Trace Metal Accumulation in Rice Variety Kainat Irrigated with Canal Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Sample Collection and Preparation
2.3. Sample Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Concentrations of Heavy Metals Involved in Soil
3.2. Concentration of Heavy Metals in Roots
3.3. Concentration of Heavy Metals in Shoot
3.4. Concentration of Heavy Metals in Grains
3.5. Correlation
3.6. Bioaccumulation Factor
3.7. Translocation Factor (TF)
3.8. Pollution Load Index (PLI)
3.9. Enrichment Factor
3.10. Daily Intake of Metal
3.11. Health Risk Index
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tariq, S.R.; Rashid, N. Multivariate analysis of metal levels in paddy soil, rice plants, and rice grains: A case study from Shakargarh, Pakistan. J. Chem. 2013, 2013, 539251. [Google Scholar] [CrossRef]
- Hashem, I.A.; Abbas, A.Y.; Abd El-Hamed, A.E.-N.H.; Salem, H.M.S.; El-hosseiny, O.E.M.; Abdel-Salam, M.A.; Saleem, M.H.; Zhou, W.; Hu, R. Potential of rice straw biochar, sulfur and ryegrass (Lolium perenne L.) in remediating soil contaminated with nickel through irrigation with untreated wastewater. PeerJ 2020, 8, e9267. [Google Scholar] [CrossRef]
- Saleem, M.H.; Ali, S.; Rehman, M.; Hasanuzzaman, M.; Rizwan, M.; Irshad, S.; Shafiq, F.; Iqbal, M.; Alharbi, B.M.; Alnusaire, T.S. Jute: A Potential Candidate for Phytoremediation of Metals—A Review. Plants 2020, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.H.; Ali, S.; Hussain, S.; Kamran, M.; Chattha, M.S.; Ahmad, S.; Aqeel, M.; Rizwan, M.; Aljarba, N.H.; Alkahtani, S. Flax (Linum usitatissimum L.): A Potential Candidate for Phytoremediation? Biological and Economical Points of View. Plants 2020, 9, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afzal, J.; Wang, X.; Saleem, M.-H.; Sun, X.; Hussain, S.; Khan, I.; Rana, M.-S.; Ahmed, S.; Awan, S.-A.; Fiaz, S.; et al. Application of ferrous sulfate alleviates negative impact of cadmium in rice (Oryza sativa L.). Biocell 2021, 45, 1631–1649. [Google Scholar] [CrossRef]
- Afzal, J.; Saleem, M.H.; Batool, F.; Elyamine, A.M.; Rana, M.S.; Shaheen, A.; El-Esawi, M.A.; Tariq Javed, M.; Ali, Q.; Arslan Ashraf, M.; et al. Role of Ferrous Sulfate (FeSO4) in Resistance to Cadmium Stress in Two Rice (Oryza sativa L.) Genotypes. Biomolecules 2020, 10, 1693. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Feng, X.; Qiu, G.; Anderson, C.W.; Yao, H. Prediction of methyl mercury uptake by rice plants (Oryza sativa L.) using the diffusive gradient in thin films technique. Environ. Sci. Technol. 2012, 46, 11013–11020. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Zhang, B.; Liu, Y.; Xu, X.; Li, Y.-F.; Li, B.; Gao, Y.; Chai, Z. The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species. Plant Soil 2016, 398, 87–97. [Google Scholar] [CrossRef]
- Saleem, M.; Ali, S.; Rehman, M.; Rana, M.; Rizwan, M.; Kamran, M.; Imran, M.; Riaz, M.; Hussein, M.; Elkelish, A.; et al. Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province, China. Chemosphere 2020, 248, 126032. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, H.; Du, B.; Shang, L.; Yang, J.; Wang, Y. Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.). Environ. Sci. Pollut. Res. 2015, 22, 6144–6154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Qiu, G.; Anderson, C.W.; Zhang, H.; Meng, B.; Liang, L.; Feng, X. Effect of atmospheric mercury deposition on selenium accumulation in rice (Oryza sativa L.) at a mercury mining region in Southwestern China. Environ. Sci. Technol. 2015, 49, 3540–3547. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, T.; Driscoll, C.T.; Yin, Y.; Zhang, X. Mechanism of accumulation of methylmercury in rice (Oryza sativa L.) in a mercury mining area. Environ. Sci. Technol. 2018, 52, 9749–9757. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Hussain, S.; El-Esawi, M.A.; Rana, M.S.; Saleem, M.H.; Riaz, M.; Ashraf, U.; Potcho, M.P.; Duan, M.; Rajput, I.A. Molybdenum Supply Alleviates the Cadmium Toxicity in Fragrant Rice by Modulating Oxidative Stress and Antioxidant Gene Expression. Biomolecules 2020, 10, 1582. [Google Scholar] [CrossRef]
- Tariq, F.; Wang, X.; Saleem, M.H.; Khan, Z.I.; Ahmad, K.; Saleem Malik, I.; Munir, M.; Mahpara, S.; Mehmood, N.; Ahmad, T.; et al. Risk Assessment of Heavy Metals in Basmati Rice: Implications for Public Health. Sustainability 2021, 13, 8513. [Google Scholar] [CrossRef]
- Yap, D.; Adezrian, J.; Khairiah, J.; Ismail, B.; Ahmad-Mahir, R.J. The uptake of heavy metals by paddy plants (Oryza sativa) in Kota Marudu, Sabah, Malaysia. Am.-Eurasian J. Agric. Environ. Sci. 2009, 6, 16–19. [Google Scholar]
- Durkan, N.; Ugulu, I.; Unver, M.; Dogan, Y.; Baslar, S. Electrolytes, Concentrations of trace elements aluminum, boron, cobalt and tin in various wild edible mushroom species from Buyuk Menderes River Basin of Turkey by ICP-OES. Trace Elem. Electrolytes 2011, 28, 242. [Google Scholar] [CrossRef]
- Ozturk, A.; Yarci, C.; Ozyigit, I. Assessment of heavy metal pollution in Istanbul using plant (Celtis australis L.) and soil assays. Biotechnol. Biotechnol. Equip. 2017, 31, 948–954. [Google Scholar] [CrossRef] [Green Version]
- Rehman, M.; Liu, L.; Bashir, S.; Saleem, M.H.; Chen, C.; Peng, D.; Siddique, K.H. Influence of rice straw biochar on growth, antioxidant capacity and copper uptake in ramie (Boehmeria nivea L.) grown as forage in aged copper-contaminated soil. Plant Physiol. Biochem. 2019, 138, 121–129. [Google Scholar] [CrossRef]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res. 2019, 26, 18003–18016. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.S.; Hu, C.X.; Shaaban, M.; Imran, M.; Afzal, J.; Moussa, M.G.; Elyamine, A.M.; Bhantana, P.; Saleem, M.H.; Syaifudin, M. Soil phosphorus transformation characteristics in response to molybdenum supply in leguminous crops. J. Environ. Manag. 2020, 268, 110610. [Google Scholar] [CrossRef]
- Zaheer, I.E.; Ali, S.; Saleem, M.H.; Ali, M.; Riaz, M.; Javed, S.; Sehar, A.; Abbas, Z.; Rizwan, M.; El-Sheikh, M.A.; et al. Interactive role of zinc and iron lysine on Spinacia oleracea L. growth, photosynthesis and antioxidant capacity irrigated with tannery wastewater. Physiol. Mol. Biol. Plants 2020, 26, 2435–2452. [Google Scholar] [CrossRef] [PubMed]
- Marshall, F.; Holden, J.; Ghose, C.; Chisala, B.; Kapungwe, E.; Volk, J.; Agrawal, M.; Agrawal, R.; Sharma, R.; Singh, R. Contaminated Irrigation Water and Food Safety for the Urban and Peri-Urban Poor: Appropriate Measures for Monitoring and Control from Field Research in India and Zambia; Department for International Development: London, UK, 2007; p. 8160. [Google Scholar]
- Başlar, S.; Kula, I.; Doğan, Y.; Yıldız, D.; Ay, G. A study of trace element contents in plants growing at Honaz Dagi-Denizli, Turkey. Ekoloji 2009, 18, 1–7. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA; London, UK, 2001. [Google Scholar]
- Ugulu, I.; Unver, M.; Dogan, Y. Determination and comparison of heavy metal accumulation level of Ficus carica bark and leaf samples in Artvin, Turkey. Oxid. Commun. 2016, 39, 765–775. [Google Scholar]
- Ozyigit, I.I.; Yalcin, B.; Turan, S.; Saracoglu, I.A.; Karadeniz, S.; Yalcin, I.E.; Demir, G. Investigation of heavy metal level and mineral nutrient status in widely used medicinal plants’ leaves in Turkey: Insights into health implications. Biol. Trace Elem. Res. 2018, 182, 387–406. [Google Scholar] [CrossRef]
- Saleem, M.H.; Ali, S.; Irshad, S.; Hussaan, M.; Rizwan, M.; Rana, M.S.; Hashem, A.; Abd Allah, E.F.; Ahmad, P. Copper Uptake and Accumulation, Ultra-Structural Alteration, and Bast Fibre Yield and Quality of Fibrous Jute (Corchorus capsularis L.) Plants Grown Under Two Different Soils of China. Plants 2020, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.H.; Kamran, M.; Zhou, Y.; Parveen, A.; Rehman, M.; Ahmar, S.; Malik, Z.; Mustafa, A.; Anjum, R.M.A.; Wang, B. Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. J. Environ. Manag. 2020, 257, 109994. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.; Danish, M.; Saleem, M.H.; Malik, Z.; Parveen, A.; Abbasi, G.H.; Jamil, M.; Ali, S.; Afzal, S.; Riaz, M. Application of abscisic acid and 6-benzylaminopurine modulated morpho-physiological and antioxidative defense responses of tomato (Solanum lycopersicum L.) by minimizing cobalt uptake. Chemosphere 2020, 263, 128169. [Google Scholar] [CrossRef] [PubMed]
- Javed, M.T.; Saleem, M.H.; Aslam, S.; Rehman, M.; Iqbal, N.; Begum, R.; Ali, S.; Alsahli, A.A.; Alyemeni, M.N.; Wijaya, L. Elucidating silicon-mediated distinct morpho-physio-biochemical attributes and organic acid exudation patterns of cadmium stressed Ajwain (Trachyspermum ammi L.). Plant Physiol. Biochem. 2020, 157, 23–37. [Google Scholar] [CrossRef]
- Zhuang, P.; McBride, M.B.; Xia, H.; Li, N.; Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Unver, M.C.; Ugulu, I.; Durkan, N.; Baslar, S.; Dogan, Y. Heavy metal contents of Malva sylvestris sold as edible greens in the local markets of Izmir. Ekoloji 2015, 24, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Irshad, S.; Xie, Z.; Kamran, M.; Nawaz, A.; Faheem, M.; Mehmood, S.; Gulzar, H.; Saleem, M.H.; Rizwan, M.; Malik, Z.; et al. Biochar composite with microbes enhanced arsenic biosorption and phytoextraction by Typha latifolia in hybrid vertical subsurface flow constructed wetland. Environ. Pollut. 2021, 291, 118269. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Yang, M.; Saleem, M.H.; Rehman, M.; Fahad, S.; Yang, Y.; Elshikh, M.S.; Alkahtani, J.; Ali, S.; Khan, S.M. Nitrogen fertilizer ameliorate the remedial capacity of industrial hemp (Cannabis sativa L.) grown in lead contaminated soil. J. Plant Nutr. 2021, 44, 1–9. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Adrees, M.; Rizvi, H.; Zia-ur-Rehman, M.; Hannan, F.; Qayyum, M.F.; Hafeez, F.; Ok, Y.S. Cadmium stress in rice: Toxic effects, tolerance mechanisms, and management: A critical review. Environ. Sci. Pollut. Res. 2016, 23, 17859–17879. [Google Scholar] [CrossRef]
- Hussain, A.; Ali, S.; Rizwan, M.; ur Rehman, M.Z.; Hameed, A.; Hafeez, F.; Alamri, S.A.; Alyemeni, M.N.; Wijaya, L. Role of zinc–lysine on growth and chromium uptake in rice plants under Cr stress. J. Plant Growth Regul. 2018, 37, 1413–1422. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Logan, T.J. Myths and science about the chemistry and fertility of soils in the tropics. In Myths and Science of Soils of the Tropics; Lal, R., Sanchez, P.A., Eds.; Soil Science Society of America: Madison, WI, USA, 1992; Volume 29, pp. 35–46. [Google Scholar]
- Vukadinovic, V.; Bertic, B. Agrochemistry and Plant Nutrition; Faculty of Agriculture: Osijek, Croatia, 1988; p. 56. [Google Scholar]
- Cui, Y.-J.; Zhu, Y.-G.; Zhai, R.-H.; Chen, D.-Y.; Huang, Y.-Z.; Qiu, Y.; Liang, J.-Z. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 2004, 30, 785–791. [Google Scholar] [CrossRef]
- Liu, W.-X.; Liu, J.-W.; Wu, M.-Z.; Li, Y.; Zhao, Y.; Li, S.-R. Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bull. Environ. Contam. Toxicol. 2009, 82, 343–347. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.-H.; Zhao, J.-Z.; Ouyang, Z.-Y.; Söderlund, L.; Liu, G.-H. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ. Int. 2005, 31, 805–812. [Google Scholar] [CrossRef]
- Tinker, P. Levels, distribution and chemical forms of trace elements in food plants. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1981, 294, 41–55. [Google Scholar]
- Chary, N.S.; Kamala, C.; Raj, D.S.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Ge, K.J. The Status of Nutrient and Meal of Chinese in the 1990s; Beijing People’s Hygiene Press: Beijing, China, 1992; pp. 415–434. [Google Scholar]
- Wang, X.; Sato, T.; Xing, B.; Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 2005, 350, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency (EPA). National Primary Drinking Water Regulations: Long Term 1 Enhanced Surface Water Treatment Rule. Final rule. Fed. Regist. 2002, 67, 1811–1844. [Google Scholar]
- Steel, R.G.; Torrie, J.H. Principles and Procedures of Statistics; McGraw-Hill Book Co.: New York, NY, USA, 1980; p. 481. [Google Scholar]
- Ekmekyapar, F.; Sabudak, T.; Seren, G.J. Assessment of heavy metal contamination in soil and wheat (Triticum aestivum L.) plant around the Çorlu–Çerkezkoy highway in Thrace region. Glob. Nest J. 2012, 14, 496–504. [Google Scholar]
- Awashthi, S.K. Central and State Rules as Amended for 1999: Prevention of Food Adulteration Act No 37 of 1954; Ashoka House Law: New Delhi, India, 2000. [Google Scholar]
- European Union. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs; European Union: Brussels, Belgium, 2006; Volume 364, pp. 324–365. [Google Scholar]
- Environmental Protection Agency (EPA). Exposure Factors Handbook, Volume I-General Factors; EPA/600/P-95/002Fa: 1997; EPA: Washington, DC, USA, 1997. [Google Scholar]
- Yadav, A.; Yadav, P.K.; Srivastava, S.; Singh, P.K.; Srivastava, V.; Shukla, D.N. Profitability and health risk estimation of rice cultivation under wastewater irrigation from natural drainage. Int. J. Sci. Res. Publ. 2014, 4, 2250–3153. [Google Scholar]
- Juen, L.L.; Aris, A.Z.; Ying, L.W.; Haris, H. Bioconcentration and translocation efficiency of metals in paddy (Oryza sativa): A case study from Alor Setar, Kedah, Malaysia. Sains Malays. 2014, 43, 521–528. [Google Scholar]
- Singh, A.; Sharma, R.K.; Agrawal, M.; Marshall, F.M. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem. Toxicol. 2010, 48, 611–619. [Google Scholar] [CrossRef]
- Lorestani, B.; Cheraghi, M.; Yousefi, N. Accumulation of Pb, Fe, Mn, Cu and Zn in plants and choice of hyperaccumulator plant in the industrial town of Vian, Iran. Arch. Biol. Sci. 2011, 63, 739–745. [Google Scholar] [CrossRef]
- Ogunkunle, C.O.; Varun, M.; Jimoh, M.A.; Olorunmaiye, K.S.; Fatoba, P.O. Evaluating the trace metal pollution of an urban paddy soil and bioaccumulation in rice (Oryza sativa L.) with the associated dietary risks to local population: A case study of Ilorin, north-central Nigeria. Environ. Earth Sci. 2016, 75, 1383. [Google Scholar] [CrossRef]
- FAO; WHO. Food Additives and Contaminants. Joint FAO/WHO Food Standards Programme; FAO: Rome, Italy; WHO: Rome, Italy, 2001; Volume 1, pp. 1–289. [Google Scholar]
- Shaar, G.Q.; Kazi, T.G.; Jatoi, W.B.; Makhija, P.M.; Sahito, S.B. Determination of heavy metals in eight barley cultivars collected from wheat research station Tandojam, Sindh, Pakistan. Appl. Life Sci. 2013, 14, 47–53. [Google Scholar]
- Jaishree, A.; Khan, T. Assessment of heavy metals risk on human health via dietary intake of cereals and vegetables from effluent irrigated land Jaipur district, Rajasthan. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 5142–5148. [Google Scholar]
- Satpathy, D.; Reddy, M.V.; Dhal, S.P. Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the East Coast of India. BioMed Res. Int. 2014, 2014, 545473. [Google Scholar] [CrossRef] [Green Version]
- Woldetsadik, D.; Drechsel, P.; Keraita, B.; Itanna, F.; Gebrekidan, H. Heavy metal accumulation and health risk assessment in wastewater-irrigated urban vegetable farming sites of Addis Ababa, Ethiopia. Int. J. Food Contam. 2017, 4, 1–13. [Google Scholar] [CrossRef]
- Badawy, R.; El-Gawad, A.; Osman, H. Health risks assessment of heavy metals and microbial contamination in water, soil and agricultural foodstuff from wastewater irrigation at Sahl El-Hessania area, Egypt. J. Appl. Sci. Res. 2013, 9, 3091–3107. [Google Scholar]
- Singh, J.; Upadhyay, S.K.; Pathak, R.K.; Gupta, V. Accumulation of heavy metals in soil and paddy crop (Oryza sativa), irrigated with water of Ramgarh Lake, Gorakhpur, UP, India. Toxicol. Environ. Chem. 2011, 93, 462–473. [Google Scholar] [CrossRef]
- Kumar, V.; Chopra, A.K. Heavy metals accumulation in soil and agricultural crops grown in the Province of Asahi India Glass Ltd. Haridwar (Uttarakhand), India. Adv. Crop Sci. Technol. 2015, 4, 1–6. [Google Scholar] [CrossRef]
- Emurotu, J.; Onianwa, P. Bioaccumulation of heavy metals in soil and selected food crops cultivated in Kogi State, north central Nigeria. Environ. Syst. Res. 2017, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, M.; Zaefarian, F. Bioaccumulation and translocation factors of cadmium and lead in’Aeluropus littoralis’. Aust. J. Agric. Eng. 2011, 2, 114–119. [Google Scholar]
- Angulo, E. The Tomlinson Pollution Load Index applied to heavy metal,‘Mussel-Watch’data: A useful index to assess coastal pollution. Sci. Total Environ. 1996, 187, 19–56. [Google Scholar] [CrossRef]
- Dosumu, O.; Abdus-Salam, N.; Oguntoye, S.; Afdekale, F. Trace metals bioaccumulation by some Nigerian vegetables. Centrepoint 2005, 13, 23–32. [Google Scholar]
- Ahmad, K.; Khan, Z.I.; Ashfaq, A.; Ashraf, M.; Yasmin, S. Assessment of heavy metal and metalloid levels in spinach (Spinacia oleracea L.) grown in wastewater irrigated agricultural soil of Sargodha, Pakistan. Pak. J. Bot. 2014, 46, 1805–1810. [Google Scholar]
- Khan, Z.I.; Ahmad, K.; Ashraf, M.; Parveen, R.; Mustafa, I.; Khan, A.; Bibi, Z.; Akram, N.A. Bioaccumulation of heavy metals and metalloids in luffa (Luffa cylindrica L.) irrigated with domestic wastewater in Jhang, Pakistan: A prospect for human nutrition. Pak. J. Bot. 2015, 47, 217–224. [Google Scholar]
- Liu, J.; Zhang, X.-H.; Tran, H.; Wang, D.-Q.; Zhu, Y.-N. Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant. Environ. Sci. Pollut. Res. Int. 2011, 18, 1623–1632. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-F.; Li, Y.-H.; Ji, Y.-F.; Yang, L.-S.; Wang, W.-Y.; Li, H.-R. Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China.Trans. Nonferrous Met. Soc. China 2010, 20, 308–314. [Google Scholar] [CrossRef]
- Balkhair, K.S.; Ashraf, M. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J. Biol. Sci. 2016, 23, S32–S44. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Yadav, S.; Yadav, S.K.; Kadyan, P.S.; Singh, I.; Singh, D. Heavy metals in wheat grains of Haryana (India) and their health implications. J. Pharm. Res. 2015, 7, 342–351. [Google Scholar]
- Fan, Y.; Zhu, T.; Li, M.; He, J.; Huang, R. Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in central China. J. Health Eng. 2017, 2017, 4124302. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Toxicological Review of Acrylamide (CAS No. 79–06–1) in Support of Summary Information on the Integrated Risk Information System (IRIS); EPA/635/R-07: 2010; EPA: Washington, DC, USA, 2010. [Google Scholar]
Site | Metal | ||||||
---|---|---|---|---|---|---|---|
Cd | Zn | Cu | Co | Fe | Mn | Ni | |
Soil | |||||||
Site-I | 11.743 ± 0.005 c | 14.481 ± 0.004 c | 10.429 ± 0.006 c | 11.631 ± 0.004 a | 24.126 ± 0.005 a | 22.478 ± 0.006 a | 13.615 ± 0.005 b |
Site-II | 12.728 ± 0.005 b | 12.465 ± 0.005 d | 9.416 ± 0.004 d | 9.615 ± 0.005 b | 20.11 ± 0.005 b | 20.464 ± 0.004 c | 12.601 ± 0.005 c |
Site-III | 13.714 ± 0.004 a | 15.452 ± 0.004 b | 11.402 ± 0.006 b | 4.6 ± 0.007 c | 15.09 ± 0.005 d | 21.448 ± 0.005 b | 9.585 ± 0.005 e |
Site-IV | 10.702 ± 0.004 d | 14.438 ± 0.005 c | 8.385 ± 0.005 e | 8.583 ± 0.005 b | 18.077 ± 0.004 c | 19.433 ± 0.006 d | 11.573 ± 0.005 d |
Site-V | 9.688 ± 0.005 e | 18.423 ± 0.005 a | 12.373 ± 0.005 a | 12.568 ± 0.005 a | 19.063 ± 0.005 b | 18.418 ± 0.005 e | 14.558 ± 0.005 a |
Maximum permissible limit | 3 a | 300 a | 100 a | 50 a | 21,000 b | 2000 a | 50 a |
Root | |||||||
Site-I | 9.538 ± 0.288 c | 10.343 ± 0.420 cd | 9.65 ± 0.288 b | 9.09 ± 0.288 a | 19.342 ± 0.220 a | 15.596 ± 0.288 a | 11.698 ± 0.288 b |
Site-II | 10.343 ± 0.388 b | 9.642 ± 0.520 d | 8.517 ± 0.220 c | 7.078 ± 0.288 b | 10.233 ± 0.220 d | 16.581 ± 0.363 a | 9.685 ± 0.480 c |
Site-III | 11.328 ± 0.788 a | 13.63 ± 0.644 b | 9.375 ± 0.288 b | 3.064 ± 0.220 d | 13.1 ± 0.288 c | 11.568 ± 0.420 b | 7.663 ± 0.363 d |
Site-IV | 9.313 ± 0.688 c | 9.618 ± 0.488 d | 7.267 ± 0.220 d | 6.048 ± 0.363 c | 12.983 ± 0.220 c | 9.552 ± 0.288 c | 8.645 ± 0.433 cd |
Site-V | 7.298 ± 0.488 d | 16.602 ± 0.463 a | 11.15 ± 0.144 a | 8.033 ± 0.388 ab | 15.85 ± 0.288 b | 12.538 ± 0.320 b | 12.63 ± 0.344 a |
Maximum permissible limit | 0.1–0.2 c | 100 c | 20 c | 0.01 c | 425.5 d | 500 d | 103 e |
Shoot | |||||||
Site-I | 7.223 ± 0.541 c | 10.286 ± 0.720 b | 8.74 ± 0.288 a | 7.235 ± 0.288 a | 18.326 ± 0.220 a | 15.595 ± 0.288 a | 10.202 ± 0.288 a |
Site-II | 5.542 ± 0.488 d | 8.276 ± 0.520 c | 7.726 ± 0.220 b | 6.222 ± 0.288 b | 9.312 ± 0.288 cd | 16.580 ± 0.363 a | 8.175 ± 0.388 ab |
Site-III | 10.53 ± 0.344 a | 10.262 ± 0.488 b | 8.714 ± 0.220 a | 2.207 ± 0.288 d | 11.297 ± 0.288 d | 11.567 ± 0.420 bc | 5.170 ± 0.363 cd |
Site-IV | 8.515 ± 0.463 b | 8.975 ± 0.724 c | 6.700 ± 0.300 bc | 5.192 ± 0.288 c | 10.282 ± 0.288 c | 9.551 ± 0.288 c | 4.155 ± 0.220 d |
Site-V | 4.498 ± 0.563 d | 12.232 ± 0.586 a | 5.865 ± 0.220 c | 6.18 ± 0.244 b | 13.267 ± 0.288 b | 12.537 ± 0.320 b | 7.142 ± 0.288 b |
Maximum permissible limit | 0.1–0.2 c | 100 c | 20 c | 0.01 c | 425.5 d | 500 d | 103 e |
Grains | |||||||
Site-I | 5.552 ± 0.004 b | 9.855 ± 0.009 b | 6.881 ± 0.004 b | 6.521 ± 0.006 a | 14.735 ± 0.005 a | 13.933 ± 0.005 a | 8.343 ± 0.004 a |
Site-II | 3.538 ± 0.005 c | 7.835 ± 0.006 c | 5.865 ± 0.005 c | 5.504 ± 0.006 b | 8.714 ± 0.004 bc | 12.916 ± 0.004 b | 6.331 ± 0.004 b |
Site-III | 2.523 ± 0.005 d | 9.818 ± 0.005 b | 7.852 ± 0.004 a | 1.488 ± 0.005 e | 9.702 ± 0.004 b | 8.902 ± 0.006 d | 3.318 ± 0.005 d |
Site-IV | 6.503 ± 0.006 a | 5.803 ± 0.005 d | 5.838 ± 0.005 c | 3.473 ± 0.005 d | 8.688 ± 0.005 c | 9.888 ± 0.005 c | 2.303 ± 0.005 e |
Site-V | 2.491 ± 0.004 d | 10.788 ± 0.005 a | 4.823 ± 0.005 d | 4.46 ± 0.005 c | 9.673 ± 0.005 b | 6.873 ± 0.005 e | 5.288 ± 0.005 c |
Maximum permissible limit | 0.1–0.2 c | 100 c | 20 c | 0.01 c | 425.5 d | 500 d | 103 e |
Metal | Soil-Root | Root-Shoot | Shoot-Grain |
---|---|---|---|
Cd | 1.00 ** | 0.993 ** | 0.954 * |
Zn | 0.898 * | 0.997 ** | 0.896 * |
Cu | 0.972 ** | 0.984 ** | 0.965 ** |
Co | 0.946 ** | 0.964 ** | 0.922 ** |
Fe | 0.980 | 0.907 * | 0.899 * |
Mn | 0.880 * | 0.956 * | 0.863 |
Ni | 0.521 | 0.416 | 0.894 * |
Site | Metal | ||||||
---|---|---|---|---|---|---|---|
Cd | Zn | Cu | Co | Fe | Mn | Ni | |
Bioaccumulation factor | |||||||
Site-I | 0.4728 | 0.6806 | 1.5157 | 0.5607 | 0.6108 | 0.6108 | 0.6198 |
Site-II | 0.2779 | 0.6286 | 1.6054 | 0.5725 | 0.4333 | 0.6311 | 0.5024 |
Site-III | 0.1839 | 0.6354 | 1.4521 | 0.3234 | 0.6429 | 0.4150 | 0.3461 |
Site-IV | 0.6077 | 0.4019 | 1.4364 | 0.4046 | 0.4806 | 0.5088 | 0.1989 |
Site-V | 0.2571 | 0.5856 | 2.5656 | 0.3549 | 0.5074 | 0.3732 | 0.3632 |
Translocation factor | |||||||
Site-I | 0.7719 | 0.8128 | 0.9057 | 0.7959 | 0.9475 | 0.9130 | 0.8722 |
Site-II | 0.5359 | 0.8584 | 0.9072 | 0.8792 | 0.9100 | 0.9179 | 0.8454 |
Site-III | 0.9296 | 0.7529 | 0.9495 | 0.7204 | 0.8624 | 0.9602 | 0.6747 |
Site-IV | 0.9145 | 0.9332 | 0.9221 | 0.8585 | 0.7919 | 0.8658 | 0.4807 |
Site-V | 0.6164 | 0.7368 | 0.5099 | 0.7694 | 0.8371 | 0.8946 | 0.5655 |
Site | Metal | ||||||
---|---|---|---|---|---|---|---|
Cd | Zn | Cu | Co | Fe | Mn | Ni | |
Pollution load index | |||||||
Site-I | 7.8809 | 0.3277 | 0.8201 | 0.4845 | 0.4240 | 0.4808 | 1.50278 |
Site-II | 8.5419 | 0.2821 | 0.6990 | 0.6047 | 0.3534 | 0.4377 | 1.3908 |
Site-III | 9.2041 | 0.3497 | 0.9358 | 0.9767 | 0.2652 | 0.4588 | 1.0579 |
Site-IV | 7.1823 | 0.3267 | 0.6958 | 0.5930 | 0.3177 | 0.4157 | 1.2773 |
Site-V | 6.5017 | 0.4169 | 0.5748 | 0.2674 | 0.3350 | 0.3940 | 1.6068 |
Reference value | 1.49 a | 44.19 a | 8.39 a | 9.1 b | 56.9 c | 46.75 d | 9. 06 a |
Enrichment factor | |||||||
Site-I | 3.5222 | 0.3007 | 0.6358 | 2.4108 | 0.0971 | 0.0571 | 0.5999 |
Site-II | 2.0707 | 0.2778 | 0.6735 | 2.9162 | 0.0772 | 0.0637 | 0.5984 |
Site-III | 1.3703 | 0.2808 | 0.6092 | 5.1452 | 0.0718 | 0.0563 | 0.2597 |
Site-IV | 4.5273 | 0.1776 | 0.6026 | 0.7453 | 0.0609 | 0.0428 | 0.1433 |
Site-V | 1.9155 | 0.2588 | 1.0763 | 1.1881 | 0.0971 | 0.0502 | 0.5999 |
Site | Metal | ||||||
---|---|---|---|---|---|---|---|
Cd | Zn | Cu | Co | Fe | Mn | Ni | |
Daily intake of metal | |||||||
Site-I | 0.0319 | 0.0567 | 0.0510 | 0.0375 | 0.0847 | 0.0801 | 0.0479 |
Site-II | 0.0203 | 0.0451 | 0.0541 | 0.0316 | 0.0501 | 0.0743 | 0.0364 |
Site-III | 0.0145 | 0.0565 | 0.0656 | 0.0086 | 0.0558 | 0.0512 | 0.0191 |
Site-IV | 0.0374 | 0.0334 | 0.0482 | 0.0110 | 0.0491 | 0.0569 | 0.0132 |
Site-V | 0.0143 | 0.0620 | 0.0711 | 0.0256 | 0.0556 | 0.0395 | 0.0304 |
Health risk index | |||||||
Site-I | 0.0214 | 0.0013 | 0.0071 | 0.8719 | 0.0015 | 0.0017 | 0.0053 |
Site-II | 0.0137 | 0.0010 | 0.0064 | 0.7360 | 0.0009 | 0.0016 | 0.0040 |
Site-III | 0.0097 | 0.0012 | 0.0078 | 0.1989 | 0.00098 | 0.0011 | 0.0021 |
Site-IV | 0.0251 | 0.0008 | 0.0057 | 0.4643 | 0.00088 | 0.0012 | 0.0015 |
Site-V | 0.0096 | 0.0014 | 0.0085 | 0.5964 | 0.00097 | 0.00084 | 0.0034 |
RfD * (mg/kg/day) | 1 × 10−3 | 3 × 10−1 | 4 × 10−2 | 43 × 10−2 | 1 × 10−1 | 14 × 10−1 | 2 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, Z.I.; Mansha, A.; Saleem, M.H.; Tariq, F.; Ahmad, K.; Ahmad, T.; Farooq Awan, M.U.; Abualreesh, M.H.; Alatawi, A.; Ali, S. Trace Metal Accumulation in Rice Variety Kainat Irrigated with Canal Water. Sustainability 2021, 13, 13739. https://doi.org/10.3390/su132413739
Khan ZI, Mansha A, Saleem MH, Tariq F, Ahmad K, Ahmad T, Farooq Awan MU, Abualreesh MH, Alatawi A, Ali S. Trace Metal Accumulation in Rice Variety Kainat Irrigated with Canal Water. Sustainability. 2021; 13(24):13739. https://doi.org/10.3390/su132413739
Chicago/Turabian StyleKhan, Zafar Iqbal, Asim Mansha, Muhammad Hamzah Saleem, Farah Tariq, Kafeel Ahmad, Tasneem Ahmad, Muhammad Umer Farooq Awan, Muyassar H. Abualreesh, Aishah Alatawi, and Shafaqat Ali. 2021. "Trace Metal Accumulation in Rice Variety Kainat Irrigated with Canal Water" Sustainability 13, no. 24: 13739. https://doi.org/10.3390/su132413739