Impact of Long Term Nutrient Management on Soil Quality Indices in Rice-Wheat System of Lower Indo-Gangetic Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location and Soil Properties
2.2. Fertilizer Treatments and Agriculture Management
2.3. Soil Sampling
2.4. Soil Physical Analysis
2.5. Soil Chemical and Nutritional Analysis
2.6. Soil Microbiological Analysis
2.7. Developing Soil Management Assessment Framework (SMAF)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physical Soil Quality Index
3.2. Chemical Soil Quality Index
3.3. Nutritional Soil Quality Index
3.4. Biological Soil Quality Index
3.5. SMAF Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandal, B.; Basak, N.; Singha Roy, S.; Biswas, S. Soil Health Measurement Techniques. In Soil Health: Concept, Status and Monitoring. Bulletin of the Indian Society of Soil Science 30; Katyal, J.C., Chaudhari, S.K., Dwivedi, B.S., Biswas, D.R., Rattan, R.K., Majumdar, K., Eds.; Indian Society of Soil Science: New Delhi, India, 2016; pp. 1–98. [Google Scholar]
- Wingeyer, A.B.; Amado, T.J.C.; Pérez-Bidegain, M.; Studdert, G.A.; Varela, C.H.P.; Garcia, F.O.; Karlen, D.L. Soil Quality Impacts of Current South American Agricultural Practices. Sustainability 2015, 7, 2213–2242. [Google Scholar] [CrossRef] [Green Version]
- Basak, N.; Mandal, B.; Rai, A.K.; Basak, P. Soil Quality and Productivity Improvement: Indian Story. Proc. Indian Natl. Sci. Acad. 2021, 87, 2–10. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Pathak, H.; Kumari, S.; Biswas, S.; Chakrabarty, B.; Padaria, R.N.; Kamble, K.; Pandey, M.; Sasmal, S.; Singh, A. Soil Health Card Development for Efficient Soil Management in Haryana, India. Soil Tillage Res. 2019, 191, 294–305. [Google Scholar] [CrossRef]
- Lal, R. The Soil–Peace Nexus: Our Common Future. Soil Sci. Plant Nutr. 2015, 61, 566–578. [Google Scholar] [CrossRef] [Green Version]
- Bouma, J. Reaching out from the Soil-Box in Pursuit of Soil Security. Soil Sci. Plant Nutr. 2015, 61, 556–565. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S.S.; Carroll, C.R. Designing a Soil Quality Assessment Tool for Sustainable Agroecosystem Management. Ecol. Appl. 2001, 11, 1573–1585. [Google Scholar] [CrossRef]
- Karlen, D.L.; Andrews, S.S.; Doran, J.W. Soil Quality: Current Concepts and Applications; Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2001; Volume 74, pp. 1–40. [Google Scholar]
- Masto, R.E.; Chhonkar, P.K.; Singh, D.; Patra, A.K. Soil Quality Response to Long-Term Nutrient and Crop Management on a Semi-Arid Inceptisol. Agric. Ecosyst. Environ. 2007, 118, 130–142. [Google Scholar] [CrossRef]
- Sharma, K.L.; Lal, M.; Chary, G.R.; Reddy, K.S.; Indoria, A.K.; Srinivas, K.; Singh, V.K.; Chandra Sekhar, C.; Singh, A.P.; Abrol, V.; et al. Long Term Effects of Conjunctive Nutrient Management Practices on Soil Quality in Maize (Zea Mays)—Mustard (Brassica Compestris Var. Sarson) Rotation under Rainfed Hill Inceptisol Soils. Commun. Soil Sci. Plant Anal. 2022, 53, 439–452. [Google Scholar] [CrossRef]
- De Lima, A.C.R.; Hoogmoed, W.; Brussaard, L. Soil Quality Assessment in Rice Production Systems: Establishing a Minimum Data Set. J. Environ. Qual. 2008, 37, 623–630. [Google Scholar] [CrossRef]
- Armenise, E.; Redmile-Gordon, M.A.; Stellacci, A.M.; Ciccarese, A.; Rubino, P. Developing a Soil Quality Index to Compare Soil Fitness for Agricultural Use under Different Managements in the Mediterranean Environment. Soil Tillage Res. 2013, 130, 91–98. [Google Scholar] [CrossRef]
- Soni, P.G.; Basak, N.; Rai, A.K.; Sundha, P.; Narjary, B.; Kumar, P.; Yadav, G.; Kumar, S.; Yadav, R.K. Deficit Saline Water Irrigation under Reduced Tillage and Residue Mulch Improves Soil Health in Sorghum-Wheat Cropping System in Semi-Arid Region. Sci. Rep. 2021, 11, 1880. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Hazra, G.C.; Purakayastha, T.J.; Saha, N.; Mitran, T.; Singha Roy, S.; Basak, N.; Mandal, B. Establishment of Critical Limits of Indicators and Indices of Soil Quality in Rice-Rice Cropping Systems under Different Soil Orders. Geoderma 2017, 292, 34–48. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The Soil Management Assessment Framework. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Stott, D.E.; Karlen, D.L.; Cambardella, C.A.; Harmel, R.D. A Soil Quality and Metabolic Activity Assessment after Fifty-Seven Years of Agricultural Management. Soil Sci. Soc. Am. J. 2013, 77, 903–913. [Google Scholar] [CrossRef]
- Jimenez, L.C.; Queiroz, H.M.; Cherubin, M.R.; Ferreira, T.O. Applying the Soil Management Assessment Framework (SMAF) to Assess Mangrove Soil Quality. Sustainability 2022, 14, 3085. [Google Scholar] [CrossRef]
- Bhaduri, D.; Purakayastha, T.J. Long-Term Tillage, Water and Nutrient Management in Rice–Wheat Cropping System: Assessment and Response of Soil Quality. Soil Tillage Res. 2014, 144, 83–95. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Karlen, D.L.; Franco, A.L.C.; Cerri, C.E.P.; Tormena, C.A.; Cerri, C.C. A Soil Management Assessment Framework (SMAF) Evaluation of Brazilian Sugarcane Expansion on Soil Quality. Soil Sci. Soc. Am. J. 2016, 80, 215–226. [Google Scholar] [CrossRef]
- Saharawat, Y.S.; Singh, B.; Malik, R.K.; Ladha, J.K.; Gathala, M.; Jat, M.L.; Kumar, V. Evaluation of Alternative Tillage and Crop Establishment Methods in a Rice–Wheat Rotation in North Western IGP. Field Crops Res. 2010, 116, 260–267. [Google Scholar] [CrossRef]
- Singh, V.K.; Dwivedi, B.S.; Mishra, R.P.; Shukla, A.K.; Timsina, J.; Upadhyay, P.K.; Shekhawat, K.; Majumdar, K.; Panwar, A.S. Yields, Soil Health and Farm Profits under a Rice-Wheat System: Long-Term Effect of Fertilizers and Organic Manures Applied Alone and in Combination. Agronomy 2019, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, R.; Kukal, S.S.; Busari, M.A.; Arora, S.; Yadav, M. Sustainability Issues on Rice–Wheat Cropping System. Int. Soil Water Conserv. Res. 2016, 4, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Kukal, S.S.; Aggarwal, G.C. Puddling Depth and Intensity Effects in Rice–Wheat System on a Sandy Loam Soil: I. Development of Subsurface Compaction. Soil Tillage Res. 2003, 72, 1–8. [Google Scholar] [CrossRef]
- Bhaduri, D.; Purakayastha, T.J.; Chakraborty, D.; Chakraborty, K.; Singh, M. Integrated Tillage-Water-Nutrient Management Effects on Selected Soil Physical Properties in a Rice-Wheat System in the Indian Subcontinent. Arch. Agron. Soil Sci. 2018, 64, 132–145. [Google Scholar] [CrossRef]
- Bhandari, A.L.; Ladha, J.K.; Pathak, H.; Padre, A.T.; Dawe, D.; Gupta, R.K. Yield and Soil Nutrient Changes in a Long-Term Rice-Wheat Rotation in India. Soil Sci. Soc. Am. J. 2002, 66, 162–170. [Google Scholar] [CrossRef]
- Basak, N.; Datta, A.; Mitran, T.; Roy, S.S.; Saha, B.; Biswas, S.; Mandal, B. Assessing Soil-Quality Indices for Subtropical Rice-Based Cropping Systems in India. Soil Res. 2016, 54, 20–29. [Google Scholar] [CrossRef]
- Venkatramanan, V.; Shah, S.; Rai, A.K.; Prasad, R. Nexus Between Crop Residue Burning, Bioeconomy and Sustainable Development Goals Over North-Western India. Front. Energy Res. 2021, 8, 614212. [Google Scholar] [CrossRef]
- Srinivasarao, C.; Venkateswarlu, B.; Lal, R.; Singh, A.K.; Kundu, S. Sustainable Management of Soils of Dryland Ecosystems of India for Enhancing Agronomic Productivity and Sequestering Carbon, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 121, ISBN 9780124076853. [Google Scholar]
- Lal, R. Soil Quality Impacts of Residue Removal for Bioethanol Production. Soil Tillage Res. 2009, 102, 233–241. [Google Scholar] [CrossRef]
- Zhang, B.; Pang, C.; Qin, J.; Liu, K.; Xu, H.; Li, H. Rice Straw Incorporation in Winter with Fertilizer-N Application Improves Soil Fertility and Reduces Global Warming Potential from a Double Rice Paddy Field. Biol. Fertil. Soils 2013, 49, 1039–1052. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Xu, M.; Feng, G.; Zhang, W.; Lu, C. Crop Yield and Soil Organic Matter after Long-Term Straw Return to Soil in China. Nutr. Cycl. Agroecosyst. 2015, 102, 371–381. [Google Scholar] [CrossRef]
- Turmel, M.-S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop Residue Management and Soil Health: A Systems Analysis. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Majumder, B.; Mandal, B.; Bandyopadhyay, P.K.; Gangopadhyay, A.; Mani, P.K.; Kundu, A.L.; Mazumdar, D. Organic Amendments Influence Soil Organic Carbon Pools and Rice-Wheat Productivity. Soil Sci. Soc. Am. J. 2008, 72, 775–785. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartage, K.H. Bulk Density. In Method of Soil Analysis, Part, I. Physical and Mineralogical Methods, Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis; Hans Publisher: Bombay, India, 1996. [Google Scholar]
- Yoder, R.E. A Direct Method of Aggregate Analysis of Soils and A Study of the Physical Nature of Erosion Losses(1). Soil Sci. Soc. Am. J. 1936, B17, 165. [Google Scholar] [CrossRef] [Green Version]
- Hesse, P.R. A Twxtbook of Soil Chemical Analysis, 1st ed.; CBS Publisers & Distributors: New Delhi, India, 1994. [Google Scholar]
- Subbiah, B.V.; Asija, G.L. A Rapid Procedure for Assessment of Available Nitrogen in Rice Soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Printice Hall of India Pvt. Ltd.: New Delhi, India, 1967; p. 498. [Google Scholar]
- Chesnin, L.; Yien, C.H. Turbidimetric Determination of Available Sulphates. Soil Sci. Soc. Am. Proc. 1951, 15, 149–151. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Parker, D.R.; Gardner, E.H. The Determination of Hot-water-soluble Boron in Some Acid Oregon Soils Using a Modified Azomethine-H Procedure. Commun. Soil Sci. Plant Anal. 1981, 12, 1311–1322. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An Extraction Method for Measuring Soil Microbial Biomass, C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Voroney, R.P.; Paul, E.A. Determination of KC and KNin Situ for Calibration of the Chloroform Fumigation-Incubation Method. Soil Biol. Biochem. 1984, 16, 9–14. [Google Scholar] [CrossRef]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform Fumigation and the Release of Soil Nitrogen: A Rapid Direct Extraction Method to Measure Microbial Biomass Nitrogen in Soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Bremner, J.M.; Keeney, D.R. Steam Distillation Methods for Determination of Ammonium, Nitrate and Nitrite. Anal. Chim. Acta 1965, 32, 485–495. [Google Scholar] [CrossRef]
- Dick, R.P.; Breakwell, D.P.; Turco, R.F. Soil Enzyme Activities and Biodiversity Measurements as Integrative Microbiological Indicators. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1997; pp. 247–271. [Google Scholar] [CrossRef]
- Das, R.; Mandal, B.; Sarkar, D.; Pradhan, A.K.; Datta, A.; Padhan, D.; Seth, A.; Kumar, R.; De, N.; Mishra, V.N.; et al. Boron Availability in Soils and Its Nutrition of Crops under Long-Term Fertility Experiments in India. Geoderma 2019, 351, 116–129. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A Comparison of Soil Quality Indexing Methods for Vegetable Production Systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Yao, R.; Yang, J.; Gao, P.; Zhang, J.; Jin, W. Determining Minimum Data Set for Soil Quality Assessment of Typical Salt-Affected Farmland in the Coastal Reclamation Area. Soil Tillage Res. 2013, 128, 137–148. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.K.; Saha, S.; Mani, P.K.; Mandal, B. Effect of Organic Inputs on Aggregate Associated Organic Carbon Concentration under Long-Term Rice–Wheat Cropping System. Geoderma 2010, 154, 379–386. [Google Scholar] [CrossRef]
- Sainju, U.M.; Whitehead, W.F.; Singh, B.P. Cover Crops and Nitrogen Fertilization Effects on Soil Aggregation and Carbon and Nitrogen Pools. Can. J. Soil Sci. 2003, 83, 155–165. [Google Scholar] [CrossRef]
- Zhang, D.; Yao, P.; Zhao, N.; Cao, W.; Zhang, S.; Li, Y.; Huang, D.; Zhai, B.; Wang, Z.; Gao, Y. Building up the Soil Carbon Pool via the Cultivation of Green Manure Crops in the Loess Plateau of China. Geoderma 2019, 337, 425–433. [Google Scholar] [CrossRef]
- Thompson, M.L.; Zhang, H.; Kazemi, M.; Sandor, J.A. Contribution of Organic Matter to Cation Exchange Capacity and Specific Surface Area of Fractionated Soil Materials. Soil Sci. 1989, 148, 250–257. [Google Scholar] [CrossRef]
- Solly, E.F.; Weber, V.; Zimmermann, S.; Walthert, L.; Hagedorn, F.; Schmidt, M.W.I. Is the Content and Potential Preservation of Soil Organic Carbon Reflected by Cation Exchange Capacity? A Case Study in Swiss Forest Soils. Biogeosci. Discuss. 2019, 2019, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Sekhon, G.S.; Velayutham, M.; Benbi, D.K. Soil Fertility Evaluation. In Fundamentals of Soil Science; Goswami, N.N., Rattan, R.K., Dev, G., Narayanasamy, G., Das, D.K., Sanyal, S.K., Pal, D.K., Eds.; Indian Society of Soil Science: New Delhi, India, 2012; pp. 511–529. [Google Scholar]
- Gourav, N.K.S.; Kumar, P.; Sharma, G.D.; Sharma, N. Critical Limits of Sulfur in Relation to the Growth and Development of French-Bean and Cauliflower in Acidic Soils of Northwestern Himalayas. Commun. Soil Sci. Plant Anal. 2021, 52, 2280–2288. [Google Scholar] [CrossRef]
- Ghosh, S.; Wilson, B.; Ghoshal, S.; Senapati, N.; Mandal, B. Organic Amendments Influence Soil Quality and Carbon Sequestration in the Indo-Gangetic Plains of India. Agric. Ecosyst. Environ. 2012, 156, 134–141. [Google Scholar] [CrossRef]
- Green, V.S.; Stott, D.E.; Cruz, J.C.; Curi, N. Tillage Impacts on Soil Biological Activity and Aggregation in a Brazilian Cerrado Oxisol. Soil Tillage Res. 2007, 92, 114–121. [Google Scholar] [CrossRef]
- Ghosh, A.; Kumar, S.; Manna, M.C.; Singh, A.K.; Sharma, P.; Sarkar, A.; Saha, M.; Bhattacharyya, R.; Misra, S.; Biswas, S.S.; et al. Long-Term in Situ Moisture Conservation in Horti-Pasture System Improves Biological Health of Degraded Land. J. Environ. Manag. 2019, 248, 109339. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, K.; Heideri, G.; Khalesro, S.; Sohrabi, Y. Soil Management, Microorganisms and Organic Matter Interactions: A Review. Afr. J. Biotechnol. 2011, 10, 19840–19849. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Martínez, V.; Pérez-Guzmán, L.; Johnson, J.M.F. Simultaneous Determination of β-Glucosidase, β-Glucosaminidase, Acid Phosphomonoesterase, and Arylsulfatase Activities in a Soil Sample for a Biogeochemical Cycling Index. Appl. Soil Ecol. 2019, 142, 72–80. [Google Scholar] [CrossRef]
- Stott, D.E.; Andrews, S.S.; Liebig, M.A.; Wienhold, B.J.; Karlen, D.L. Evaluation of β-Glucosidase Activity as a Soil Quality Indicator for the Soil Management Assessment Framework. Soil Sci. Soc. Am. J. 2010, 74, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Schjønning, P.; Christensen, B.T.; Carstensen, B. Physical and Chemical Properties of a Sandy Loam Receiving Animal Manure, Mineral Fertilizer or No Fertilizer for 90 Years. Eur. J. Soil Sci. 1994, 45, 257–268. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic Matter and Water-Stable Aggregates in Soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Kumar, M.; Mitra, S.; Mazumdar, S.P.; Majumdar, B.; Saha, A.R.; Singh, S.R.; Pramanick, B.; Gaber, A.; Alsanie, W.F.; Hossain, A. Improvement of Soil Health and System Productivity through Crop Diversification and Residue Incorporation under Jute-Based Different Cropping Systems. Agronomy 2021, 11, 1622. [Google Scholar] [CrossRef]
- Kaur, J.; Choudhary, O.P.; Bijay-Singh, B. Microbial Biomass Carbon and Some Soil Properties as Influenced by Long-Term Sodic-Water Irrigation, Gypsum, and Organic Amendments. Soil Res. 2008, 46, 141–151. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 14th ed.; Pearson Education Inc.: New Delhi, India, 2014. [Google Scholar]
- Sahrawat, K.L. Nitrogen Availability Indexes for Submerged Rice Soils. In Advances in Agronomy; Brady, N.C., Ed.; Academic Press: Cambridge, MA, USA, 1983; Volume 36, pp. 415–451. ISBN 0065-2113. [Google Scholar]
Treatments | Clay | TMacAS | BD | pH | CEC | ERY |
---|---|---|---|---|---|---|
% | Mg m−3 | c mol(P+) kg−1 | Mg ha−1 | |||
Fallow | 44.9 e | 60.2 a | 1.45 a | 7.1 d | 17.1 c | - |
Control | 46.1 d | 21.0 e | 1.41 ab | 7.6 bc | 16.3 d | 41.9 c |
NPK | 46.9 b | 33.7 d | 1.39 ab | 7.5 bc | 17.2 c | 61.2 b |
NPKF | 47.4 a | 58.3 ab | 1.32 c | 7.7 a | 18.0 b | 70.2 a |
NPKP | 46.9 b | 56.2 b | 1.37 bc | 7.6 ab | 19.6 a | 60.5 b |
NPKG | 46.5 c | 49.1 c | 1.36 bc | 7.5 c | 17.6 bc | 65.1 ab |
LSD0.05 | 0.22 | 2.51 | 0.07 | 0.11 | 0.57 | 11.52 |
Significant correlations between soil organic C and soil microbial activities | ||||||
WBOC | ns | ** | ns | ns | * | ns |
MBC | * | ** | -ve ** | ns | ** | ** |
Cmin | ** | * | -ve ** | * | * | ns |
Nmin | ** | * | -ve ** | ns | * | ns |
β-glu | ** | ns | -ve ** | ** | ** | ns |
DHA | ** | * | -ve ** | * | ** | ns |
FDHA | ** | * | -ve * | * | ** | ns |
URE | ** | ns | -ve ** | ** | ns | ns |
Treatment | Total N | KMnO4–N | Olsen’s P | NH4OAc–K | CaCl2–S | NH4OAc–Ca | NH4OAc–Mg | DTPA Fe | DTPA Mn | DTPA Zn | DTPA Cu | Avail B |
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | kg ha−1 | c mol(P+) kg−1 | mg kg−1 | |||||||||
Fallow | 0.71 c | 133.2 c | 38.5 d | 216.0 c | 22.4 c | 12.0 cd | 3.7 c | 48.3 c | 30.3 a | 1.06 | 3.2 d | 0.51 bc |
Control | 0.75 c | 136.4 c | 34.3 d | 247.0 ab | 21.5 c | 10.0 d | 4.4 b | 118.0 b | 23.0 b | 1.08 | 6.3 c | 0.40 d |
NPK | 0.81 b | 151.8 b | 72.5 a | 245.0 b | 22.1 c | 11.9 ab | 5.0 b | 137.5 a | 22.6 b | 1.12 | 7.3 ab | 0.47 c |
NPKF | 0.91 a | 162.0 a | 61.5 bc | 253.6 ab | 51.8 a | 12.6 ab | 5.8 a | 137.2 a | 22.8 b | 1.21 | 7.0 abc | 0.63 a |
NPKP | 0.79 b | 153.9 ab | 55.4 c | 257.0 ab | 47.9 ab | 13.7 a | 4.5 b | 136.4 a | 21.8 bc | 1.2 | 6.6 bc | 0.55 b |
NPKG | 0.83 b | 157.9 ab | 45.7 d | 252.3 ab | 44.4 b | 11.7 bc | 4.7 b | 130.5 ab | 17.3 c | 1.14 | 7.7 a | 0.62 a |
LSD0.05 | 0.04 | 9.2 | 7.3 | 12 | 6.6 | 3.9 | 0.6 | 13.6 | 5.2 | ns | 0.8 | 0.05 |
Significant correlations between soil organic C and soil microbial activities | ||||||||||||
WBOC | * | ** | ns | ns | ** | ns | ns | ns | ns | * | ns | ** |
MBC | ** | ** | * | ns | ** | ns | ns | ns | ns | ** | ns | ** |
Cmin | ** | ** | ** | * | ** | ns | ** | * | * | * | * | ** |
Nmin | ** | ** | ** | ns | ** | ns | ** | * | ns | ** | * | ** |
β–glu | ** | ** | ** | ** | ** | ns | ** | ** | * | ** | ** | ** |
DHA | ** | ** | ** | ** | ** | ns | * | * | ns | * | ns | ** |
FDHA | ** | ** | ** | * | ** | ns | ** | ** | * | ** | * | ** |
URE | ** | ** | * | * | ** | ns | ** | ** | ns | ** | ** | * |
Treatment | WBOC | MBC | Cmin | Nmin | β-glu | DHA | FDHA | URE |
---|---|---|---|---|---|---|---|---|
Fallow | 9.9 b | 583.0 d | 6.99 c | 1.63 bc | 64.0 c | 58.0 c | 72.7 c | 45.0 c |
Control | 8.2 d | 417.3 e | 7.28 c | 1.38 c | 72.1 bc | 57.9 c | 71.5 c | 54.8 bc |
NPK | 9.3 c | 637.4 c | 7.43 c | 1.94 bc | 80.4 b | 58.7 c | 81.7 b | 62.6 b |
NPKF | 10.9 a | 759.3 a | 11.63 a | 2.59 a | 106.1 a | 96.7 a | 101.3 a | 78.6 a |
NPKP | 9.9 b | 763.5 a | 9.84 b | 2.05 ab | 100.0 a | 83.4 b | 94.3 a | 63.9 b |
NPKG | 10.2 b | 711.9 b | 10.75 ab | 2.19 ab | 99.7 a | 82.3 b | 97.5 a | 64.5 b |
LSD0.05 | 0.38 | 14.5 | 1.04 | 0.61 | 10.1 | 9.7 | 7.9 | 11.2 |
Significant correlations between soil organic C and soil microbial activities | ||||||||
WBOC | 1.00 | ** | ** | ** | ** | ** | ** | * |
MBC | ** | 1.00 | ** | ** | ** | ** | ** | ** |
Cmin | ** | ** | 1.00 | ** | ** | ** | ** | ** |
Nmin | ** | ** | ** | 1.00 | ** | ** | ** | ** |
β-glu | ** | ** | ** | ** | 1.00 | ** | ** | ** |
DHA | ** | ** | ** | ** | ** | 1.00 | ** | ** |
FDHA | ** | ** | ** | ** | ** | ** | 1.00 | ** |
URE | * | ** | ** | ** | ** | ** | ** | 1.00 |
Treatment | Fallow | Control | NPK | NPKF | NPKP | NPKG | LSD0.05 |
---|---|---|---|---|---|---|---|
Physical indicators | |||||||
TMacAS | 0.98 a | 0.34 e | 0.55 d | 0.94 ab | 0.91 b | 0.79 c | 0.04 |
Bulk density | 0.84 c | 0.87 bc | 0.88 bc | 0.92 a | 0.89 ab | 0.90 ab | 0.04 |
Chemical indicators | |||||||
pH | 0.94 a | 0.87 bc | 0.88 bc | 0.86 d | 0.87 cd | 0.88 b | 0.01 |
Cation exchange capacity | 0.87 c | 0.83 d | 0.88 c | 0.92 b | 1.00 a | 0.90 bc | 0.03 |
Nutritional indicators | |||||||
KMnO4–N | 0.80 c | 0.82 c | 0.91 b | 0.98 a | 0.9 ab | 0.95 ab | 0.06 |
DTPA–Zn | 0.83 b | 0.84 ab | 0.87 ab | 0.94 a | 0.94 a | 0.89 ab | 0.10 |
Hot water extractable B | 0.78 bc | 0.63 d | 0.73 c | 0.97 a | 0.84 b | 0.96 a | 0.10 |
Biological and biochemical indicators | |||||||
WBOC | 0.90 b | 0.75 d | 0.85 c | 0.99 a | 0.90 b | 0.93 b | 0.03 |
MBC | 0.49 d | 0.75 c | 0.82 b | 0.97 a | 0.98 a | 0.96 a | 0.03 |
Cmin | 0.59 bc | 0.50 c | 0.70 bc | 0.94 a | 0.74 ab | 0.79 ab | 0.23 |
β-glu | 0.53 d | 0.60 cd | 0.67 c | 0.93 a | 0.87 ab | 0.89 a | 0.08 |
Method/Model | Regression Equations | R2 | Adj. R2 | SE # |
---|---|---|---|---|
Full | ERY = 40.14 − 167 β-glu – 2.94 Cmin + 0.004 KMnO4–Nb + 0.067 Cmica + 0.379 TMacA | 0.89 | 0.83 | 4.25 |
Forward | ERY = −81.71 + 0.929KMnO4–Nb | 0.77 | 0.75 | 5.16 |
Full | ERY= 121.56 – 10.78 WBOCb + 21.9 Nminb | 0.50 | 0.41 | 7.93 |
Full | SOC = 6.07 + 0.04 β-glu + 0.44 Cmina+ 0.007 KMnO4–N – 0.009 Cmica + 0.024 TMacA | 0.83 | 0.74 | 0.47 |
Forward | SOC = 7.08 + 0.58Cminb -0.004 Cmica | 0.69 | 0.64 | 0.56 |
Full | Nmin = −1.80 + 0.012 β-glu + 0.19 Cmin + 0.016 KMnO4–N– 0.003 Cmic + 0.014 TMacA | 0.71 | 0.54 | 0.33 |
Forward | Nmin = 0.22 + 0.02β-glub | 0.56 | 0.53 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basak, N.; Mandal, B.; Biswas, S.; Basak, P.; Mitran, T.; Saha, B.; Rai, A.K.; Alam, M.K.; Yadav, A.K.; Datta, A. Impact of Long Term Nutrient Management on Soil Quality Indices in Rice-Wheat System of Lower Indo-Gangetic Plain. Sustainability 2022, 14, 6533. https://doi.org/10.3390/su14116533
Basak N, Mandal B, Biswas S, Basak P, Mitran T, Saha B, Rai AK, Alam MK, Yadav AK, Datta A. Impact of Long Term Nutrient Management on Soil Quality Indices in Rice-Wheat System of Lower Indo-Gangetic Plain. Sustainability. 2022; 14(11):6533. https://doi.org/10.3390/su14116533
Chicago/Turabian StyleBasak, Nirmalendu, Biswapati Mandal, Sunanda Biswas, Piu Basak, Tarik Mitran, Bholanath Saha, Arvind Kumar Rai, Md. Khairul Alam, Arvind Kumar Yadav, and Ashim Datta. 2022. "Impact of Long Term Nutrient Management on Soil Quality Indices in Rice-Wheat System of Lower Indo-Gangetic Plain" Sustainability 14, no. 11: 6533. https://doi.org/10.3390/su14116533
APA StyleBasak, N., Mandal, B., Biswas, S., Basak, P., Mitran, T., Saha, B., Rai, A. K., Alam, M. K., Yadav, A. K., & Datta, A. (2022). Impact of Long Term Nutrient Management on Soil Quality Indices in Rice-Wheat System of Lower Indo-Gangetic Plain. Sustainability, 14(11), 6533. https://doi.org/10.3390/su14116533