Advances in Geoheritage Mapping: Application to Iconic Geomorphological Examples from the Italian Landscape
Abstract
:1. Introduction
2. Geoheritage Mapping: State of the Art
2.1. Maps for the General Public
2.2. Maps for Specialists
3. Principles and Method
3.1. Geosites Characteristics Taken into Account for Mapping
3.2. The Issue of Spatial Scale
3.3. A New Legend for Mapping Geosites
4. Italian Case Studies
4.1. Mount Canin Glacio-Karstic Massif (Cucchi F., Finocchiaro F.)
4.2. Proglacial System of the Aurona and Leone Glaciers (Bollati I., Pelfini M.)
4.3. Croce di Fana Large Slope Instability and the Vollein Necropolis (Giardino M., Perotti L., Tognetto F.)
4.4. Fluvial Landscape in Central Po Plain (Castaldini D., Coratza P.)
4.5. High Rocky Cliffs in the Portofino Promontory (Faccini F., Brandolini P., Paliaga G.)
4.6. Furlo Gorge (Nesci O., Valentini L.)
4.7. Tiberina Island (Pica A., Del Monte M.)
4.8. Sinuessa Submerged Landscape in the Gaeta Bay (Gioia D., Minopoli C., Pennetta M., Trocciola A.)
4.9. The Fluvio-Coastal System of Cala Luna (Deiana G., Melis R., Panizza V.)
5. Discussion and Conclusions
- (1)
- it offers an overview of both landforms and processes and the main geoheritage peculiarities of a territory;
- (2)
- it provides information on the state of activity of processes, which can help to evaluate the state of conservation and vulnerability of geosites or the degree of natural and anthropic risks;
- (3)
- it highlights geosite boundaries useful for decision making in management;
- (4)
- it represents a functional tool to optimise decisional processes within Territorial Planning, Environmental Impact Assessment procedures and Protection Actions of Natural Heritage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carton, A.; Coratza, P.; Marchetti, M. Guidelines for geomorphological sites mapping: Examples from Italy. Geomorphologie Relief Process. Environ. 2005, 11, 209–218. [Google Scholar] [CrossRef]
- Coratza, P.; Regolini-Bissig, G. Methods for mapping geomorphosites. In Geomorphosites; Reynard, E., Coratza, P., Eds.; Pfeil Verlag: München, Germany, 2009; pp. 89–103. [Google Scholar]
- Regolini-Bissig, G. Mapping geoheritage for interpretive purpose: Definition and interdisciplinary approach. In Mapping Geoheritage; Regolini-Bissig, G., Reynard, E., Eds.; Géovisions, Geography Institute: Lausanne, Switzerland, 2010; Volume 35, pp. 1–13. [Google Scholar]
- Bollati, I.; Lenz, B.C.; Zanoletti, E.; Pelfini, M. Geomorphological mapping for the valorization of the alpine environment. A methodological proposal tested in the Loana Valley (Sesia Val Grande Geopark, Western Italian Alps). J. Mt. Sci. 2017, 14, 1023–1038. [Google Scholar] [CrossRef]
- Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Mapping geosites for geoheritage management: A methodological proposal for the Regional Park of Picos de Europa (León, Spain). Environ. Manag. 2012, 50, 789–806. [Google Scholar] [CrossRef]
- Oya, M. Applied Geomorphology for Mitigation of Natural Hazards; Springer: Singapore, 2001; p. 179. [Google Scholar]
- Hayden, R.S. Geomorphological mapping. In Geomorphology from Space; Short, I., Blair, N., Eds.; NASA SP: Washington, DC, USA, 1986; Volume 486, pp. 637–656. [Google Scholar]
- Whalley, W.B.; Cooke, R.U.; Doornkamp, J.C. Geomorphology in Environmental Management. A New Introduction. Trans. Inst. Br. Geogr. 1991, 16, 492. [Google Scholar] [CrossRef]
- Dramis, F.; Guida, D.; Cestari, A. Nature and aims of geomorphological mapping. In Geomorphological Mapping: Methods and Applications; Smith, M.J., Paron, P., Griffiths, J.S., Eds.; Elsevier: London, UK, 2001; pp. 39–73. [Google Scholar]
- Paron, P.; Claessens, L. Makers and users of geomorphological maps. In Geomorphological Mapping: Methods and Applications; Smith, M.J., Paron, P., Griffiths, J.S., Eds.; Elsevier: London, UK, 2001; pp. 75–106. [Google Scholar]
- Otto, J.C.; Smith, M. Geomorphological mapping. In Geomorphological Techniques; Clarke, L., Nield, J., Eds.; British Society for Geomorphology: London, UK, 2013; Volume 2, pp. 1–10. [Google Scholar]
- Pelfini, M.; Brandolini, F.; D’Archi, S.; Pellegrini, L.; Bollati, I. Papia civitas gloriosa: Urban geomorphology for a thematic itinerary on geocultural heritage in Pavia (Central Po Plain, N Italy). J. Maps 2020, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Verstappen, H.T.H. Applied Geomorphology: Geomorphological Surveys for Environmental Development; Elsevier: Amsterdam, The Netherlands, 1993; p. 437. [Google Scholar]
- Cooke, R.U.; Doornkamp, J.C. Geomorphology in Environmental Management. An Introduction; Oxford University Press: Oxford, UK, 1974; p. 413. [Google Scholar]
- Gustavsson, M.; Kolstrup, E.; Seijmonsbergen, H. A new symbol-and-GIS based detailed geomorphological mapping system: Renewal of a scientific discipline for understanding landscape development. Geomorphology 2006, 77, 90–111. [Google Scholar] [CrossRef] [Green Version]
- Brandolini, P.; Faccini, F.; Et, A. Man-made landforms survey and mapping of an urban historical center in a coastal mediterranean environment. Geogr. Fis. Din. Quat. 2018, 41, 23–34. [Google Scholar]
- Pepe, G.; Mandarino, A.; Raso, E.; Scarpellini, P.; Brandolini, P.; Cevasco, A. Investigation on farmland abandonment of terraced slopes using multitemporal data sources comparison and its implication on hydro-geomorphological processes. Water 2019, 11, 1552. [Google Scholar] [CrossRef] [Green Version]
- Federici, B.; Corradi, N.; Ferrando, I.; Sguerso, D.; Lucarelli, A.; Guida, S.; Brandolini, P. Remote sensing techniques applied to geomorphological mapping of rocky coast: The case study of Gallinara Island (Western Liguria, Italy). Eur. J. Remote. Sens. 2019, 52, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, S.; Bertotto, S.; Chiarle, M.; Fioraso, G.; Giardino, M.; Nigrelli, G. Little Ice Age glacial systems and related natural instability processes in the Orco Valley (North-Western Italy). J. Maps 2019, 15, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Fleming, R.; Baum, R.L.; Giardino, M. Map and description of the active part of the Slumgullion Landslide, Hinsdale County, Colorado. Geol. Investig. Ser. 1999, I-2672, 34. [Google Scholar] [CrossRef]
- Azzoni, R.S.; Zerboni, A.; Pelfini, M.; Garzonio, C.A.; Cioni, R.; Meraldi, E.; Smiraglia, C.; Diolaiuti, G.A. Geomorphology of Mount Ararat/Ağri Daği (Ağri Daği Milli Parki, Eastern Anatolia, Turkey). J. Maps 2017, 13, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Dıez-Herrero, A.; Vegas, J.; Carcavilla, L.; Gomez-Heras, M.; Garcıa-Cortes, A. Techniques for the monitoring of geosites in Cabaňeros National Park, Spain. In Geoheritage: Assessment, Protection and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 405–413. [Google Scholar]
- Roberti, G.; Ward, B.; Vries, B.V.W.D.; Friele, P.; Perotti, L.; Clague, J.J.; Giardino, M. Precursory slope distress prior to the 2010 Mount Meager landslide, British Columbia. Landslides 2018, 15, 637–647. [Google Scholar] [CrossRef]
- Coratza, P.; Ghinoi, A.; Marchetti, M.; Soldati, M. Geomorphology of the Rio Cisles basin (Odle Group, Dolomites, Italy). J. Maps 2019, 15, 546–554. [Google Scholar] [CrossRef] [Green Version]
- Zerboni, A.; Brandolini, F.; Mariani, G.S.; Perego, A.; Salvatori, S.; Usai, D.; Pelfini, M.; Williams, M.A. The khartoum-omdurman conurbation: A growing megacity at the confluence of the Blue and White Nile Rivers. J. Maps 2020, 17, 1–14. [Google Scholar] [CrossRef]
- Lawrence, G.R.P.; Tricart, J. Principes et methodes de la geomorphologie. Geogr. J. 1966, 132, 121. [Google Scholar] [CrossRef]
- Griffiths, J.S.; Abraham, J.K. Factors affecting the use of applied geomorphology maps to communicate with different end-users. J. Maps 2008, 4, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Del Monte, M.; Vergari, F.; Brandolini, P.; Capolongo, D.; Cevasco, A.; Ciccacci, S.; Conoscenti, C.; Fredi, P.; Melelli, L.; Rotigliano, E.; et al. Multi-method evaluation of denudation rates in small mediterranean catchments. In Engineering Geology for Society and Territory; Gabler: Wiesbaden, Germany, 2015; Volume 1, pp. 563–567. [Google Scholar]
- Brandolini, P.; Cappadonia, C.; Luberti, G.M.; Donadio, C.; Stamatopoulos, L.; Di Maggio, C.; Faccini, F.; Stanislao, C.; Vergari, F.; Paliaga, G.; et al. Geomorphology of the anthropocene in mediterranean urban areas. Prog. Phys. Geogr. Earth Environ. 2019, 44, 461–494. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Seijmonsbergen, H.; Mantovani, F. Comparing landslide hazard maps. Nat. Hazards 1999, 20, 137–158. [Google Scholar] [CrossRef]
- Brandolini, P.; Cevasco, A. Geo-Hydrological Risk Mitigation Measures and Land-Management in a Highly Vulnerable Small Coastal Catchment; Gabler: Wiesbaden, Germany, 2015; Volume 5, pp. 759–762. [Google Scholar]
- Faccini, F.; Federico, L.; Torchio, S.; Roccati, A.; Capponi, G.; Crispini, L. A mountain slope deformation in an alpine metaophiolitic massif (Ligurian Alps, Italy). J. Maps 2020, 17, 77–89. [Google Scholar] [CrossRef]
- Martinez-Graña, A.M.; Goy, J.L.G.Y.; Cardeña, C.Z. Natural heritage mapping of the las batuecas-sierra de Francia and Quilamas Nature Parks (SW Salamanca, Spain). J. Maps 2011, 7, 600–613. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, J.; Chaminé, H.I.; Carvalho, J.M.; Pérez-Alberti, A.; Rocha, F. Hydrogeomorphological mapping as a tool in groundwater exploration. J. Maps 2013, 9, 263–273. [Google Scholar] [CrossRef]
- Faccini, F.; Piccazzo, M.; Robbiano, A.; Roccati, A. Applied geomorphological map of the Portofino Municipal Territory (Italy). J. Maps 2008, 4, 451–462. [Google Scholar] [CrossRef]
- Zwoliński, Z.; Najwer, A.; Giardino, M. Methods for Assessing Geodiversity. In Geoheritage: Assessment, Protection and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–52. [Google Scholar] [CrossRef]
- Perotti, L.; Carraro, G.; Giardino, M.; De Luca, D.A.; Lasagna, M.; Luca, D. Geodiversity evaluation and water resources in the sesia val grande UNESCO geopark (Italy). Water 2019, 11, 2102. [Google Scholar] [CrossRef] [Green Version]
- Ferrando, A.; Faccini, F.; Paliaga, G.; Coratza, P. A quantitative GIS and AHP based analysis for geodiversity assessment and mapping. Sustainability 2021, 13, 10376. [Google Scholar] [CrossRef]
- Bollati, I.M.; Cavalli, M. Unraveling the relationship between geomorphodiversity and sediment connectivity in a small alpine catchment. Trans. GIS 2021, 00, 1–20. [Google Scholar] [CrossRef]
- Faccini, F.; Gabellieri, N.; Paliaga, G.; Piana, P.; Angelini, S.; Coratza, P. Geoheritage map of the Portofino Natural Park (Italy). J. Maps 2018, 14, 87–96. [Google Scholar] [CrossRef]
- Santos-González, J.; Marcos-Reguero, A. Applying the geological heritage in land management: Cartography and management proposals of geosites in Burgos Province (Spain). Geoheritage 2018, 11, 485–500. [Google Scholar] [CrossRef]
- Sacchini, A.; Ponaro, M.I.; Paliaga, G.; Piana, P.; Faccini, F.; Coratza, P. Geological landscape and stone heritage of the Genoa Walls Urban Park and surrounding area (Italy). J. Maps 2018, 14, 528–541. [Google Scholar] [CrossRef]
- Brandolini, F.; Cremaschi, M.; Pelfini, M. Correction to: Estimating the potential of archaeo-historical data in the definition of geomorphosites and geo-educational itineraries in the central po plain (N Italy). Geoheritage 2019, 11, 1397. [Google Scholar] [CrossRef] [Green Version]
- Aucelli, P.P.C.; Valente, E.; Di Paola, G.; Amato, V.; Cesarano, M.; Cozzolino, M.; Pappone, G.; Scorpio, V.; Rosskopf, C.M. The influence of the geological–geomorphological setting on human settlements and historical urban development: The case study of Isernia (southern Italy). J. Maps 2020, 17, 1–10. [Google Scholar] [CrossRef]
- Gioia, D.; Bavusi, M.; Di Leo, P.; Giammatteo, T.; Schiattarella, M. Geoarchaeology and geomorphology of the Metaponto area, Ionian coastal belt, Italy. J. Maps 2020, 16, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Giardino, M.; Giordan, D.; Baggio, P.; Mortara, G. Map of the Sangonetto Valley Geosites (Western Alps): Geological research and tourism enhancement. In Mapping Geology in Italy; Pasquarè, G., Venturini, C., Eds.; APAT—Dipartimento di Difesa del Suolo, S.E.L.C.A.: Firenze, Italy, 2004; pp. 325–336. [Google Scholar]
- Castaldini, D.; Conventi, M.; Coratza, P.; Dallai, D.; Liberatoscioli, E.; Sala, L.; Buldrini, F. Carta Turistico—Ambientale della Riserva Naturale Regionale delle Salse di Nirano; Comune di Fiorano Modenese, Tipolitografia Notizie: Modena, Italy, 2011. [Google Scholar]
- Roberti, G.; McGregor, J.; Lam, S.; Bigelow, D.; Boyko, B.; Ahern, C.; Wang, V.; Barnhart, B.; Smyth, C.; Poole, D.; et al. Inspire standards as a framework for artificial intelligence applications: A landslide example. Nat. Hazards Earth Syst. Sci. 2020, 20, 3455–3483. [Google Scholar] [CrossRef]
- Panizza, M. Schema di legenda per carte geomorfologiche di dettaglio. Bollettino Società Geologica Italiana 1972, 91, 207–237. [Google Scholar]
- Pellegrini, G.B. Problemi di metodo per la costruzione di una carta geomorfologica a grande scala nel bacino dell’Alpago. In Atti e Memorie dell’Accademia Patavina di Scienze, Lettere e Arti, Classe di Scienze Matematiche e Naturali; Società Cooperativa Tipografica: Padova, Italy, 1976; Volume 88, pp. 43–51. [Google Scholar]
- Tricart, J. Géomorphologie et aménagement hydrauliques. L’Universitaire Sciences Techniques 1958, 1, 31–46. [Google Scholar]
- Demek, J. Generalization of geomorphological maps. IGU commission on applied geomorphology. In Geomorphological Mapping; Engineering Geology Special Publications: London, UK, 1967; pp. 36–72. [Google Scholar]
- Bashenina, N.V.; Gellert, J.F.; Joly, F.; Klimszewski, M.; Scholz, E. The unified key to the detailed geomorphological map. IGU commission on applied geomorphology. In Folia Geographica; Polska Academia Nauk: Warsaw, Poland, 1966; Volume 2, pp. 7–40. [Google Scholar]
- Klimaszewski, M. Problems of the detailed geomorphological map. In Folia Geographica, Series Geographica-Phisica; Polska Academia Nauk: Warsaw, Poland, 1968; Volume 2, p. 40. [Google Scholar]
- Joly, F.; Tricart, J. Légende Pour la Carte Géomorphologique de la France au 1:50.000; CNRS: Paris, France, 1970. [Google Scholar]
- Verstappen, H.T.H. Introduction to the ITC system of geomorphological survey. Koninlijk Nederlands Aardijkkundig Genootschap. Geogr. Niewe Reeks 1970, 4, 85–91. [Google Scholar]
- Gruppo Nazionale Geografia Fisica e Geomorfologia. Proposta di legenda geomorfologica a indirizzo applicativo. Geogr. Fis. Din. Quat. 1994, 16, 129–152. [Google Scholar]
- ISPRA. Carta Geomorfologica d’Italia 1:50.000—Guida alla Rappresentazione Cartografica. In Quaderni Serie III; 2007; Volume 10. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/i-quaderni-serie-iii-del-sgi/carta-geomorfologica-ditalia-1-50-000-guida-alla (accessed on 14 October 2021).
- Campobasso, C.; Carton, A.; Chelli, A.; D’Orefice, M.; Dramis, F.; Graciotti, R.; Guida, D.; Pambianchi, G.; Peduto, F.; Pellegrini, L. Aggiornamento ed Integrazioni delle Linee Guida della Carta Geomorfologica d’Italia alla Scala 1:50.000; ISPRA: Rome, Italy, 2018. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/i-quaderni-serie-iii-del-sgi/carta-geomorfologica-ditalia-alla-scala-1-50.000-aggiornamento-ed-integrazioni-delle-linee-guida-della-carta-geomorfologica-ditalia-alla-scala-1-50.000-fascicolo-i (accessed on 14 October 2021).
- Panizza, M. Geomorphosites: Concepts, methods and examples of geomorphological survey. Chin. Sci. Bull. 2001, 46, 4–5. [Google Scholar] [CrossRef]
- Reynard, E. Geosites. In Encyclopedia of Geomorphology; Goudie, A., Ed.; Routledge: London, UK, 2004; p. 440. [Google Scholar]
- Brocx, M. Geoheritage—from Global Perspectives to Local Principles for Conservation and Planning; Western Australian Museum: Perth, WA, Australia, 2008; p. 175. [Google Scholar]
- Nesci, O.; Valentini, L. Science, poetry, and music for landscapes of the Marche region, Italy: Communicating the conservation of natural heritage. Geosci. Commun. 2020, 3, 393–406. [Google Scholar] [CrossRef]
- Reynard, E.; Perret, A.; Bussard, J.; Grangier, L.; Martin, S. Integrated approach for the inventory and management of geomorphological heritage at the regional scale. Geoheritage 2016, 8, 43–60. [Google Scholar] [CrossRef]
- Reynard, E.; Brilha, J. Geoheritage: A multidisciplinary and applied research topic. In Geoheritage: Assessment, Protection and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–9. [Google Scholar]
- Coratza, P.; Hobléa, F. The specificities of geomorphological heritage. In Geoheritage: Assessment, Protection and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 87–106. [Google Scholar]
- Bollati, I.; Pellegrini, M.; Reynard, E.; Pelfini, M. Water driven processes and landforms evolution rates in mountain geomorphosites: Examples from Swiss Alps. Catena 2017, 158, 321–339. [Google Scholar] [CrossRef]
- Reynard, E.; Coratza, P. The importance of mountain geomorphosites for environmental education. Examples from the Italian Dolomites and the Swiss Alps. Acta Geogr. Slov. 2016, 56, 246–257. [Google Scholar] [CrossRef]
- Coratza, P.; Vandelli, V.; Fiorentini, L.; Paliaga, G.; Faccini, F. Bridging terrestrial and marine geoheritage: Assessing geosites in Portofino Natural Park (Italy). Water 2019, 11, 2112. [Google Scholar] [CrossRef] [Green Version]
- Bruschi, V.M.; Coratza, P.; Piacentini, D.; Soldati, M. Geomorphological features of the Rio della Rocca valley (northern Apennines, Italy). J. Maps 2012, 8, 445–452. [Google Scholar] [CrossRef]
- Pica, A.; Vergari, F.; Fredi, P.; Del Monte, M. The aeterna urbs geomorphological heritage (Rome, Italy). Geoheritage 2016, 8, 31–42. [Google Scholar] [CrossRef]
- Pica, A.; Luberti, G.M.; Vergari, F.; Fredi, P.; Del Monte, M. Contribution for an urban geomorphoheritage assessment method: Proposal from three geomorphosites in Rome (Italy). Quaest. Geogr. 2017, 36, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Zgłobicki, W.; Poesen, J.; Cohen, M.; Del Monte, M.; García-Ruiz, J.M.; Ionita, I.; Niacsu, L.; Machová, Z.; Martín-Duque, J.F.; Nadal-Romero, E.; et al. The potential of permanent gullies in europe as geomorphosites. Geoheritage 2019, 11, 217–239. [Google Scholar] [CrossRef]
- Pelfini, M.; Bollati, I. Landforms and geomorphosites ongoing changes: Concepts and implications for geoheritage promotion. Quaest. Geogr. 2014, 33, 131–143. [Google Scholar] [CrossRef] [Green Version]
- García-Ortiz, E.; Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Concepts and terminology for the risk of degradation of geological heritage sites: Fragility and natural vulnerability, a case study. Proc. Geol. Assoc. 2014, 125, 463–479. [Google Scholar] [CrossRef]
- Bruschi, V.M.; Coratza, P. Geoheritage and Environmental Impact Assessment (EIA). In Geoheritage: Assessment, Protection and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 251–264. [Google Scholar]
- Bollati, I.; Coratza, P.; Giardino, M.; Panizza, V.; Pelfini, M. I geomorfositi. In Aggiornamento ed Integrazioni delle Linee Guida della Carta Geomorfologica d’Italia alla Scala 1:50.000; Campobasso, C., Carton, A., Chelli, A., D’Orefice, M., Dramis, F., Graciotti, R., Guida, D., Pambianchi, G., Peduto, F., Pellegrini, L., Eds.; ISPRA: Roma, Italy, 2018; p. 15. [Google Scholar]
- Bollati, I.; Coratza, P.; Panizza, V.; Pelfini, M. Lithological and structural control on italian mountain geoheritage: Opportunities for tourism, outdoor and educational activities. Quaest. Geogr. 2018, 37, 53–73. [Google Scholar] [CrossRef] [Green Version]
- Coratza, P.; Marchetti, M.; Panizza, M. Itinerari Geologici-Geomorfologici in Alta Badia. N.1 Passo Gardena—Crespeina—Colfosco; Università degli Studi di Modena e Reggio Emilia, Consorzio Turistico Alta Badia: Modena, Italy, 2004. [Google Scholar]
- Faccini, F.; Roccati, A.; Firpo, M. Geo-hiking map of Mt. Penna and Mt. Aiona area (Aveto Natural Park, Italy). J. Maps 2012, 8, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Pelfini, M.; Brandolini, P.; Carton, A.; Piccazzo, M.; Bozzoni, M.; Faccini, F.; Zucca, F. Rappresentazione in Carta delle Caratteristiche dei Sentieri ai Fini della Mitigazione del Rischio Geomorfologico. Boll. Assoc. Ital. Di Cartogr. 2006, Volume 126-127-128, 101–123. [Google Scholar]
- Ghiraldi, L. Geomatics Application for Evaluation and Exploitation of Geomorphosites in Piemonte Region. Ph.D. Thesis, University of Modena and Reggio Emilia, Modena, Italy, 2011; p. 206. [Google Scholar]
- Garavaglia, V.; Pelfini, M.; Bollati, I. The influence of climate change on glacier geomorphosites: The case of two italian glaciers investigated through dendrochronology—Influence du changement climatique sur la géodiversité: L’exemple de deux géomorphosites glaciales italiens enquêtés avec la dendrochronologie. Géomorphologie Relief Process. Environ. 2010, 2, 153–164. [Google Scholar]
- Bollati, I.; Leonelli, G.; Vezzola, L.; Pelfini, M. The role of ecological value in geomorphosite assessment for the debris-covered miage glacier (Western Italian Alps) based on a review of 2.5 centuries of scientific study. Geoheritage 2015, 7, 119–135. [Google Scholar] [CrossRef]
- Di Gregorio, F.; Forresu, R.; Frongia, P.; Piras, G. Carta dei Beni Naturali e culturali nel Paesaggio del Carignano del Sulcis. Bollettino dell’Associazione Italiana Cartografia 2013, 2282–2472X. (online). [Google Scholar]
- Reynard, E.; Fontana, G.; Kozlik, L.; Scapozza, C. A method for assessing “scientific” and “additional values” of geomorphosites. Geogr. Helv. 2007, 62, 148–158. [Google Scholar] [CrossRef]
- Reynard, E. Géomorphosites et paysages. Géomorphologie Relief Process. Environ. 2005, 3, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Pelfini, M.; Brandolini, P.; Carton, A.; Piccazzo, M. Geotourist trails: A geomorphological risk-impact analysis. In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Pfeil Verlag: München, Germany, 2009; pp. 131–144. [Google Scholar]
- Coratza, P.; Ghinoi, A.; Piacentini, D.; Valdati, J. Management of geomorphosites in high tourist vocation area: An example of geo-hiking maps in the Alpe di Fanes (Natural Park of Fanes-Senes_Braies, Italian Dolomites). Geo J. Tour. Geosites 2008, 1, 106–117. [Google Scholar]
- Brandolini, P.; Pelfini, M. Mapping geomorphological hazard in relation to geotourism and hiking trails. In Mapping Geoheritage; Regolini-Bissing, G., Reynard, E., Eds.; Lausanne, Institut de Géographie, Géovision: Lausanne, Switzerland, 2010; pp. 31–45. [Google Scholar]
- Comănescu, L.; Nedelea, A.; Dobre, R. The geotouristic map—between theory and practical use. Case study—the central sector of the bucegi mountains (Romania). Geoj. Tour. Geosites 2013, 11, 16–23. [Google Scholar]
- Piana, F.; Fioraso, G.; Irace, A.; Mosca, P.; D’Atri, A.R.; Barale, L.; Falletti, P.; Monegato, G.; Morelli, M.; Tallone, S.; et al. Geology of Piemonte region (NW Italy, Alps-Apennines interference zone). J. Maps 2017, 13, 395–405. [Google Scholar] [CrossRef]
- Lombardo, V.; Piana, F.; Fioraso, G.; Irace, A.; Mimmo, D.; Mosca, P.; Tallone, S.; Barale, L.; Morelli, M.; Giardino, M. The classification scheme of the piemonte geological map and the ontogeonous initiative. Rendiconti Online della Società Geologica Italiana 2016, 39, 117–120. [Google Scholar] [CrossRef]
- Brilha, J.B. Inventory and quantitative assessment of geosites and geodiversity sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Brilha, J. Geoheritage: Inventories and evaluation. In Geoheritage: Assessment, Protection and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 87–106. [Google Scholar]
- Bruschi, V.M.; Cendrero, A.; Cuesta-Albertos, J.A. A statistical approach to the validation and optimisation of geoheritage assessment procedures. Geoheritage 2011, 3, 131–149. [Google Scholar] [CrossRef]
- Baadi, K.; Sabaoui, A.; Tekiout, B. Methodological proposal for assessment geosites: Its Application in Bou-Iblane Region (Middle Atlas, Morocco). Geoheritage 2020, 12, 55. [Google Scholar] [CrossRef]
- Reynard, E.; Coratza, P.; Regolini-Bissig, G. Scientific research on geomorphosites over the last eight years: Improvements and aims of the book. In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Pfeil Verlag: München, Germany, 2009; pp. 5–8. [Google Scholar]
- Grandgirard, V. Géomorphologie, Protection de la Nature et Gestion du Paysage. Ph.D. Thesis, Université de Fribourg, Fribourg, Switzerland, 1997. [Google Scholar]
- Grandgirard, V. L’évaluation des géotopes. Geol. Insubr. 1999, 4, 66–69. [Google Scholar]
- Pralong, J.P.; Reynard, E. A proposal for the classification of geomorphological sites depending on their tourist value. Il Quaternario 2005, 18, 315–321. [Google Scholar]
- Pelfini, M.; Gobbi, M. Enhancement of the ecological value of forni glacier as a possible new geomorphosite: New data from arthropods communities. Geog. Fis. Dinam. Quat. 2005, 28, 211–217. [Google Scholar]
- Pelfini, M.; Garavaglia, V.; Bollati, I. Dendrogeomorphological investigations for assessing ecological and educational value of glacier Geomorphosites. Two examples from the Italian Alps. In Mapping Geoheritage; Regolini-Bissing, G., Reynard, E., Eds.; Institut de Géographie: Lausanne, Switzerland, 2010; Volume 35, pp. 81–95. [Google Scholar]
- Reynard, E. Geomorphosites: Definition and characteristics. In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Pfeil Verlag: München, Germany, 2009; pp. 9–20. [Google Scholar]
- Regolini-Bissig, G. Cartographier les Géomorphosites. Objectifs, Publics et Propositions Méthodologiques. Ph.D. Thesis, University of Lausanne, Lausanne, Switzerland, 2012; 294p. [Google Scholar]
- Selmi, L.; Coratza, P.; Gauci, R.; Soldati, M. Geoheritage as a tool for environmental management: A case study in Northern Malta (Central Mediterranean Sea). Resources 2019, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- Reynard, E. Geomorphosites and landscapes. In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Pfeil Verlag: München, Germany, 2009; pp. 21–34. [Google Scholar]
- Ferrando, A.; Faccini, F.; Poggi, F.; Coratza, P. Geosites inventory in Liguria region (Northern Italy): A tool for regional geoconservation and environmental management. Sustainability 2021, 13, 2346. [Google Scholar] [CrossRef]
- Reynard, E.; Panizza, M. Géomorphosites: Définition, évaluation et cartographie. Une introduction. Géomorphologie Relief Process. Environ. 2005, 11, 175–246. [Google Scholar] [CrossRef] [Green Version]
- Ghiraldi, L.; Giordano, E.; Perotti, L.; Giardino, M. Digital tools for collection, promotion and visualisation of geoscientific data: Case study of Seguret valley (Piemonte, NW Italy). Geoheritage 2014, 6, 103–112. [Google Scholar] [CrossRef]
- Pelfini, M.; Bollati, I.; Pellegrini, L.; Zucali, M. Earth sciences on the field: Educational applications for the comprehension of landscape evolution. Rendiconti Online Società Geologica Italiana 2016, 40, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Pelfini, M.; Bollati, I.; Giudici, M.; Pedrazzini, T.; Sturani, M.; Zucali, M. Urban geoheritage as a resource for Earth Sciences education: Examples from Milan metropolitan area. Rendiconti Online Società Geologica Italiana 2018, 45, 83–88. [Google Scholar] [CrossRef]
- Hooke, I.M. Strategies for conserving and sustaining dynamic geomorphological sites. In Geological and Landscape Conservation; O’Halloran, D., Green, C., Harley, M., Stanley, M., Knill, J., Eds.; Geological Society of London Special Publications: London, UK, 1994; pp. 191–195. [Google Scholar]
- Strasser, A.; Heitzmann, P.; Jordan, P.; Stapfer, A.; Stürm, B.; Vogel, A.; Weidmann, M. Geotope und der Schutz erd-Wissenschaftlicher. Schweiz; Ein Strategiebericht: Fribourg, Switzerland, 1995. [Google Scholar]
- Koster, E.A. The “European aeolian sand belt: Geoconservation of drift sand landscapes”. Geoheritage 2009, 1, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Coratza, P.; Parenti, C. Controlling factors of badland morphological changes in the Emilia Apennines (Northern Italy). Water 2021, 13, 539. [Google Scholar] [CrossRef]
- Reynard, E.; Hobléa, F.; Cayla, N.; Gauchon, C. Iconic sites for alpine geology and geomorphology. Rediscovering heritage? J. Alp. Res. 2011, 99-2. Available online: http://rga.revues.org/1435 (accessed on 14 October 2021).
- Ballantyne, C.K. Paraglacial geomorphology. Quat. Sci. Rev. 2002, 21, 1935–2017. [Google Scholar] [CrossRef]
- Wimbledon, W.A.P.; Andersen, S.; Cleal, C.J.; Cowie, J.W.; Erikstad, L.; Gonggrijp, G.P.; Johansson, C.E.; Karis, L.O.; Suominen, V. Geological world heritage: GEOSITES: A global comparative site inventory to enable prioritisation for conservation. Mem. Descrit. Carta Geol. Ital. 1999, 54, 45–60. [Google Scholar]
- Giusti, C.; Calvet, M. L’inventaire des géomorphosites en France et le problème de la complexité scalaire. Geomorphologie Relief Process. Environ. 2010, 2, 223–244. [Google Scholar] [CrossRef] [Green Version]
- Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Geosites inventory in the Leon Province (Northern Spain): A tool to introduce geoheritage into regional environmental management. Geoheritage 2010, 2, 54–75. [Google Scholar] [CrossRef]
- Lapo, A.V.; Davydov, V.I.; Pashkevich, N.G.; Petrov, V.V.; Vdovets, M.S. Methodic principles of study of geological monuments of nature in Russia. Stratigr. Geol. Correl. 1993, I, 636–644. [Google Scholar]
- Ruban, D. Quantification of geodiversity and its loss. Proc. Geol. Assoc. 2010, 121, 326–333. [Google Scholar] [CrossRef]
- Brock, M.; Semeniuk, V. Geoheritage and geoconservation-history, definition, scope and scale. J. R. Soc. West. Aust. 2007, 90, 53–87. [Google Scholar]
- Tognetto, F.; Perotti, L.; Viani, C.; Colombo, N.; Giardino, M. Geomorphology and geosystem services of the Indren-Cimalegna area (Monte Rosa massif—Western Italian Alps). J. Maps 2021, 17, 161–172. [Google Scholar] [CrossRef]
- Cucchi, F.; Finocchiaro, F. Karst landforms in Friuli Venezia Giulia: From alpine to coastal karst. In Landscapes and landforms of Italy; Soldati, M., Marchetti, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 147–156. [Google Scholar]
- Ponton, M. Note geologiche sulle Alpi Giulie occidentali. In Il Fenomeno Carsico nelle Alpi Giulie (Friuli); Muscio, G., Casagrande, G., Cucchi, F., Eds.; Mem. Ist. It. Speleologia: Bologna, Italy, 2011; Volume 24, pp. 58–80. [Google Scholar]
- Cucchi, F.; Finocchiaro, F.; Muscio, G. Geositi del Friuli Venezia Giulia; Università degli Studi di Trieste: Udine, Italy, 2010; p. 284. [Google Scholar]
- Casagrande, G.; Cucchi, F.; Manca, P.; Zini, L. L’idrostruttura del Monte Canin. In Il Fenomeno Carsico nelle Alpi Giulie (Friuli); Muscio, G., Casagrande, G., Cucchi, F., Eds.; Mem. Ist. It. Speleologia: Bologna, Italy, 2011; Volume 24, pp. 155–180. [Google Scholar]
- Steck, A. Tectonics of the Simplon massif and Lepontine gneiss dome: Deformation structures due to collision between the underthrusting European plate and the Adriatic indenter. Swiss J. Geosci. 2008, 101, 515–546. [Google Scholar] [CrossRef] [Green Version]
- Rigamonti, I.; Uggeri, A. L’evoluzione dell’Alpe Veglia nel quadro delle Alpe Centrali. Geol. Insubrica 2016, 1, 69–83. [Google Scholar]
- Curry, A.M. Paraglacial modification of slope form. Earth surface processes and landforms. J. Br. Geomorphol. Res. Group 1999, 24, 1213–1228. [Google Scholar]
- Cossart, E.; Fort, M. Sediment release and storage in early deglaciated areas: Towards an application of the exhaustion model from the case of Massif des Écrins (French Alps) since the Little Ice Age. Nor. Geogr. Tidsskr. Nor. J. Geogr. 2008, 62, 115–131. [Google Scholar] [CrossRef]
- Comitato Glaciologico Italiano. Campagna glaciologica 1995. Geogr. Fis. Din. Quat. 1995, 19, 147–184. [Google Scholar]
- Comitato Glaciologico Italiano. Itinerari Glaciologici sulle Montagne Italiane; Società Geologica Italiana: Bologna, Italy, 2018; Volume 3, pp. 215–234. [Google Scholar]
- Chiesa, S.; Fornero, I.; Frassoni, A.; Mazza, G.; Zanchi, A.; Zaninetti, A. Gravitational instability phenomena concerning a hydroelectric plant in Italy. In Proceedings of the 7 International Congress of Rock Mechanics, Aachen, Germany, 1 September 1991; pp. 6–7. [Google Scholar]
- Porter, S.C.; Orombelli, G. Glacier contraction during the middle Holocene in the western Italian Alps: Evidence and implications. Geology 1985, 13, 296. [Google Scholar] [CrossRef]
- Mezzena, F. La Valle d’Aosta nella preistoria e nella protostoria. In Archeologia in Valle d’Aosta; Catalogo Mostra: Aosta, Italy, 1981; pp. 14–62. [Google Scholar]
- Mezzena, F. Ricerche preistoriche e protostoriche in Valle d’Aosta. Revue d’Etudes Ligures Bordighera 1982, 41–42, 92–146. [Google Scholar]
- Mezzena, F.; Morandi, R. La Datazione delle Più Antiche Incisioni Rupestri Dell’Arco Alpino alla Luce dei Ritrovamenti di Vollein (Valle d’Aosta); Atti della XXVIII Riunione Scientifica su “L’arte in Italia dal Paleolitico all’Età del Bronzo”: Firenze, Italy, 1992; pp. 385–398. [Google Scholar]
- Giardino, M.; Martinotti, G.; Mezzena, F. Dinamica ambientale ed evoluzione del sito archeologico di Vollein, Media Valle d’Aosta. In GeoBen 2000 Proceedings: Condizionamenti Geologici e Geotecnici nella Conservazione del Patrimonio Storico Culturale; Lollino, G., Ed.; Gruppo Nazionale Difesa Catastrofi Idrogeologiche, CNR-IRPI-Torino: Torino, Italy, 2000; pp. 527–537. [Google Scholar]
- Deline, P.; Giardino, M.; Nicoud, G. Le Quaternaire des vallées alpines. In Fronts Glaciaires, Mouvements de Versant et Comblements Alluviaux Dans la Vallée de l’Arve et de l’Arve, d’Aoste et de Suse; Collection Edythem: Chambéry, Italy, 2005; p. 195. [Google Scholar]
- Martinotti, G.; Hunziker, J.C. The Austroalpine System in the Western Alps: A review. Mem. Soc. Geol. It. 1987, 29, 233–250. [Google Scholar]
- Mezzena, F. La Valle d’Aosta nel Neolitico e nell’Eneolitico. In Atti della XXXI Riunione Scientifica dell’Istituto Italiano di Preistoria e Protostoria. La Valle d’Aosta nel Quadro della Preistoria e Protostoria dell’Arco Alpino Centro-Occidentale, Courmayeur, 2–5 June 1994; Istituto Italiano di Preistoria e Protostoria: Florence, Italy, 1997; pp. 17–138. [Google Scholar]
- Skeates, R. Neolithic Italy at 4004 BC: People and places. Accord. Res. Pap. 2013, 13, 11425. [Google Scholar]
- Castiglioni, G.B.; Ajassa, R.; Baroni, C.; Biancotti, A.; Bondesan, A.; Bondesan, M.; Brancucci, G.; Castaldini, D.; Castellaccio, E.; Cavallin, A.; et al. Geomorphological Map of the Po Plain, 3 Sheets at 1:250,000 Scale; SELCA: Firenze, Italy, 1997. [Google Scholar]
- Pieri, M.; Groppi, G. Subsurface geological structure of the Po Plain, Italy. Prog. Final. Geod. Pubbl. 1991, 414, 1–3. [Google Scholar]
- Castaldini, D.; Marchetti, M.; Cardarelli, A. Geomorphological and archaeological aspects in the central Po Plain (Northern Italy). In Ol’man River. Geo-Archaeological Aspects of Rivers and River Plains; De Dapper, M., Vermeulen, F., Deprez, S., Taelman, D., Eds.; Universiteit Gent Academia Press: Gent, Belgium, 2009; pp. 193–211. [Google Scholar]
- Balista, C.; Calzolari, M.; Campagnoli, P.; Cardarelli, A.; Cattani, M.; Corazza, V.; Corti, C.; Gelichi, S.; Gianferrari, A.; Giordani, N.; et al. Atlante dei Beni Archeologici della Provincia di Modena; All’Insegna del Giglio: Florenze, Italy, 2003. [Google Scholar]
- Govi, M.; Turitto, O. Grandi inondazioni lungo il fiume Po negli ultimi 2 secoli: Scenari che si ripetono. In Proceedings of the International Conference La Prevenzione Delle Catastrofi Idrogeologiche: Il Contributo della Ricerca Scientifica, Alba, Italy, 5–7 November 1996; pp. 143–156. [Google Scholar]
- Luino, F. Le alluvioni storiche del fiume Po, in particolare dal 1861 a oggi. In L’Italia dei Disastri. Dati e Riflessioni Sull’Impatto Degli Eventi Naturali 1861–2013; Guidoboni, E., Valensise, G., Eds.; Bononia University Press: Bologna, Italy, 2013; pp. 109–157. [Google Scholar]
- Castaldini, D. Geomorfologia della bassa Pianura Padana modenese e dei territori limitrofi. In Mirandola e le Valli, Immagini e Documenti; Tip. Golinelli: Mirandola, Italy, 1989; pp. 25–37. [Google Scholar]
- Brandolini, P.; Faccini, F.; Robbiano, A.; Terranova, R. Geomorphological hazards and monitoring activity along the western rocky coast of the Portofino Promontory (Italy). Quat. Int. 2007, 171–172, 131–142. [Google Scholar] [CrossRef]
- Roccati, A.; Paliaga, G.; Luino, F.; Faccini, F.; Turconi, L. Rainfall Threshold for shallow landslides initiation and analysis of long-term rainfall trends in a Mediterranean area. Atmosphere 2020, 11, 1367. [Google Scholar] [CrossRef]
- Paliaga, G.; Luino, F.; Turconi, L.; De Graff, J.V.; Faccini, F. Terraced landscapes on portofino promontory (Italy): Identification, geo-hydrological hazard and management. Water 2020, 12, 435. [Google Scholar] [CrossRef] [Green Version]
- Turconi, L.; Faccini, F.; Marchese, A.; Paliaga, G.; Casazza, M.; Vojinovic, Z.; Luino, F. Implementation of nature-based solutions for hydro-meteorological risk reduction in small mediterranean catchments: The case of Portofino Natural Regional Park, Italy. Sustainability 2020, 12, 1240. [Google Scholar] [CrossRef] [Green Version]
- Ferrando, I.; Brandolini, P.; Federici, B.; Lucarelli, A.; Sguerso, D.; Morelli, D.; Corradi, N. Coastal modification in relation to sea storm effects: Application of 3D remote sensing survey in Sanremo Marina (Liguria, NW Italy). Water 2021, 13, 1040. [Google Scholar] [CrossRef]
- Brandolini, P.; Faccini, F.; Piccazzo, M. Geomorphological hazard and tourist vulnerability along Portofino Park trails (Italy). Nat. Hazard Earth Syst. Sci. 2006, 6, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Faccini, F.; Robbiano, A.; Roccati, A.; Angelini, S. Engineering geological map of the Chiavari city area (Liguria, Italy). J. Maps 2012, 8, 41–47. [Google Scholar] [CrossRef]
- Nesci, O.; Valentini, L. TerreRare. Le Marche: Scienza, Poesia, Musica; Argalia: Urbino, Italy, 2019; p. 230. [Google Scholar]
- Valentini, L.; Nesci, O. A new approach to enhance the appeal of the Italian territory through art: Three study cases from Marche Region. Arab. J. Geosci. 2021, 14, 1–17. [Google Scholar] [CrossRef]
- Corazza, A.; Lombardi, L. Idrogeologia dell’area del centro storico di Roma. In La Geologia di Roma: Il Centro Storico; Memorie Descrittive della Carta Geologica d’Italia: Rome, Italy, 1995; Volume 50, pp. 179–211. [Google Scholar]
- Del Monte, M.; Fredi, P.; Pica, A.; Vergari, F. Geosites within Rome city center (Italy): A mixture of cultural and geomorphological heritage. Geogr. Fis. Din. Quat. 2013, 36, 241–257. [Google Scholar] [CrossRef]
- Del Monte, M.; D’Orefice, M.; Luberti, G.M.; Marini, R.; Pica, A.; Vergari, F. Geomorphological classification of urban landscapes: The case study of Rome (Italy). J. Maps 2016, 12, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Ascani, F.; Bozzano, F.; Buccellato, A.; Del Monte, M.; Matteucci, R.; Vergari, F. Evoluzione del paesaggio e antiche vie di drenaggio nell’area de «IL Castellaccio» (Roma) da indagini geologiche, geomorfologiche e archeologiche. Geol. Romana 2008, 41, 93–116. [Google Scholar]
- Della Seta, M.; Del Monte, M.; Fredi, P.; Marra, F.; Pantani, G. Caratteri morfostrutturali del settore in riva destra del Fiume Tevere nell’area urbana di Roma. Geol. Romana 2002, 36, 105–122. [Google Scholar]
- Pica, A.; Reynard, E.; Grangier, L.; Kaiser, C.; Ghiraldi, L.; Perotti, L.; Del Monte, M. GeoGuides, urban geotourism offer powered by mobile application technology. Geoheritage 2017, 10, 311–326. [Google Scholar] [CrossRef]
- Clerici, E. Una Trivellazione Eseguita nel Tevere in Roma al Ponte Fabricio; Rendiconti Accademia Nazionale dei Lincei: Rome, Italy, 1911; pp. 922–926. [Google Scholar]
- Ventriglia, U. Geologia del Territorio del Comune di Roma; Amministrazione Provinciale di Roma: Roma, Italy, 2002. [Google Scholar]
- Vergari, F.; Luberti, G.M.; Pica, A.; Del Monte, M. Geomorphology of the historic centre of the Urbs (Rome, Italy). J. Maps 2020, 17, 1–12. [Google Scholar] [CrossRef]
- Pennetta, M.; Valente, A.; Abate, D.; Boudillon, G.; De Pippo, T.; Leone, M.; Terlizzi, F. Influenza della morfologia costiera sulla circolazione e sedimentazione sulla piattaforma continentale campano-laziale tra Gaeta e Cuma (Italia meridionale). Boll. Soc. Geol. It. 1998, 117, 281–295. [Google Scholar]
- Pennetta, M.; Brancato, V.M.; De Muro, S.; Gioia, D.; Kalb, C.; Stanislao, C.; Valente, A.; Donadio, C. Morpho-sedimentary features and sediment transport model of the submerged beach of the ‘Pineta della foce del Garigliano’ SCI Site (Caserta, southern Italy). J. Maps 2016, 12, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Abate, D.; De Pippo, T.; Ilardi, M.; Pennetta, M. Studio delle caratteristiche morfoevolutive quaternarie della piana del Garigliano. Il Quat. 1998, 11, 149–158. [Google Scholar]
- Pennetta, M.; Corbelli, V.; Gattullo, V.; Nappi, R.; Brancato, V.M.; Gioia, D. Beach vulnerability assessment of a protected area of the Northern Campania coast (Southern Italy). J. Coast. Conserv. 2017, 22, 1017–1029. [Google Scholar] [CrossRef]
- Pennetta, M.; Stanislao, C.; D’Ambrosio, V.; Marchese, F.; Minopoli, C.; Trocciola, A.; Valente, R.; Donadio, C. Geomorphological features of the archaeological marine area of Sinuessa in Campania, southern Italy. Quat. Int. 2016, 425, 198–213. [Google Scholar] [CrossRef]
- Lambeck, K.; Anzidei, M.; Antonioli, F.; Benini, A.; Esposito, A. Sea level in Roman time in the Central Mediterranean and implications for recent change. Earth Planet. Sci. Lett. 2004, 224, 563–575. [Google Scholar] [CrossRef]
- Carmignani, L.; Oggiano, G.; Barca, S.; Conti, P.; Salvadori, I.; Eltrudis, A.; Funedda, A.; Pasci, S. Geologia della Sardegna. Note illustrative della Carta Geologica della Sardegna a scala 1:200 000. In Memorie Descrittive Carta Geologica d’Italia; Rome, Italy, 2001; p. 60. Available online: https://www.academia.edu/16956720/Geologia_della_Sardegna_Note_illustrative_Della_Carta_Geologica_in_Scala_1_200_000 (accessed on 23 August 2021).
- De Waele, J.; Pisano, M. Osservazioni geologiche, geomorfologiche ed idrogeologiche sul Supramonte di Baunei (Sardegna centro-orientale). Rend. Sem. Fac. Sci. Univ. Cagliari 1997, 67, 83–97. [Google Scholar]
- Dieni, I.; Massari, F. Mesozoic of Eastern Sardinia. In 19th European Micropaleontological Colloquium—Guide Book; AGIP: Cagliari, Italy, 1985; pp. 66–78. [Google Scholar]
- Massari, F.; Dieni, I. La Formazione fluvio-lacustre di Nuraghe Casteddu ed i suoi rapporti con i basalti di Orosei-Dorgali (Sardegna). Memorie Società Geologica Italiana 1973, 12, 377–410. [Google Scholar]
- Savelli, C.; Pasini, G.C. Preliminary results of K-Ar dating of basalts from Eastern Sardinia and the Gulf of Orosei. Giornale di Geologia 1973, 39, 303–312. [Google Scholar]
- De Waele, J. Geomorphologic evolution of a coastal karst: The gulf of Orosei (Central-East Sardinia, Italy). Acta Carsologica 2006, 33, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Pasci, S. Tertiary transcurrent tectonics of NorthCentral Sardinia. Bull. De La Soc. Geol. Fr. 1997, 168, 301–312. [Google Scholar]
- Orrù, P.; Ulzega, A. Rilevamento geomorfologico costiero e sottomarino applicato alla definizione delle risorse ambientali (Golfo di Orosei, Sardegna orientale). Memorie Società Geologica Italiana 1987, 37, 471–479. [Google Scholar]
- Cossu, A.; De Waele, J.; Di Gregorio, F. Coastal karst geomorphosites at risk? A case study: The floods of 6–11 December 2004 in central-east Sardinia. Geol. Soc. Lond. Spec. Publ. 2007, 279, 85–95. [Google Scholar] [CrossRef]
- Carobene, L. Osservazioni sui solchi di battente attuali e antichi nel Golfo di Orosei in Sardegna. Boll. Soc. Geol. Ital. 1972, 91, 583–601. [Google Scholar]
- Carobene, L. Valutazione di movimenti recenti mediante ricerche morfologiche su falesie e grotte marine del Golfo di Orosei. Memorie Società Geologica Italiana 1978, 19, 641–649. [Google Scholar]
- Carobene, L.; Pasini, G.; Selli, R. Ancient coastlines in the Gulf of Orosei (western Sardinia). In Symposium sur la Géodynamique de la region Mediterraneenne; Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée: Paris, France, 1973. [Google Scholar]
- Carobene, L.; Pasini, G. Contributo alla conoscenza del Pleistocene superiore e dell’Olocene del Golfo di Orosei (Sardegna orientale). Bollettino Società Adriatica Scienze 1982, 64, 5–35. [Google Scholar]
- Antonioli, F.; Ferranti, L. Geomorfologia costiera e subacquea e considerazioni paleoclimatiche sul settore compreso tra Santa Maria Navarrese e Punta Golotitzé (Golfo di Orosei, Sardegna). Giornale Geologia 1992, 54, 66–89. [Google Scholar]
- Comănescu, L.; Nedelea, A.; Stănoiu, G. Geomorphosites and geotourism in Bucharest city center (Romania). Quaest. Geogr. 2017, 36, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Zwoliński, Z.; Hildebrandt-Radke, I.; Mazurek, M.; Makohonienko, M. Anthropogeomorphological metamorphosis of an urban area in the postglacial landscape: A case study of Poznań city. Urban Geomorphol. 2018, 55–77. [Google Scholar] [CrossRef]
- Castaldini, D.; Valdati, J.; Ilies, D.C.; Chiriac, C. Geo-tourist map of the natural reserve of salse di nirano (Modena Apennines, Northern Italy). Ital. J. Quat. Sci. 2005, 18, 243–253. [Google Scholar]
- Ilieş, D.C.; Ilieş, A.; Herman, G.V.; Baias, Ş.; Morar, C. Geotourist Map of the Băile Felix—Băile 1 Mai-Betfia Area (Bihor County, Romania. GeoJournal Tour. Geosites 2011, 2, 219–226. [Google Scholar]
- Zwolinski, Z.; Stachowiak, J. Geodiversity map of the Tatra National Park for geotourism. Quaest. Geogr. 2012, 31, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Badang, D.; Ali, C.A.; Komoo, I.; Leman, M.S. Sustainable geological heritage development approach in Sarawak Delta, Sarawak, Malaysia. Geoheritage 2016, 9, 443–462. [Google Scholar] [CrossRef]
- Cayla, N.; Hoblea, F.; Reynard, E. New digital technologies applied to the management of geoheritage. Geoheritage 2014, 6, 89–90. [Google Scholar] [CrossRef] [Green Version]
- Cayla, N.; Hoblea, F.; Guasquet, D. Place de la géomorphologie dans l’offre géotouristique de l’arc alpin: Du réel au virtuel. In Raising the Profile of Geomorphological Heritage Through Iconography, Inventory and Promotion; Giusti, C., Ed.; University Paris Sorbonne: Paris, France, 2012; pp. 65–71. [Google Scholar]
- Mariotto, F.P.; Bonali, F. Virtual geosites as innovative tools for geoheritage popularization: A case study from Eastern Iceland. Geosciences 2021, 11, 149. [Google Scholar] [CrossRef]
- Santos, I.D.O.; Henriques, R.; Mariano, G.; Pereira, D.I. Methodologies to represent and promote the geoheritage using unmanned aerial vehicles, multimedia technologies, and augmented reality. Geoheritage 2018, 10, 143–155. [Google Scholar] [CrossRef]
- Antoniou, V.; Nomikou, P.; Panousis, D.; Zafeirakopoulou, E. Nisyros Volcanic island: A geosite through a tailored GIS story. Geosciences 2021, 11, 132. [Google Scholar] [CrossRef]
- Gallerini, G.; Susini, S.; Bruciatelli, L.; De Donatis, M. Geomatics and geo-tourism: San Bartolo Natural Park case study (Pesaro, Italy). GeoActa Special Publication 2011, 3, 167–178. [Google Scholar]
- Martin, S.; Reynard, E.; Ondicol, R.P.; Ghiraldi, L. Multi-scale web mapping for geoheritage visualisation and promotion. Geoheritage 2014, 6, 141–148. [Google Scholar] [CrossRef]
- Mariotto, F.P.; Bonali, F.L.; Venturini, C. Iceland, an open-air museum for geoheritage and earth science communication purposes. Resources 2020, 9, 14. [Google Scholar] [CrossRef] [Green Version]
FEATURE | Category | Definition | Examples |
---|---|---|---|
A. Geometry—The shifting between the above categories (e.g., from point to polygon or vice versa) is regulated by the scale of the map. | point | small-size isolated single landform or object | a pothole an erratic boulder |
polyline | one or more single landforms aligned in a preferred direction | a canyon a paleo riverbed | |
polygon | a set of single landforms within a large area | a set of ridges forming a morainic amphitheatre | |
B. Genesis | simple | unique landform related to one dominant genetic process | karren field |
composite | group of landforms related to one dominant genetic process | karren field with karrens and sinkholes | |
complex | group of landforms related to more than one dominant genetic process (eventually interlinked by a network of genetic and functional relationship) | proglacial areas where glacial, slope- and water-related processes interact | |
C. Scientific and territorial importance | local | importance for a single municipal territories and districts | |
regional | importance for larger territorial body within a country | ||
national | importance for a whole country | ||
global | importance at the international level |
Landforms | Colour |
---|---|
Litho-structural landforms | mustard |
Tectonic landforms | dark brown |
Vulcanic landforms | brown |
Gravity-induced landforms | red |
Fluvial, glacio-fluvial and due to running water landforms | green |
Karstic landforms | orange |
Glacial landforms | purple |
Periglacial landforms | blue |
Coastal landforms | light blue |
Aeolian landforms | yellow |
Anthropic landforms | black |
N | Name of the Geomorphosite | Main Morphogenetic Processes | Typological Category | Scale Related Representation | Importance | |
---|---|---|---|---|---|---|
1:25,000 | 1:50,000 | |||||
01 | Mount Canin | Karstic, glacial, hydrological | Composite, Simple, | Polygon and Point | Polygon and Point | Global, National, Local |
02 | Proglacial systems of the Aurona and Leone Glaciers | Paraglacial and periglacial | Complex | Polygon | Polygon | Local |
03 | Croce di Fana | Gravitational, glacial | Complex | Polygon and Point | Polygon and Point | Regional, Global |
04 | Fluvial landscape in central Po Plain | Fluvial | Simple | Polygon | Polygon | Regional, local |
05 | High rocky cliffs in the Portofino Promontory | Marine, gravitational, running water | Composite | Polygon | Polyline | Global |
06 | Furlo Gorge | Fluvial, gravitational | Complex | Polygon | Polygon | National |
07 | Tiberina Island | Fluvial, anthropogenic | Simple | Polygon | Point | Regional |
08 | Sinuessa submerged landscape in the Gaeta Bay | Marine, coastal, fluvial | Complex | Polygon | Polygon | Regional |
09 | Fluvio-coastal system of Cala Luna | Fluvial, coastal, karstic | Complex | Polygon | Polygon | Global |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coratza, P.; Bollati, I.M.; Panizza, V.; Brandolini, P.; Castaldini, D.; Cucchi, F.; Deiana, G.; Del Monte, M.; Faccini, F.; Finocchiaro, F.; et al. Advances in Geoheritage Mapping: Application to Iconic Geomorphological Examples from the Italian Landscape. Sustainability 2021, 13, 11538. https://doi.org/10.3390/su132011538
Coratza P, Bollati IM, Panizza V, Brandolini P, Castaldini D, Cucchi F, Deiana G, Del Monte M, Faccini F, Finocchiaro F, et al. Advances in Geoheritage Mapping: Application to Iconic Geomorphological Examples from the Italian Landscape. Sustainability. 2021; 13(20):11538. https://doi.org/10.3390/su132011538
Chicago/Turabian StyleCoratza, Paola, Irene Maria Bollati, Valeria Panizza, Pierluigi Brandolini, Doriano Castaldini, Franco Cucchi, Giacomo Deiana, Maurizio Del Monte, Francesco Faccini, Furio Finocchiaro, and et al. 2021. "Advances in Geoheritage Mapping: Application to Iconic Geomorphological Examples from the Italian Landscape" Sustainability 13, no. 20: 11538. https://doi.org/10.3390/su132011538
APA StyleCoratza, P., Bollati, I. M., Panizza, V., Brandolini, P., Castaldini, D., Cucchi, F., Deiana, G., Del Monte, M., Faccini, F., Finocchiaro, F., Gioia, D., Melis, R., Minopoli, C., Nesci, O., Paliaga, G., Pennetta, M., Perotti, L., Pica, A., Tognetto, F., ... Pelfini, M. (2021). Advances in Geoheritage Mapping: Application to Iconic Geomorphological Examples from the Italian Landscape. Sustainability, 13(20), 11538. https://doi.org/10.3390/su132011538