | Stochastic transit assignment model | Assign trips to different users | - |
[86] | Ridership | A regression model | Infer the impact of COVID-19 on transit ridership | - |
[87] | Infection rate | Spatial lag models | Determine whether subway ridership has an impact on the infection rate | - |
Ref | Aspect | Methodology | Potential | Data |
---|---|---|---|---|
[98] | Schedule coordination | - Statistical forecasting - Simulation | Balance the time saved for late-arriving transfer | AVL |
[105] | Dwell time | Descriptive analysis | Explain the correlation between bus dwell time and passenger boarding and alighting | - |
[99] | Signalized intersection delays | A quality assurance methodology | - Identify and prioritize candidate measures for transit priority - Include transit signal priorities | AVL |
[108] | Data quality assurance | A statistical test | Identify unreliable archived AVL-APC data | AVL |
[100] | Passenger counting | Modeling weight data | - Estimate passenger numbers in trains - The method provides more accurate passenger counts than the infrared equipment | - |
[101] | Data validation | Matching bus stop and APC | Remove anomalies (due to operation in service and technical problems) | - |
[106] | On-board loads prediction | A mesoscopic assignment model | - Predict on-board passenger numbers in transit networks - Capture effects of individual predicted information and on-board crowding | - |
[104] | Passenger counting | - A conventional neural network detection model - A spatio-temporal context model | - Detect passengers and track their moving head - The technique is more accurate in low-resolution scenes and with varying illumination | - |
[102] | - Data generation - Real-time counting | Computing a normalized height image | - Provide large-scale benchmark public data sets for passenger counting - Propose a method for real-time counting people in crowded scenes | - |
[107] | APC validation | Extended t-test | The introduction of a new applicable testing approach | - |
Ref. | Aspect | Methodology | Potential | Data |
---|---|---|---|---|
[110] | Transit ridership | Correlation | - Demonstrate the impact of adverse weather conditions - Recommend policy measures to mitigate the ridership differences due to weather | - |
[123] | Reliability | Regression analysis | - Investigate the effect of weather conditions on the travel time reliability of on-road rail transit - Only precipitation and temperature have a significant impact on the tram service | AVL |
[117] | - Data generation - Real-time counting | Linear regression | - Wind and rain could result in a decrease in the number of trips - Temperature rise causes an increase in the number of trips - The difference is less observable for smart card users | AFC |
[115] | Transit ridership | Regression models | - Develop a daily ridership rate estimation model - Understand the impact of weather factors on daily bus transit ridership | - |
[121] | Transit ridership | Statistical models | - Examine the impact of the weather on hourly transit ridership - Combine smart card data and meteorological observations | AFC |
[114] | Metro ridership | A moving average method and analyses of variance | - Meteorological events generally decrease ridership - The magnitude of the impact depends on the nature of the weather disturbances | - |
[119] | Metro ridership | - A mixed-logit mode choice model - A survey | - Analyzes the impacts of weather and seasonality on commute mode choice - The impact of weather and seasonality on the commute mode choice vary across the population | Survey |
[111] | Bus ridership | Descriptive analysis | - Weather disturbances have a negative impact on bus ridership - Bus stop shelters can mitigate this impact | - |
[116] | Mode choice | Multinomial probit and multinomial logit models | - Weather conditions have a significant impact on students commute mode choices - Determine the main weather features that affects them - Multinomial probit is suitable for the problem | - |
[112] | Subway ridership | Regression models | - Subway is less vulnerable to inclement weather - Prevention measures are needed to deal with heavy rains | Survey |
Ref. | Aspect | Methodology | Potential | Data |
---|---|---|---|---|
[131] | Privacy | Knowledge-based models | - Protect privacy while satisfying the data needs of fine-grained urban traffic modeling - Filtering approaches based on individual tracking probability and entropy are more effective than pure random sampling in improving the level of privacy | Phone |
[127] | Traffic flow prediction | Deep learning | - Predict traffic flow - Consider nonlinear spatial and temporal correlations from traffic data | Social media |
[128] | Traffic congestion and incidents | A spatio-temporal approach | Detect real-time traffic jams and incidents | AVL |
[132] | Bus impact on traffic | The four-step model | - Estimate the positive impact of buses on relieving congestion - Investigate the negative impact of buses - Bus network contributes to reducing the number of severely congested roads | Survey |
[133] | Information detection | Deep learning | Extract relevant traffic information from a microblogging platform | Social media |
[125] | Time prediction | A segment-based approach | - Predict public transport bus travel time - Separate bus routes into transit and dwelling segments | AVL |
[126] | Bus travel time prediction | - Deep learning - Feature selection | - Predict travel time based on contextual time and traffic time estimation - Traffic estimation | - |
[130] | Traffic flow prediction | - Deep learning - Continuous time dynamics | - Model temporal and spatial dependencies and dynamics - Investigate the factors that affect the city traffic - Consider the balance of the prediction accuracy and computational efficiency | - |
Ref. | Aspect | Methodology | Potential | Data |
---|---|---|---|---|
[139] | Flow prediction | - Statistical analysis - Optimization | - Examine social media activities and sense event occurrences - A moderate positive correlation between passenger flow and the rates of social media posts | APC |
[134] | Travel behavior | A survey | - Analyze a survey on the capacity of social media - Discuss directions for behavioral travel demand modeling using social media | Survey |
[137] | Communication enforcement | - Qualitative analysis - Interviews | - Examine the coordination of social media practices at a large event - Analyze Twitter data related to the communication of transport information - The need to coordinate a consistent message across the information being shared on social media | Survey |
[138] | Travel analytics | - Statistical analysis - Visualization | - Study the relationship between characteristics of business clusters and check-in activities - Understand the relationships among clusters embedded in a network. | - |
[135] | Quality of service | - Sentiment analysis - ML | - Extract and evaluate tweets on people’s opinion about quality of transit service - The percentage of negative tweets depends on the weekdays | - |
[136] | Traffic accidents | Deep learning | - Investigate a large amount of tweets - Differentiate between accident-related and congestion-related tweets - Analyze characteristics of the influential users and hashtags | - |
Ref. | Aspect | Methodology | Potential | Data |
---|---|---|---|---|
[151] | Travel behavior | - Decision rules - Hidden Markov model | - Estimate the activities at different locations - The combination of smartphone and social media data enhance the understanding of urban functions | Social media |
[152] | Position estimation | Particle filter algorithm | - Calculate the vehicle-positioning information with better accuracy - Support transport service managers to evaluate their service | AVL |
[154] | Accessibility | Spatial analysis models | - Measure the spatial accessibility of public transit - Mobile data can provide reliable results in evening hours | Social media |
[141] | Mode estimation | ML | - Leverage Wi-Fi and Bluetooth data - Predict transport mode choices | AVL |
[142] | Travel profiling | - Mobile crowd-sourcing - Evolutionary algorithm | - Recommend the best solution for each user - Optimize the routes | - |
[146] | Privacy | Contact tracing | - Investigate the risks of using smartphone data - Contact tracing apps contribute to self-disciplining in crisis | - |
Ref. | Aspect | Methodology | Potential | Data |
---|---|---|---|---|
[167] | Demand analytics | - Simulation | - Assess the implications of using GPS-based surveys for travel demand analysis - Surveys need active interaction with study participants | AVL |
[165] | O-D matrix | - Iterative proportional fitting - On-board survey | - Estimate bus transit passenger route O-D flows - Combines large APC data sets and on-board surveys | APC |
[160] | Accessibility | Integrated surveys | - Introduce an index to measure the transit accessibility - The use of public transport is positively correlated with the index | - |
[163] | Survey validation | Comparison with AFC data | Smart card data enables to correct large sample household travel surveys | AFC |
[168] | Surveys attraction | Gamification | - Detect users preferences - Young people are attracted to the gamification concept | - |
[162] | Accessibility | A generalized linear model | - Measure the accessibility of different cohorts - Inequities are found regarding the accessibility when examining the different cohorts | - |
[161] | Travel behavior | A survey | - Study the potential of modal shift from private cars to public transport - Psychological factors are the main reason for the unwillingness to switch | - |
[86] | Travel behavior | - Time series - Square regression | - Examine the relationships between the impact of ridership and the explanatory socio-economic factors - Suggest how to respond to the decline associated with COVID-19 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, L.; Sarhani, M.; Voß, S.; Xie, L. Review of Transit Data Sources: Potentials, Challenges and Complementarity. Sustainability 2021, 13, 11450. https://doi.org/10.3390/su132011450
Ge L, Sarhani M, Voß S, Xie L. Review of Transit Data Sources: Potentials, Challenges and Complementarity. Sustainability. 2021; 13(20):11450. https://doi.org/10.3390/su132011450
Chicago/Turabian StyleGe, Liping, Malek Sarhani, Stefan Voß, and Lin Xie. 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity" Sustainability 13, no. 20: 11450. https://doi.org/10.3390/su132011450
APA StyleGe, L., Sarhani, M., Voß, S., & Xie, L. (2021). Review of Transit Data Sources: Potentials, Challenges and Complementarity. Sustainability, 13(20), 11450. https://doi.org/10.3390/su132011450