Electricity Generation from Municipal Solid Waste in Nigeria: A Prospective LCA Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Locations: Lagos and Abuja
2.2. Development of WtE Scenarios
- The sorting facility and WtE plants were co-located. As a result, the transport distances for MSW for all the WtE scenarios are the same.
- It is assumed that the electricity produced from WtE is not an avoided product and no ‘avoided burden’ credit (e.g., against grid electricity or DBG generation) is applied.
- The environmental impacts from the digestate and solid residues are not considered in this study.
- The separation of recyclables such as glass and metals from the MSW occurs at the sorting facility into various categories which leave the WtE systems and are not modelled further in the LCA.
2.3. LCA
2.3.1. Goal and Scope
“The production of 1 Kilowatt-hour (kWh) of electricity produced from collected MSW by various WtE systems.”
2.3.2. Life Cycle Inventory (LCI)
WtE Systems | Electricity Consumption (kWh/t of Waste Processed) |
---|---|
AD | 7.7 [60] |
Incineration | 77.8 [63] |
Gasification | 339.3 [63] |
LFGTE | 14.3 [63] |
Electricity Generated (kWh/t of Waste Processed) | Abuja | Lagos |
---|---|---|
AD | 667 | 683 |
Incineration | 441 | 549 |
Gasification | 639 | 625 |
LFGTE | 135 | 171 |
Emissions (Kg/t of Waste Processed) | Incineration | |
---|---|---|
Abuja | Lagos | |
CO2 biogenic | 519.3 | 604.2 |
CO2, fossil | 255.8 | 297.6 |
CO | 0.11 | 0.13 |
N2O | 0.0045 | 0.0053 |
NOx | 0.45 | 0.53 |
NH3 | 0.009 | 0.011 |
Non-methane organic compounds (NMVOC) | 0.011 | 0.013 |
AD | ||
CO2, biogenic | 31.2 | 28.9 |
CH4 | 11 | 11.3 |
NH3 | 0.654 | 0.649 |
H2S | 0.08 | 0.04 |
LFGTE | ||
CO2, biogenic | 122.2 | 143.1 |
CH4 | 44.7 | 52.1 |
Gasification | ||
CO2, biogenic | 589.6 | 629.8 |
CO2, fossil | 290.4 | 310.2 |
NOx | 0.67 | 0.73 |
SOx | 0.046 | 0.05 |
HCl | 0.028 | 0.03 |
Mercury (Hg) | 0.00006 | 0.00007 |
Arsenic (Ar) | 0.00005 | 0.00006 |
Nickel (Ni) | 0.000035 | 0.00004 |
Cadmium (Cd) | 0.000006 | 0.000007 |
Volatile organic compounds (VOC) | 0.0097 | 0.01 |
HF | 0.00029 | 0.0003 |
2.3.3. Life Cycle Impact Assessment (LCIA)
2.3.4. Interpretation
3. Results
3.1. LCA Characterisation Results
3.2. Sensitivity Analysis
4. Discussion
5. Conclusions
- AD offers the highest electricity potential and is the most environmentally sustainable WtE option for Lagos and Abuja.
- The adoption of AD is expected to achieve the lowest environmental impact in Lagos and Abuja when compared only with the other WtE options.
- From the overall comparison of WtE technologies with the electricity from diesel backup generators and grid electricity in the two cities, DBGs had the highest or second highest environmental impacts in every category; LFGTE had much higher GWP and POCP scores due to fugitive methane emissions. In contrast, grid electricity had the least impact on GWP, AP and EP, POCP, and AP, with AD having the least impact on abiotic depletion and HTP.
- The adoption of WtE in this case could potentially supplement the current grid electricity and substitute for the use of diesel backup generators.
- From the sensitivity analyses performed, it was clear that the results were reliable and that changes in emissions, particularly for LFGTE, did not change the ranking even though there was a reduction of approximately 50% in GWP and POCP.
- There was a consistency in the WtE LCA findings between Lagos and Abuja despite their somewhat different contexts; this was largely due to the similarities in waste composition and hence the modelled performance of the WtE systems between the two cities.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adeleke, O.; Akinlabi, S.A.; Jen, T.-C.; Dunmade, I. Environmental impact assessment of the current, emerging, and alternative waste management systems using life cycle assessment tools: A case study of Johannesburg, South Africa. Environ. Sci. Pollut. Res. 2021, 29, 7366–7381. [Google Scholar] [CrossRef] [PubMed]
- Kaza, S.; Lisa, Y. At a Glance: A Global Picture of Solid Waste Management. In What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018; pp. 17–38. [Google Scholar] [CrossRef]
- Dastjerdi, B.; Strezov, V.; Kumar, R.; He, J.; Behnia, M. Comparative life cycle assessment of system solution scenarios for residual municipal solid waste management in NSW, Australia. Sci. Total Environ. 2020, 767, 144355. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, H.; Dhar, H.; Thalla, A.K.; Kumar, S. Application of life cycle assessment in municipal solid waste management: A worldwide critical review. J. Clean. Prod. 2018, 209, 630–654. [Google Scholar] [CrossRef]
- Khan, S.; Anjum, R.; Raza, S.T.; Bazai, N.A.; Ihtisham, M. Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere 2021, 288, 132403. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J.; Alfadul, S.M. Emerging contaminants of high concern for the environment: Current trends and future research. Environ. Res. 2022, 207, 112609. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assess-ment and remediation strategies—A review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef]
- Khan, S.; Sengül, H.; Dan, Z. Transport of TiO2 nanoparticles and their effects on the mobility of Cu in soil media. Desalination Water Treat 2018, 131, 230–237. [Google Scholar] [CrossRef]
- Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environ. Pollut. 2017, 231, 954–970. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.; Sengupta, S.; Singh, L.; Sahay, A. Chapter 8—Life Cycle Assessment of Waste-To-Bioenergy Processes: A Review; Singh, L., Yousuf, A., Madhab, D.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 105–122. ISBN 9780128212646. [Google Scholar] [CrossRef]
- Wang, J.; Okopi, S.I.; Ma, H.; Wang, M.; Chen, R.; Tian, W.; Xu, F. Life cycle assessment of the integration of anaerobic digestion and pyrolysis for treatment of municipal solid waste. Bioresour. Technol. 2021, 338, 125486. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Costello, A.J.T.L. The 2020 report of the Lancet Countdown on Health and Climate Change: Responding to con-verging crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef]
- Li, Y.; Xing, B.; Ding, Y.; Han, X.; Wang, S. A critical review of the production and ad-vanced utilisation of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour. Technol. 2020, 312, 123614. [Google Scholar] [CrossRef]
- Tursi, A. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res. J. 2019, 6, 962–979. [Google Scholar] [CrossRef]
- Arena, U.; Ardolino, F.; Di Gregorio, F. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies. Waste Manag. 2015, 41, 60–74. [Google Scholar] [CrossRef]
- Evangelisti, S.; Tagliaferri, C.; Clift, R.; Lettieri, P.; Taylor, R.; Chapman, C. Life cycle assessment of conventional and two-stage advanced energy-from-waste technologies for municipal solid waste treatment. J. Clean. Prod. 2015, 100, 212–223. [Google Scholar] [CrossRef]
- Kumar, R.; Strezov, V.; Weldekidan, H.; He, J.; Singh, S.; Kan, T.; Dastjerdi, B. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renew. Sustain. Energy Rev. 2020, 123, 109763. [Google Scholar] [CrossRef]
- Tan, S.T.; Ho, W.S.; Hashim, H.; Lee, C.T.; Taib, M.R.; Ho, C.S. Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Convers. Manag. 2015, 102, 111–120. [Google Scholar] [CrossRef]
- Rogoff, M.J.; Screve, F. Waste-To-Energy: Technologies and Project Implementation; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Ripa, M.; Fiorentino, G.; Vacca, V.; Ulgiati, S. The relevance of site-specific data in Life Cycle Assessment (LCA). The case of the municipal solid waste management in the metropolitan city of Naples (Italy). J. Clean. Prod. 2017, 142, 445–460. [Google Scholar] [CrossRef]
- Pujara, Y.; Pathak, P.; Sharma, A.; Govani, J. Review on Indian Municipal Solid Waste Management practices for reduction of environmental impacts to achieve sustainable development goals. J. Environ. Manag. 2019, 248, 109238. [Google Scholar] [CrossRef]
- Iqbal, A.; Liu, X.; Chen, G.-H. Municipal solid waste: Review of best practices in application of life cycle assessment and sustainable management techniques. Sci. Total Environ. 2020, 729, 138622. [Google Scholar] [CrossRef]
- Klöpffer, W.; Renner, I. Life-Cycle Based Sustainability Assessment of Products. Int. J. Life Cycle Assess. 2008, 13, 89–95. [Google Scholar] [CrossRef]
- Dong, J.; Tang, Y.; Nzihou, A.; Chi, Y.; Weiss-Hortala, E.; Ni, M. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Sci. Total Environ. 2018, 626, 744–753. [Google Scholar] [CrossRef]
- Jensen, M.B.; Møller, J.; Scheutz, C. Comparison of the organic waste management systems in the Danish–German border region using life cycle assessment (LCA). Waste Manag. 2016, 49, 491–504. [Google Scholar] [CrossRef]
- Sowunmi, A. Municipal Solid Waste Management and the Inland Water Bodies: Nige-rian Perspectives. In Municipal Solid Waste Management; Saleh, H.M., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Ogunjuyigbe, A.; Ayodele, T.; Alao, M. Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies. Renew. Sustain. Energy Rev. 2017, 80, 149–162. [Google Scholar] [CrossRef]
- Corfee-Morlot, J.; Parks, P.; Ogunleye, J.; Ayeni, F. Achieving Clean Energy Access in Sub-Saharan Africa; Organisation for Economic Co-Operation and Development: Paris, France, 2019. [Google Scholar]
- Olabiyi, B.A.; Adegbola, A.A.; Kolawole, O.P. A review of installation, operation and maintenance of internal combustion engine (ICE) powered lighting sets in a developing country. J. Emerg. Trends Eng. Appl. 2012, 3, 572–575. [Google Scholar]
- Zhang, X.; Zhang, K.M. Demand response, behind-the-meter generation and air quality. Environ. Sci. Technol. 2015, 49, 1260–1267. [Google Scholar] [CrossRef]
- Gilmore, E.A.; Adams, P.J.; Lave, L.B. Using backup generators for meeting peak electricity demand: A sensitivity analysis on emission controls, location, and health end-points. J. Air Waste Manag. Assoc. 2010, 60, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Calvo, A.I.; Alves, C.; Castro, A.; Pont, V.; Vincente, A.M.; Fraile, R. Research on aerosol sources and chemical composition: Past, current and emerging issues. Atmos. Res. 2013, 120–121, 1–28. [Google Scholar] [CrossRef]
- Kusakana, K.; Vermaak, H.J. Hybrid renewable power systems for mobile telephony base stations in developing countries. Renew. Energy 2013, 51, 419–425. [Google Scholar] [CrossRef]
- Olujobi, O.J.; Ufua, D.E.; Olokundun, M. Conversion of organic wastes to electricity in Nigeria: Legal perspective on the challenges and prospects. Int. J. Environ. Sci. Technol. 2021, 19, 939–950. [Google Scholar] [CrossRef]
- Mayer, F.; Bhandari, R.; Gäth, S. Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Sci. Total Environ. 2019, 672, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Ayodele, T.; Ogunjuyigbe, A.; Alao, M. Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria. Appl. Energy 2017, 201, 200–218. [Google Scholar] [CrossRef]
- Ouedraogo, A.S.; Frazier, R.S.; Kumar, A. Comparative Life Cycle Assessment of Gasification and Landfilling for Disposal of Municipal Solid Wastes. Energies 2021, 14, 7032. [Google Scholar] [CrossRef]
- Pfadt-Trilling, A.R.; Volk, T.A.; Fortier, M.-O.P. Climate Change Impacts of Electricity Generated at a Waste-to-Energy Facility. Environ. Sci. Technol. 2021, 55, 1436–1445. [Google Scholar] [CrossRef]
- Lagos State Government. Lagos State Government Report; Lagos State Government: Lagos, Nigeria, 2012.
- Ayuba, K.A.; Manaf, L.A.; Sabrina, A.H.; Azmin, S.W.N. Current Status of Municipal Solid Waste Management Practise in FCT Abuja. Res. J. Environ. Earth Sci. 2013, 5, 295–304. [Google Scholar] [CrossRef]
- Agbesola, Y. Sustainability of Municipal Solid Waste Management in Nigeria: A Case Study of Lagos. Master’s Thesis, Lin-köping University, Linköping, Sweeden, 2013. [Google Scholar]
- Olukanni, D.O.; Oresanya, O.O. Progression in Waste Management Processes in Lagos State, Nigeria. Int. J. Eng. Res. Afr. 2018, 35, 11–23. [Google Scholar] [CrossRef]
- Dlamini, S.; Simatele, M.D.; Kubanza, N.S. Municipal solid waste management in South Africa: From waste to energy recovery through waste-to-energy technologies in Johannesburg. Local Environ. 2018, 24, 249–257. [Google Scholar] [CrossRef]
- Obia, A.E. Emerging Nigerian Megacities and Sustainable Development: Case Study of Lagos and Abuja. J. Sustain. Dev. 2016, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- NPC. National Population Commission Report; NPC: Abuja, Nigeria, 2012.
- AEPB. Abuja Environmental Protection Board Report; AEPB: Abuja, Nigeria, 2015.
- Olorunfemi, F.B. Landfill Development and Current Practices in Lagos Metropolis, Nigeria. Afr. J. Geogr. Reg. Plan. 2011, 4, 656–663. [Google Scholar]
- Abubakar, I.R. Access to Sanitation Facilities among Nigerian Households: Determinants and Sustainability Implications. Sustainability 2017, 9, 547. [Google Scholar] [CrossRef] [Green Version]
- Nigerian Electricity Regulatory Commission (NERC). Review of Basic Assumptions for Semi-Annual Review Of MYTO-2. 2014. Available online: http://www.nercng.org/index.php/nerc-documents (accessed on 5 June 2022).
- Ezema, I.C.; Olotuah, A.O.; Fagbenle, O.I. Evaluation of Energy Use in Public Housing in Lagos, Nigeria: Prospects for Renewable Energy Sources. Int. J. Renew. Energy Dev. 2016, 5, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Ogundari, I.O.; Akinwale, Y.O.; Adepoju, A.O.; Atoyebi, M.K.; Akarakiri, J.B. Suburban Housing Development and Off-Grid Electric Power Supply Assessment for North-Central Nigeria. Int. J. Sustain. Energy Plan. Manag. 2017, 12, 47–63. [Google Scholar] [CrossRef]
- Ogunmakinde, O.E.; Sher, W.; Maund, K. An Assessment of Material Waste Disposal Methods in the Nigerian Construction Industry. Recycling 2019, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Cogut, A. Open Burning of Waste: A Global Health Disaster, R20 Regions of Climate Action. 2016. Available online: https://regions20.org/wp-content/uploads/2016/08/OPEN-BURNING-OF-WASTE-A-GLOBAL-HEALTHDISASTER_R20-Research-Paper_Final_29.05.2017.pdf (accessed on 9 June 2022).
- Wikimedia Commons. Available online: https://www.common.wikimedia.org (accessed on 5 June 2022).
- LAWMA. Lagos Waste Management Authority Report; LAWMA: Lagos, Nigeria, 2015.
- Chang, F.Y.; Wey, M.Y. Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. J. Hazard. Mater. 2006, 138, 594–603. [Google Scholar] [CrossRef]
- Falode, O.A.; Ladeinde, A.O. Economic Evaluation of Gas Power Plant Project for the First Gas Industrial Park in Nigeria. Br. J. Appl. Sci. Technol. 2016, 17, 1–19. [Google Scholar] [CrossRef]
- Alzate, S.; Restrepo-Cuestas, B.; Jaramillo-Duque, Á. Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios. Resources 2019, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency. Africa Energy Outlook. 2019. Available online: https://www.iea.org/reports/africa-energy-outlook-2019 (accessed on 5 June 2022).
- Yay, A.S.E. The use of life cycle analysis on the packaging waste management. Sakarya. Univ J. Sci. 2017, 21, 1008–1017. [Google Scholar]
- Babu, G.L.S.; Lakshmikanthan, P.; Santhosh, L.G. Life cycle analysis of municipal solid waste (MSW) land disposal options in Bangalore City. In Proceedings of the International Conference on Sustainable Infrastructure, Long Beach, CA, USA, 6–8 November 2014; pp. 6–8. [Google Scholar]
- Jakhrani, A.Q.; Othman, A.-K.; Rigit, A.R.H.; Samo, S.R. Estimation of carbon footprints from diesel generator emissions. In Proceedings of the 2012 International Conference on Green and Ubiquitous Technology, Bandung, Indonesia, 7–8 July 2012; pp. 78–81. [Google Scholar] [CrossRef]
- Zaman, A.U. Comparative study of municipal solid waste treatment technologies using life cycle assessment method. Int. J. Environ. Sci. Tech. 2010, 7, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Goedkoop, M.; Oele, M.; Effting, S. Simapro Database Manual Methods Library; Pre Consultants BV: Amersfoort, The Netherlands, 2004. [Google Scholar]
- Yadav, P.; Samadder, S.R. Environmental impact assessment of municipal solid waste management options using life cycle assessment: A case study. Environ. Sci. Pollut. Res. 2017, 25, 838–854. [Google Scholar] [CrossRef]
- Gunamantha, M. Sarto Life cycle assessment of municipal solid waste treatment to energy options: Case study of KARTAMANTUL region, Yogyakarta. Renew. Energy 2012, 41, 277–284. [Google Scholar] [CrossRef]
- Abeliotis, K.; Kalogeropoulos, A.; Lasaridi, K. Life Cycle Assessment of the MBT plant in Ano Liossia, Athens, Greece. Waste Manag. 2012, 32, 213–219. [Google Scholar] [CrossRef]
- Kočí, V.; Trecakova, T. Mixed municipal waste management in the Czech Republic from the point of view of the LCA method. Int. J. Life Cycle Assess. 2011, 16, 113–124. [Google Scholar] [CrossRef]
- Zaman, A.U. Life cycle environmental assessment of municipal solid waste to energy technologies. GJER 2009, 3, 155–163. [Google Scholar]
- Song, Q.; Wang, Z.; Li, J. Environmental performance of municipal solid waste strategies based on LCA method: A case study of Macau. J. Clean. Prod. 2013, 57, 92–100. [Google Scholar] [CrossRef]
- Chaya, W.; Gheewala, S.H. Life cycle assessment of MSW-to-energy schemes in Thailand. J. Clean. Prod. 2007, 15, 1463–1468. [Google Scholar] [CrossRef]
- Rajcoomar, A.; Ramjeawon, T. Life cycle assessment of municipal solid waste management scenarios on the small island of Mauritius. Waste Manag. Res. J. Sustain. Circ. Econ. 2016, 35, 313–324. [Google Scholar] [CrossRef]
- Schofield, J. Comparing the Environmental Impacts of Diesel Generated Electricity with Hybrid Diesel-Wind Electricity for Off Grid First Nation Communities in Ontario: Incorporating a Life Cycle Approach; Library and Archives Canada: Ottawa, ON, Canada, 2011; p. 176.
- Somorin, T.O.; Adesola, S.; Kolawole, A. State-level assessment of the waste-to-energy potential (via incineration) of municipal solid wastes in Nigeria. J. Clean. Prod. 2017, 164, 804–815. [Google Scholar] [CrossRef] [Green Version]
- Hameed, Z.; Aslam, M.; Khan, Z.; Maqsood, K.; Atabani, A.; Ghauri, M.; Khurram, M.S.; Rehan, M.; Nizami, A.-S. Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects. Renew. Sustain. Energy Rev. 2020, 136, 110375. [Google Scholar] [CrossRef]
- Özer, B.; Yay, A.S.E. Comparative life cycle analysis of municipal waste management systems: Kırklareli/Turkey case study. Environ. Sci. Pollut. Res. 2021, 28, 63867–63877. [Google Scholar] [CrossRef]
- Rana, R.; Ganguly, R.; Gupta, A.K. Life-cycle assessment of municipal solid-waste management strategies in Tricity region of India. J. Mater. Cycles Waste Manag. 2019, 21, 606–623. [Google Scholar] [CrossRef]
- Richard, E.N.; Hilonga, A.; Machunda, R.L.; Njau, K.N. Life cycle analysis of potential municipal solid wastes management scenarios in Tanzania: The case of Arusha City. Sustain. Environ. Res. 2021, 31, 1. [Google Scholar] [CrossRef]
- Aderoju, O.M.; Dias, G.A.; Gonçalves, A.J. A GIS-based analysis for sanitary landfill sites in Abuja, Nigeria. Environ. Dev. Sustain. 2018, 22, 551–574. [Google Scholar] [CrossRef]
- Suberu, M.Y.; Mokhtar, A.S.; Bashir, N. Renewable power generation opportunity from municipal solid waste: A case study of Lagos metropolis (Nigeria). Int. J. Energy Technol. Policy 2012, 2, 1–15. [Google Scholar]
- Aderoju, O.M.; Ombe Gemusse, U.G.; Guerner Dia, A. An Optimisation of the Munici-pal Solid Waste in Abuja, Nigeria for Electrical Power Generation. Int. J. Energy Prod. Manag. 2019, 4, 63–74. [Google Scholar]
- Fernández-González, J.; Grindlay, A.; Serrano-Bernardo, F.; Rodríguez-Rojas, M.; Zamorano, M. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities. Waste Manag. 2017, 67, 360–374. [Google Scholar] [CrossRef]
- Aldhafeeri, Z.M.; Alhazmi, H. Sustainability Assessment of Municipal Solid Waste in Riyadh, Saudi Arabia, in the Framework of Circular Economy Transition. Sustainability 2022, 14, 5093. [Google Scholar] [CrossRef]
- Korzeniowski, W.; Skrzypkowski, K.; Poborska-Młynarska, K. The idea of the recovery of municipal solid waste incineration (MSWI) residues in kłodawa salt mine S.A.by filling the excavations with self-solidifying mixtures. Arch. Min. Sci. 2018, 63, 553–565. [Google Scholar] [CrossRef]
- Jekayinfa, S.; Orisaleye, J.; Pecenka, R. An Assessment of Potential Resources for Biomass Energy in Nigeria. Resources 2020, 9, 92. [Google Scholar] [CrossRef]
- Kulczycka, J.; Lelek, L.; Lewandowska, A.; Zarebska, J. Life cycle assessment of municipal solid waste management—Comparison of results using different LCA models. Pol. J. Environ. Stud. 2015, 24, 125–140. [Google Scholar] [CrossRef]
- Nubi, O.; Morse, S.; Murphy, R.J. A Prospective Social Life Cycle Assessment (sLCA) of Electricity Generation from Municipal Solid Waste in Nigeria. Sustainability 2021, 13, 10177. [Google Scholar] [CrossRef]
- Sharma, B.K.; Chandel, M.K. Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India. Waste Manag. Res. 2017, 35, 79–91. [Google Scholar] [CrossRef]
- Odedina, M.J.; Charnno, K.B.; Saritpongteeraka, K.; Chaiprapat, S. Effects of size and thermophilic pre-hydrolysis of banana peel during anaerobic digestion, and biomethanation potential of key tropical fruit wastes. Waste Manag. 2017, 68, 128–138. [Google Scholar] [CrossRef]
- Chen, T.C.; Lin, C.F. CO2 emission from municipal solid waste incinerator: IPCC formula estimation and flue gas measurement. J. Environ. Manag. 2010, 20, 9–17. [Google Scholar]
- Chien, T.W.; Chu, H. Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution. J. Hazard. Mater. 2000, 80, 43–57. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change, IPCC Guidelines for National Greenhouse gas Inventories, 2006; Volume 5. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html (accessed on 1 April 2014).
- Department for Environment, Food and Rural Affairs (DEFRA). Incineration of Municipal Solid Waste, Waste Management Technology Brief, the New Technologies Work Stream of the Defra Waste Implementation Programme; Department for Environment, Food and Rural Affairs (DEFRA): London, UK, 2007.
Waste Components | Lagos | Abuja |
---|---|---|
(%) | (%) | |
Food Waste | 46 | 47 |
Paper | 13 | 14 |
Plastics | 23 | 22 |
Textiles | 12 | 5 |
Metal | 2 | 7 |
Glass | 4 | 5 |
Total | 100 | 100 |
Impact Category | Unit | AD | Incineration | Gasification | LFGTE | DBGs | Grid Electricity |
---|---|---|---|---|---|---|---|
ADP (Fossil Fuels) | (MJ) | 0.62 (A) | 3.17 (A) | 6.40 (A) | 4.59 (A) | 14.1 | 8.67 |
0.6 (L) | 2.86 (L) | 6.98 (L) | 3.64 (L) | ||||
GWP | (Kg CO2 eq) | 0.507 (A) | 0.80 (A) | 0.86 (A) | 9.5 (A) | 1.02 | 0.497 |
0.506 (L) | 0.74 (L) | 0.94 (L) | 8.7 (L) | ||||
HTP | (Kg 1.4 DB eq) | 0.0055 (A) | 0.0102 (A) | 0.0195 (A) | 0.019 (A) | 0.0732 | 0.0117 |
0.0054 (L) | 0.0092 (L) | 0.0213 (L) | 0.015 (L) | ||||
POCP | (Kg C2H4 eq) | 0.00011 (A) | 0.0000396 (A) | 0.0000464 (A) | 0.00202 (A) | 0.000198 | 0.0000406 |
0.00011 (L) | 0.0000357(L) | 0.0000506 (L) | 0.00186 (L) | ||||
AP | (Kg SO2 eq) | 0.000564 (A) | 0.00089 (A) | 0.00097 (A) | 0.00299 (A) | 0.0129 | 0.000296 |
0.000560 (L) | 0.00083 (L) | 0.0011 (L) | 0.00237(L) | ||||
EP | (Kg PO4 eq) | 0.000144 (A) | 0.000192(A) | 0.000209 (A) | 0.000717 (A) | 0.00313 | 0.000061 |
0.000143 (L) | 0.000179(L) | 0.000228 (L) | 0.000568 (L) |
Impact Category | Unit | LFGTE, 50% CH4 Fugitive Emission | LFGTE, 30% CH4 Fugitive Emission |
---|---|---|---|
GWP | (Kg CO2 eq) | 9.5 (A) | 4.6 (A) |
8.7 (L) | 4.1 (L) | ||
POCP | (Kg C2H4 eq) | 0.00202 (A) | 0.00093 (A) |
0.00186 (L) | 0.00087 (L) |
Impact Category | Unit | AD | Incineration | Gasification | LFGTE | DBGs | Grid Electricity |
---|---|---|---|---|---|---|---|
ADP (Fossil Fuels) | (MJ) | 0.562 (A) | 2.88 (A) | 5.81 (A) | 4.17 (A) | 14.1 | 8.67 |
0.548 (L) | 2.60 (L) | 6.35 (L) | 3.58 (L) | ||||
GWP | (Kg CO2 eq) | 0.461 (A) | 0.73 (A) | 0.78 (A) | 8.63 (A) | 1.02 | 0.497 |
0.460 (L) | 0.68 (L) | 0.85 (L) | 8.60 (L) | ||||
HTP | (Kg 1.4 DB eq) | 0.00498 (A) | 0.0093 (A) | 0.018 (A) | 0.0173 (A) | 0.0732 | 0.0117 |
0.00489 (L) | 0.0084 (L) | 0.019 (L) | 0.0148 (L) | ||||
PCOP | (Kg C2H4 eq) | 0.000096 (A) | 0.000036 (A) | 0.000042 (A) | 0.00184 (A) | 0.000198 | 0.0000406 |
0.000096 (L) | 0.000033 (L) | 0.000046 (L) | 0.00095(L) | ||||
AP | (Kg SO2 eq) | 0.000512 (A) | 0.00081 (A) | 0.00089 (A) | 0.00272 (A) | 0.0129 | 0.000296 |
0.000510 (L) | 0.00075 (L) | 0.00097 (L) | 0.00233 (L) | ||||
EP | (Kg PO4 eq) | 0.000131 (A) | 0.00019 (A) | 0.00019 (A) | 0.000652 (A) | 0.00313 | 0.000061 |
0.000130 (L) | 0.00016 (L) | 0.00021 (L) | 0.000559 (L) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nubi, O.; Morse, S.; Murphy, R.J. Electricity Generation from Municipal Solid Waste in Nigeria: A Prospective LCA Study. Sustainability 2022, 14, 9252. https://doi.org/10.3390/su14159252
Nubi O, Morse S, Murphy RJ. Electricity Generation from Municipal Solid Waste in Nigeria: A Prospective LCA Study. Sustainability. 2022; 14(15):9252. https://doi.org/10.3390/su14159252
Chicago/Turabian StyleNubi, Oluwaseun, Stephen Morse, and Richard J. Murphy. 2022. "Electricity Generation from Municipal Solid Waste in Nigeria: A Prospective LCA Study" Sustainability 14, no. 15: 9252. https://doi.org/10.3390/su14159252
APA StyleNubi, O., Morse, S., & Murphy, R. J. (2022). Electricity Generation from Municipal Solid Waste in Nigeria: A Prospective LCA Study. Sustainability, 14(15), 9252. https://doi.org/10.3390/su14159252