Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios
Abstract
:1. Introduction
2. Stakeholder Involvement in Energy Scenario Decision Processes
2.1. Role of Stakeholders in Energy System Design
2.2. Evolution of Methods for the Evaluation of Energy Scenarios
3. The Multiactor Multicriteria Analysis Method
- Step 1: Identification of alternatives
- Step 2: Stakeholder analysis
- Step 3: Determination of criteria and weights
- Step 4: Determination of performance scores
- Step 5: Aggregation and ranking
- Step 6: Evaluation and sensitivity analysis
- Step 7: Implementation
4. Application of the Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios
- Step 1: Identification of alternatives
- Status quo alternative (A1):This alternative depicts the village’s currently planned energy system. This scenario is included in the analysis in order to check whether altering the village’s energy scenario would be at all beneficial. In this transition path’s final state, biomass fermentation with additional photovoltaic systems will provide electricity. The remaining share of electricity supply is provided externally by the grid.
- Biomass and photovoltaics (A2):This path focuses on providing electricity from biomass, which amounts to 60% of the total electricity production. Rooftop photovoltaic systems cover 34% of the demand, while the grid provides the remaining 6% of the total demand.
- Biomass and wind turbine (A3):This energy scenario introduces generating electricity by means of wind turbines. This scenario’s setup is quite similar to A2 but with electricity from a wind turbine replacing the share of electricity from solar energy.
- Wind turbine and photovoltaics (A4):In this path, biomass is not used and wind energy replaces the share of biomass in A2 and A3 (accounting for 60% of the village’s total electricity supply), while rooftop photovoltaic systems (34%) and the grid (6%) provide the remaining energy from renewable sources.
- Step 2: Stakeholder analysis
- Step 3: Determination of criteria and weights
- Levelised costs of electricity (LCOE)reflect the average cost per unit of electricity generated. These costs are measured in Euro per kilowatt and hour [Euro/kWh].
- Land-useis measured in hectare of covered area in the village per year [ha/a]. This is the area that the power generation system covers and for biomass cultivation [66].
- CO-emissionsare only considered in respect of the share of electricity drawn from the grid. These emissions are measured in tons per year [t/a].
- Degree of self-sufficiencymeasures the share of electricity the village is able to draw from renewable sources as a percentage of the total electricity demand across the transition process.
- Landscape aestheticsare measured on a point scale ranging from 1 to 10. Higher scores represent more attractive aesthetics, while lower scores represent rather unattractive visual perceptions of the employed technologies.
- Image refers to the perceived social acceptance of the energy technologies to be utilised [67] and is measured on a point scale ranging from 1 to 10. Higher scores indicate that a group of stakeholders links the employed technologies with a higher social acceptance and vice versa for lower scores.
- Step 4: Determination of performance scores
- Step 5: Aggregation and ranking
- Steps 6 and 7: Evaluation, sensitivity analysis and implementation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHP | analytical hierarchy process |
MAMCA | multiactor multicriteria analysis |
MAUT | multiattribute utility theory |
MADM | multiattribute decision making |
MCA | multicriteria analysis |
NIMBY | not in my backyard |
PROMETHEE | Preference ranking organisation method for enrichment evaluation |
Appendix A
Preference Function | Definition |
---|---|
Type I: Usual criterion | |
Type II: Quasi-criterion | |
Type III: Criterion with linear preference | |
Type IV: Level criterion | |
Type V: Criterion with linear preference and indifference area | |
Type VI: Gaussian criterion | |
References
- Wassermann, S.; Reeg, M.; Nienhaus, K. Current challenges of Germany’s energy transition project and competing strategies of challengers and incumbents: The case of direct marketing of electricity from renewable energy sources. Energy Policy 2015, 76, 66–75. [Google Scholar] [CrossRef]
- Bruns, E.; Futterlieb, M.; Ohlhorst, D.; Wenzel, B. Netze als Rückgrat der Energiewende; Universitätsverlag der TU Berlin: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Witt, T.; Dumeier, M.; Geldermann, J. Multi-criteria Evaluation of the Transition of Power Generation Systems. In Multikriterielle Optimierung und Entscheidungsunterstützung; Küfer, K.H., Ruzika, S., Halffmann, P., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2019; pp. 121–141. [Google Scholar]
- Möst, D.; Fichtner, W. Einführung zur Energiesystemanalyse. In Energiesystemanalyse; Möst, D., Fichtner, W., Grunwald, A., Eds.; Univ.-verl.: Karlsruhe, Germany, 2009; pp. 11–32. [Google Scholar]
- Grunwald, A.; Dieckhoff, C.; Fischedick, M.; Höffler, F.; Mayer, C.; Weimer-Jehle, W. Consulting with energy scenarios: Requirements for scientific policy advice. In Monograph Series on Science-Based Policy Advice, Acatech; Deutsche Akademie der Technikwissenschaften e.V.: München, Germany, 2016. [Google Scholar]
- Hentschel, M.; Ketter, W.; Collins, J. Renewable energy cooperatives: Facilitating the energy transition at the Port of Rotterdam. Energy Policy 2018, 121, 61–69. [Google Scholar] [CrossRef]
- Uhlemair, H.; Karschin, I.; Geldermann, J. Optimizing the production and distribution system of bioenergy villages. Int. J. Prod. Econ. 2014, 147, 62–72. [Google Scholar] [CrossRef]
- Höfer, T.; Madlener, R. A participatory stakeholder process for evaluating sustainable energy transition scenarios. Energy Policy 2020, 139, 111277. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, K.; Stagl, S.; Madlener, R.; Omann, I. Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis. Eur. J. Oper. Res. 2009, 197, 1063–1074. [Google Scholar] [CrossRef]
- Volkart, K.; Weidmann, N.; Bauer, C.; Hirschberg, S. Multi-criteria decision analysis of energy system transformation pathways: A case study for Switzerland. Energy Policy 2017, 106, 155–168. [Google Scholar] [CrossRef]
- Bertsch, V.; Fichtner, W. A participatory multi-criteria approach for power generation and transmission planning. Ann. Oper. Res. 2016, 245, 177–207. [Google Scholar] [CrossRef]
- Hauff, J.; Heider, C.; Arms, H.; Gerber, J.; Schilling, M. Public acceptance as a mainstay of energy policy planning; Gesellschaftliche Akzeptanz als Saeule der energiepolitischen Zielsetzung. Energiewirtschaftliche Tagesfragen 2011, 61, 85. [Google Scholar]
- Macharis, C. A Methodology to Evaluate Potential Locations for Intermodal Barge Terminals: A Policy Decision Support Tool. In Transport Developments and Innovations in an Evolving World; Beuthe, M., Himanen, V., Reggiani, A., Zamparini, L., Eds.; Advances in Spatial Science; Springer: Berlin/Heidelberg, Germany, 2004; pp. 211–234. [Google Scholar] [CrossRef]
- French, S.; Geldermann, J. The varied contexts of environmental decision problems and their implications for decision support. Environ. Sci. Policy 2005, 8, 378–391. [Google Scholar] [CrossRef]
- Van der Horst, D. NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies. Energy Policy 2007, 35, 2705–2714. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.; Gray, T.; Haggett, C. The ‘Social Gap’ in Wind Farm Siting Decisions: Explanations and Policy Responses. Environ. Politics 2005, 14, 460–477. [Google Scholar] [CrossRef]
- Jobert, A.; Laborgne, P.; Mimler, S. Local acceptance of wind energy: Factors of success identified in French and German case studies. Energy Policy 2007, 35, 2751–2760. [Google Scholar] [CrossRef]
- Guo, Y.; Ru, P.; Su, J.; Anadon, L.D. Not in my backyard, but not far away from me: Local acceptance of wind power in China. Energy 2015, 82, 722–733. [Google Scholar] [CrossRef] [Green Version]
- Gonyo, S.B.; Fleming, C.S.; Freitag, A.; Goedeke, T.L. Resident perceptions of local offshore wind energy development: Modeling efforts to improve participatory processes. Energy Policy 2021, 149, 112068. [Google Scholar] [CrossRef]
- Read, D.L.; Brown, R.F.; Thorsteinsson, E.B.; Morgan, M.; Price, I. The theory of planned behaviour as a model for predicting public opposition to wind farm developments. J. Environ. Psychol. 2013, 36, 70–76. [Google Scholar] [CrossRef]
- Krohn, S.; Damborg, S. On public attitudes towards wind power. Renew. Energy 1999, 16, 954–960. [Google Scholar] [CrossRef]
- Wolsink, M. Wind power and the NIMBY-myth: Institutional capacity and the limited significance of public support. Renew. Energy 2000, 21, 49–64. [Google Scholar] [CrossRef]
- Wolsink, M. Invalid theory impedes our understanding: A critique on the persistence of the language of NIMBY. Trans. Inst. Br. Geogr. 2006, 31, 85–91. [Google Scholar] [CrossRef]
- Hubbard, P. NIMBY by another name? A reply to Wolsink. Trans. Inst. Br. Geogr. 2006, 31, 92–94. [Google Scholar] [CrossRef]
- Thayer, R.L.; Freeman, C.M. Altamont: Public perceptions of a wind energy landscape. Landsc. Urban Plan. 1987, 14, 379–398. [Google Scholar] [CrossRef]
- Van der Loo, F.A. Mediating Windpower in The Netherlands: The Task Force Windpower Implementation; Novem: Utrecht, The Netherlands, 2001. [Google Scholar]
- Stadelmann-Steffen, I.; Dermont, C. Acceptance through inclusion? Political and economic participation and the acceptance of local renewable energy projects in Switzerland. Energy Res. Soc. Sci. 2021, 71, 101818. [Google Scholar] [CrossRef]
- Warren, C.R.; Lumsden, C.; O’Dowd, S.; Birnie, R.V. ‘Green On Green’: Public perceptions of wind power in Scotland and Ireland. J. Environ. Plan. Manag. 2005, 48, 853–875. [Google Scholar] [CrossRef]
- Devine-Wright, P. Enhancing local distinctiveness fosters public acceptance of tidal energy: A UK case study. Energy Policy 2011, 39, 83–93. [Google Scholar] [CrossRef]
- Michaud, K.; Carlisle, J.E.; Smith, E.R. Nimbyism vs. environmentalism in attitudes toward energy development. Environ. Politics 2008, 17, 20–39. [Google Scholar] [CrossRef]
- Upham, P.; Shackley, S. Stakeholder opinion of a proposed 21.5 MWe biomass gasifier in Winkleigh, Devon: Implications for bioenergy planning and policy. J. Environ. Policy Plan. 2006, 8, 45–66. [Google Scholar] [CrossRef]
- Gross, C. Community perspectives of wind energy in Australia: The application of a justice and community fairness framework to increase social acceptance. Energy Policy 2007, 35, 2727–2736. [Google Scholar] [CrossRef]
- Pendall, R. Opposition to Housing. Urban Aff. Rev. 1999, 35, 112–136. [Google Scholar] [CrossRef]
- Kraft, M.E.; Clary, B.B. Citizen Participation and the Nimby Syndrome: Public Response to Radioactive Waste Disposal. West. Political Q. 1991, 44, 299. [Google Scholar] [CrossRef]
- Halliday, J.A. Wind energy: An option for the UK? IEE Proc. A Sci. Meas. Technol. 1993, 140, 53. [Google Scholar] [CrossRef]
- Geldermann, J.; Bertsch, V.; Treitz, M.; French, S.; Papamichail, K.N.; Hämäläinen, R.P. Multi-Criteria Decision Support and Evaluation of Strategies for Nuclear Remediation Management. Omega 2009, 37, 238–251. [Google Scholar] [CrossRef]
- Geldermann, J.; Treitz, M.; Bertsch, V.; Rentz, O. Moderated Decision Support and Countermeasure Planning for off-site Emergency Management. In Energy and Environment: Modeling and Analysis; Loulou, R., Waaub, J.P., Zaccour, G., Eds.; Springer: Heidelberg, Germany, 2005; pp. 63–80. [Google Scholar]
- Hämäläinen, R.P.; Mustajoki, J.; Marttunen, M. Web-Based Decision Support: Creating a Culture of Applying Multi-criteria Decision Analysis and Web-Supported Participation in Environmental Decision Making. In e-Democracy; Rios Insua, D., French, S., Eds.; Advances in Group Decision and Negotiation; Springer: Berlin/Heidelberg, Germany, 2010; pp. 201–221. [Google Scholar] [CrossRef]
- Keefer, D.L.; Kirkwood, C.W.; Corner, J.L. Perspective on Decision Analysis Applications, 1990–2001. Decis. Anal. 2004, 1, 4–22. [Google Scholar] [CrossRef] [Green Version]
- Stewart, T.J. A critical survey on the status of multiple criteria decision making theory and practice. Omega 1992, 20, 569–586. [Google Scholar] [CrossRef]
- Rigo, P.D.; Rediske, G.; Rosa, C.B.; Gastaldo, N.G.; Michels, L.; Neuenfeldt Júnior, A.L.; Siluk, J.C.M. Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process. Sustainability 2020, 12, 10195. [Google Scholar] [CrossRef]
- Siksnelyte-Butkiene, I.; Zavadskas, E.K.; Streimikiene, D. Multi-Criteria Decision-Making (MCDM) for the Assessment of Renewable Energy Technologies in a Household: A Review. Energies 2020, 13, 1164. [Google Scholar] [CrossRef] [Green Version]
- Marttunen, M.; Mustajoki, J.; Dufva, M.; Karjalainen, T.P. How to design and realize participation of stakeholders in MCDA processes? A framework for selecting an appropriate approach. EURO J. Decis. Process. 2015, 3, 187–214. [Google Scholar] [CrossRef]
- Stirling, A. Analysis, participation and power: Justification and closure in participatory multi-criteria analysis. Land Use Policy 2006, 23, 95–107. [Google Scholar] [CrossRef]
- Munda, G. Social multi-criteria evaluation: Methodological foundations and operational consequences. Eur. J. Oper. Res. 2004, 158, 662–677. [Google Scholar] [CrossRef]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci. Total. Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef] [PubMed]
- Keeney, R.L. Value-Focused Thinking: A Path to Creative Decision Making; Harvard University Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Steinhilber, S.; Geldermann, J.; Wietschel, M. Renewables in the EU after 2020: A multi-criteria decision analysis in the context of the policy formation process. EURO J. Decis. Process. 2016, 4, 119–155. [Google Scholar] [CrossRef]
- Macharis, C.; de Witte, A.; Ampe, J. The multi-actor, multi-criteria analysis methodology (MAMCA) for the evaluation of transport projects: Theory and practice. J. Adv. Transp. 2009, 43, 183–202. [Google Scholar] [CrossRef]
- Belton, V.; Stewart, T. Multiple Criteria Decision Analysis—An Integrated Approach; Kluwer Academic Publishers: Boston, MA, USA, 2002. [Google Scholar]
- Macharis, C.; Bernardini, A. Reviewing the use of Multi-Criteria Decision Analysis for the evaluation of transport projects: Time for a multi-actor approach. Transp. Policy 2015, 37, 177–186. [Google Scholar] [CrossRef]
- Zardari, N.H.; Ahmed, K.; Shirazi, S.M.; Yusop, Z.B. Weighting Methods and Their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, P.; Wright, G. Decision Analysis for Management Judgment, 5th ed.; Wiley: Chichester, UK, 2014. [Google Scholar]
- Brans, J.P.; Vincke, P.; Mareschal, B. How to select and how to rank projects: The Promethee method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The Analytic Hirarchy Process. Eur. J. Oper. Res. 1991, 48, 9–26. [Google Scholar] [CrossRef]
- Roy, B. The Outranking Approach and the Foundations of Electre Methods. In Readings in Multiple Criteria Decision Aid; Bana, E., Costa, C.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 155–183. [Google Scholar] [CrossRef]
- Brans, J.P.; de Smet, Y. PROMETHEE Methods. In Multiple Criteria Decision Analysis; Greco, S., Ehrgott, M., Figueira, J., Eds.; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2016; pp. 187–219. [Google Scholar] [CrossRef]
- Hadavi, S.; Macharis, C.; van Raemdonck, K. The Multi-Actor Multi-Criteria Analysis (MAMCA) Tool: Methodological Adaptations and Visualizations. In Advanced Concepts, Methodologies and Technologies for Transportation and Logistics; Żak, J., Hadas, Y., Rossi, R., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2018; Volume 572, pp. 39–53. [Google Scholar] [CrossRef]
- Behzadian, M.; Kazemzadeh, R.B.; Albadvi, A.; Aghdasi, M. PROMETHEE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2010, 200, 198–215. [Google Scholar] [CrossRef]
- Oberschmidt, J.; Geldermann, J.; Ludwig, J.; Schmehl, M. Modified PROMETHEE approach for assessing energy technologies. Int. J. Energy Sect. Manag. 2010, 4, 183–212. [Google Scholar] [CrossRef]
- Trutnevyte, E.; Stauffacher, M.; Scholz, R.W. Supporting energy initiatives in small communities by linking visions with energy scenarios and multi-criteria assessment. Energy Policy 2011, 39, 7884–7895. [Google Scholar] [CrossRef]
- Scholz, R.W.; Mieg, H.A.; Oswald, J.E. Transdisciplinarity in groundwater management—Towards mutual learning of science and society. Water Air Soil Pollut. 2000, 123, 477–487. [Google Scholar] [CrossRef]
- Scholz, R.W.; Lang, D.J.; Wiek, A.; Walter, A.I.; Stauffacher, M. Transdisciplinary case studies as a means of sustainability learning. Int. J. Sustain. High. Educ. 2006, 7, 226–251. [Google Scholar] [CrossRef] [Green Version]
- Stauffacher, M.; Flüeler, T.; Krütli, P.; Scholz, R.W. Analytic and Dynamic Approach to Collaboration: A Transdisciplinary Case Study on Sustainable Landscape Development in a Swiss Prealpine Region. Syst. Pract. Action Res. 2008, 21, 409–422. [Google Scholar] [CrossRef] [Green Version]
- Lerche, N.; Wilkens, I.; Schmehl, M.; Eigner-Thiel, S.; Geldermann, J. Using methods of Multi-Criteria Decision Making to provide decision support concerning local bioenergy projects. Socio Econ. Plan. Sci. 2017. [Google Scholar] [CrossRef]
- Genske, D.; Jödecke, T.; Ruff, A.; Porsche, L. Nutzung Städtischer Freiflächen für Erneuerbare Energien: Ein Projekt des Forschungsprogramms “Experimenteller Wohnungs- und Städtebau” (ExWoSt) des Bundesministeriums für Verkehr, Bau und Stadtentwicklung (BMVBS) und des Bundesamtes für Bauwesen und Raumordnung (BBR); Bundesamt für Bauwesen und Raumordnung: Bonn, Germany, 2009. [Google Scholar]
- Wüstenhagen, R.; Wolsink, M.; Bürer, M.J. Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy 2007, 35, 2683–2691. [Google Scholar] [CrossRef] [Green Version]
- Nestle, U.; Kunz, C. Studienvergleich: Stromgestehungskosten Verschiedener Erzeugungstechnologien; Forschungsradar Energiewende–Metaanalyse: Berlin, Germany, 2014. [Google Scholar]
- Wissel, S.; Rath-Nagel, M.; Blesl, U.; Fahl, U.; Voß, A. Stromerzeugungskosten im Vergleich; IER: Stuttgart, Germany, 2008. [Google Scholar]
- Bundesverband der Energie- und Wasserwirtschaft e.V. BDEW-Strompreisanalyse Mai 2018; Bundesverband der Energie- und Wasserwirtschaft e.V.: Berlin, Germany, 2018. [Google Scholar]
- Statistisches Bundesamt. Index der Erzeugerpreise Gewerblicher Produkte (Inlandsabsatz) nach dem Güterverzeichnis für Produktionsstatistiken: Lange Reihen der Fachserie 17, Reihe 2 von Januar 2000 bis Juni 2018; Statistisches Bundesamt: Wiesbaden, Germany, 2018.
- Icha, P. Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990–2016. Clim. Chang. 2017, 15, 2017. [Google Scholar]
- ED Netze GmbH. Lastprofile der ED Netze GmbH, 27.10.2017; ED Netze GmbH: Rheinfelden, Germany, 2017. [Google Scholar]
- 50Hertz Transmission GmbH. Zeitlicher Verlauf der EEG-Stromeinspeisung; 50Hertz Transmission GmbH: Berlin, Germany, 2017. [Google Scholar]
- Brans, J.P.; Vincke, P. Note—A Preference Ranking Organisation Method: The PROMETHEE Method for Multiple Criteria Decision-Making. Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Tsoutsos, T.; Drandaki, M.; Frantzeskaki, N.; Iosifidis, E.; Kiosses, I. Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy 2009, 37, 1587–1600. [Google Scholar] [CrossRef]
- Kourtit, K.; Macharis, C.; Nijkamp, P. A multi-actor multi-criteria analysis of the performance of global cities. Appl. Geogr. 2014, 49, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Fortes, P.; Alvarenga, A.; Seixas, J.; Rodrigues, S. Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modeling. Technol. Forecast. Soc. Chang. 2015, 91, 161–178. [Google Scholar] [CrossRef]
- Trutnevyte, E.; Barton, J.; O’Grady, Á.; Ogunkunle, D.; Pudjianto, D.; Robertson, E. Linking a storyline with multiple models: A cross-scale study of the UK power system transition. Technol. Forecast. Soc. Chang. 2014, 89, 26–42. [Google Scholar] [CrossRef] [Green Version]
- Doan, N.; de Smet, Y. An alternative weight sensitivity analysis for PROMETHEE II rankings. Spec. Issue Mult. Criteria Decis. Mak. Eng. 2018, 80, 166–174. [Google Scholar] [CrossRef]
- Huang, H.; de Smet, Y.; Macharis, C.; Doan, N.A.V. Collaborative decision-making in sustainable mobility: Identifying possible consensuses in the multi-actor multi-criteria analysis based on inverse mixed-integer linear optimization. Int. J. Sustain. Dev. World Ecol. 2021, 28, 64–74. [Google Scholar] [CrossRef]
Stakeholder | Criteria | Unit | A1: Status quo | A2: Biomass and Photovoltaics | A3: Biomass and Wind Turbine | A4: Wind Turbine and Photovoltaics |
---|---|---|---|---|---|---|
Inhabitants | Levelised costs of electricity | [Euro/kWh] | 0.1134 | 0.1185 | 0.1003 | 0.1117 |
0–29 | Land use | [ha/a] | 494.95 | 377.63 | 384.11 | 23.12 |
CO-emissions | [t/a] | 1638.83 | 1952.40 | 1952.40 | 2074.78 | |
Image | [points] | 2.00 | 5.00 | 4.00 | 8.00 | |
Inhabitants | Levelised costs of electricity | [Euro/kWh] | 0.1134 | 0.1185 | 0.1003 | 0.1117 |
30–50 | Land use | [ha/a] | 494.95 | 377.63 | 384.11 | 23.12 |
Landscape aesthetics | [points] | 7.00 | 8.00 | 4.00 | 1.00 | |
CO-emissions | [t/a] | 1638.83 | 1952.40 | 1952.40 | 2074.78 | |
Self-sufficiency | [%] | 19 | 17 | 18 | 13 | |
Inhabitants 51 | Levelised costs of electricity | [Euro/kWh] | 0.1134 | 0.1185 | 0.1003 | 0.1117 |
or older | Land use | [ha/a] | 494.95 | 377.63 | 384.11 | 23.12 |
CO-emissions | [t/a] | 1638.83 | 1952.40 | 1952.40 | 2074.78 | |
Self-sufficiency | [%] | 19 | 17 | 18 | 13 | |
Experts and | Levelised costs of electricity | [Euro/kWh] | 0.1134 | 0.1185 | 0.1003 | 0.1117 |
academics | Land use | [ha/a] | 494.95 | 377.63 | 384.11 | 23.12 |
CO-emissions | [t/a] | 1638.83 | 1952.40 | 1952.40 | 2074.78 | |
Self-sufficiency | [%] | 18.67 | 16.79 | 17.57 | 13.08 |
Criteria | Orientation | Unit | Preference Function | Preference Parameters |
---|---|---|---|---|
Levelised costs of electricity | Min | [Euro/kWh] | Type III: Linear | = 0.0812 |
Land use | Min | [ha/a] | Type III: Linear | = 471.83 |
CO-emissions | Min | [t/a] | Type III: Linear | = 435.95 |
Self-sufficiency | Max | [%] | Type III: Linear | = 6 |
Image | Max | [points] | Type II: Quasi | = 6, = 1.2 |
Landscape aesthetics | Max | [points] | Type II: Quasi | = 6, = 1.2 |
Alternative | |||||
---|---|---|---|---|---|
Stakeholder Group | PROMETHEE Flows | A1: Status quo | A2: Biomass and Photovoltaics | A3: Biomass and Wind Turbine | A4: Wind Turbine and Photovoltaics |
Inhabitants 0–29 | 0.3532 | 0.1005 | 0.3379 | 0.3225 | |
0.3055 | 0.3489 | 0.1848 | 0.2708 | ||
0.04767 | −0.2483 | 0.1489 | 0.05170 | ||
Inhabitants 30–50 | 0.43328 | 0.2783 | 0.4065 | 0.1306 | |
0.13077 | 0.2431 | 0.3008 | 0.5740 | ||
0.3025 | 0.0353 | 0.1057 | −0.4435 | ||
Inhabitants 51 or older | 0.2500 | 0.1154 | 0.3010 | 0.4086 | |
0.2767 | 0.2969 | 0.1575 | 0.3438 | ||
−0.0268 | −0.1816 | 0.1435 | 0.0648 | ||
Experts and academics | 0.3516 | 0.1008 | 0.3218 | 0.2486 | |
0.1914 | 0.3020 | 0.1387 | 0.3907 | ||
0.1602 | −0.2012 | 0.1831 | −0.1420 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schär, S.; Geldermann, J. Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios. Sustainability 2021, 13, 2594. https://doi.org/10.3390/su13052594
Schär S, Geldermann J. Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios. Sustainability. 2021; 13(5):2594. https://doi.org/10.3390/su13052594
Chicago/Turabian StyleSchär, Sebastian, and Jutta Geldermann. 2021. "Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios" Sustainability 13, no. 5: 2594. https://doi.org/10.3390/su13052594
APA StyleSchär, S., & Geldermann, J. (2021). Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios. Sustainability, 13(5), 2594. https://doi.org/10.3390/su13052594