Research on Urban Resilience and Influencing Factors of Chengdu-Chongqing Economic Circle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Frameworks and Variables for Urban Resilience
2.2. Research Methods and Data Sources
2.2.1. Entropy Weight-TOPSIS Model
- The entropy method is used to determine the weight of each index. The weight score of each dimension is the sum of the weights of its six indicators. (Table 1)
- The TOPSIS method is used to determine the closeness of each region, that is, the level of urban resilience. (Table 2)
2.2.2. Qualitative Comparative Analysis Method (QCA)
2.2.3. Data Sources
3. Results
3.1. The Level of Urban Resilience
3.2. Spatial Distribution of Urban Resilience
3.3. Configuration Analysis of Influencing Factors
3.3.1. Calibration and Necessity Analysis of fsQCA
3.3.2. Configuration Analysis of the Overall Area
- Overall high urban resilience interpretation path
- Overall non-high urban resilience interpretation path
3.3.3. Configuration Analysis of Sichuan Area and Chongqing Area
- High urban resilience interpretation path in Chongqing area
- High urban resilience Interpretation path in Sichuan area
- Non-high urban resilience interpretation path in Chongqing area
- Non-high urban resilience interpretation path in Sichuan area
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- China Urban Planning Network. Available online: http://www.planning.org.cn/solicity/view_news?id=832 (accessed on 26 May 2022).
- He, B.J.; Wang, J.; Zhu, J.; Qi, J. Beating the urban heat: Situation, background, impacts and the way forward in China. Renew. Sustain. Energy Rev. 2022, 161, 112350. [Google Scholar] [CrossRef]
- Wilbanks, T.J.; Sathaye, J. Integrating Mitigation and Adaptation as Responses to Climate Change: A Synthesis. Mitigation and Adaptation Strategies for Global Change. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 957–962. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2007, 19, 957–962. [Google Scholar] [CrossRef]
- Jing, L.B. The theoretical connotation and operational logic of resilient cities and their new opportunities in the context of digital economy. Guizhou Soc. Sci. 2021, 373, 108–115. [Google Scholar]
- Davoudi, S. On resilience. DisP-Plan. Rev. 2013, 49, 4–5. [Google Scholar] [CrossRef]
- Yodo, N.; Wang, P. Engineering resilience quantification and system design implications: A literature survey. J. Mech. Des. 2016, 138, 111408. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Bozza, A.; Asprone, D.; Manfredi, G. Developing an integrated framework to quantify resilience of urban systems against disasters. Nat. Hazards 2015, 78, 1729–1748. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, Adaptability and Transformability in Social-Ecological Systems. Ecol. Soc. 2014, 9, 5. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. In Vulnerability and Environmental Justice; Routledge: London, UK, 2012; pp. 143–160. [Google Scholar]
- Jha, A.K.; Miner, T.W.; Stanton-Geddes, Z. Building Urban Resilience Principles, Tools, and Practice Environment and Sustainable Development; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Joerin, J.; Shaw, R.; Takeuchi, Y.; Krishnamurthy, R. Action-oriented resilience assessment of communities in Chennai, India. Environ. Hazards 2012, 11, 226–241. [Google Scholar] [CrossRef]
- Liu, Y.P. Urban Resilience System Development Measurement: Based on an Empirical Study of 288 Chinese Cities. Urban Dev. Stud. 2021, 28, 93–100. [Google Scholar]
- Ribeiro, P.J.G.; Gonçalves, L.A.P.J. Urban resilience: A conceptual framework. Sustain. Cities Soc. 2019, 50, 2210–6707. [Google Scholar] [CrossRef]
- Shi, J.; Wang, X.; Wang, C.; Liu, H.; Miao, Y.; Ci, F. Evaluation and Influencing Factors of Network Resilience in Guangdong-Hong Kong-Macao Greater Bay Area: A Structural Perspective. Sustainability 2022, 14, 8005. [Google Scholar] [CrossRef]
- Zheng, Y.; Xin, X.L.; Li, C.Z.; Wang, M.; He, X.J. Development as adaptation: Framing and measuring urban resilience in Beijing. Adv. Clim. Chang. Res. 2018, 9, 234–242. [Google Scholar] [CrossRef]
- Zhu, J.H.; Sun, H.X. Research on Spatial—Temporal Evolution and Influencing Factors of Urban Resilience of China’s Three Metropolitan Agglomerations. Soft Sci. 2020, 34, 72–79. [Google Scholar]
- Liu, L.; Luo, Y.; Pei, J.; Wang, H.; Li, J.; Li, Y. Temporal and Spatial Differentiation in Urban Resilience and Its Influencing Factors in Henan Province. Sustainability 2021, 13, 12460. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Zhu, Y.M. Research on Urban Economic Resilience and Its Influencing Factors in China. Ecol. Econ. 2021, 37, 84–92. [Google Scholar]
- Huang, G.Y.; Li, D.Z.; Zhu, X.; Zhu, J. Influencing factors and their influencing mechanisms on urban resilience in China. Sustain. Cities Soc. 2021, 74, 103210. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, L.; Zhong, Z.P.; Ou, Y.Y. Comprehensive evaluation and spatial differentiation of community resilience in Guangzhou based on response of the city to public health hazards. Acta Geogr. Sin. 2019, 74, 266–284. [Google Scholar]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. The geographies of community disaster resilience. Glob. Environ. Chang. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- Cellini, R.; Torrisi, G. Regional Resilience in Italy: A Very Long-Run Analysis. Reg. Stud. 2014, 48, 1779–1796. [Google Scholar] [CrossRef]
- Zhang, M.D.; Feng, X.Q. A Comparative Study of Urban Resilience and Economic Development Level of Cities in Yangtze River Delta Urban Agglomeration. Urban Dev. Stud. 2019, 26, 82–91. [Google Scholar]
- Benot, R.; Charles, C.R. QCA Design Principles and Applications: A New Approach Beyond Qualitative and Quantitative Research, 1st ed.; Du, Y.Z., Li, Y.F., Eds.; Machine Industry Press: Beijing, China, 2017; Volume 3, pp. 31–58. [Google Scholar]
- Song, G.; Zhong, S.; Song, L. Spatial Pattern Evolution Characteristics and Influencing Factors in County Economic Resilience in China. Sustainability 2022, 14, 8703. [Google Scholar] [CrossRef]
- Ding, J.J.; Wang, Z.; Liu, Y.H.; Yu, F.W. Measurement of economic resilience of contiguous poverty-stricken areas in China and influencing factor analysis. Prog. Geog. 2020, 39, 924–937. [Google Scholar] [CrossRef]
- Zhang, P.; Yu, W.; Zhang, Y.W. Spatial and temporal differentiation of urban resilience in Shandong Province and its influencing factors. Urban Prob. 2018, 278, 27–34. [Google Scholar]
- Chen, Y.; Su, X.; Zhou, Q. Study on the Spatiotemporal Evolution and Influencing Factors of Urban Resilience in the Yellow River Basin. Int. J. Environ. Res. Public Health 2021, 18, 10231. [Google Scholar] [CrossRef]
- Zhang, Y.L.; You, W.J. Assessment of Social Vulnerability to Natural Disasters of Cities Based on TOPSIS: A Case Study of Shanghai City. J. Catastrophology 2014, 29, 109–114. [Google Scholar]
- Hwang, C.L.; Yoon, K.P. Multiple Attribute Decision Making Methods and Applications: A State-of-the-Art Survey; Springer-Verlag: New York, NY, USA, 1981; pp. 139–262. [Google Scholar]
- Zhao, D.Y.; Ma, Y.Y.; Lin, H.L. Using the Entropy and TOPSIS Models to Evaluate Sustainable Development of Islands: A Case in China. Sustainability 2022, 14, 3707. [Google Scholar] [CrossRef]
- Li, W.; He, H.B. The Logic and Application of Qualitative Comparative Analysis in Social Science Research. J. Shanghai Admin. Inst. 2015, 16, 92–100. [Google Scholar]
- Ragin, C. Redesigning Social Inquiry: Fuzzy Set and Beyond; University of Chicago Press: Chicago, IL, USA, 2008; pp. 36–49. [Google Scholar]
- Fiss, P.C. Building better causal theories: A fuzzy set approach to typologies in organization research. Acad. Manag. J. 2011, 54, 393–420. [Google Scholar] [CrossRef]
- Judge, W.Q.; Fainshmidt, S.; Iii, J. Which model of capitalism best delivers both wealth and equality? J. Int. Bus. Stud. 2014, 45, 363–386. [Google Scholar] [CrossRef]
- Bell, R.G.; Filatotchev, I.; Aguilera, R.V. Corporate governance and investors’ perceptions of foreign IPO value: An institutional perspective. Acad. Manag. J. 2014, 57, 301–320. [Google Scholar] [CrossRef]
- Xiao, W.; Lv, X.; Zhao, Y.; Sun, H.; Li, J. Ecological resilience assessment of an arid coal mining area using index of entropy and linear weighted analysis: A case study of Shendong Coalfield, China. Ecol. Indic. 2019, 109, 105843. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, X.; Xu, Y.; Bhuiyan, M.A.; Liu, P. New energy demonstration city pilot and green energy consumption: Evidences from China. Energy Rep. 2022, 8, 7735–7750. [Google Scholar] [CrossRef]
- Du, Y.Z.; Jia, L.D. Configuration Perspective and Qualitative Comparative Analysis (QCA): A New Way of Management Research. Manag. World 2017, 6, 155–167. [Google Scholar]
- Lou, Z.K.; Ye, A.L.; Mao, J.Y.; Zhang, C. Supplier selection, control mechanisms, and firm innovation: Configuration analysis based on fsQCA. J. Bus. Res. 2022, 139, 81–89. [Google Scholar] [CrossRef]
- Harms, R.; Alfert, C.; Cheng, C.-F.; Kraus, S. Effectuation and causation configurations for business model innovation: Addressing COVID-19 in the gastronomy industry. Int. J. Hosp. Manag. 2021, 95, 102896. [Google Scholar] [CrossRef]
- Jan, D.L. Identifying single necessary conditions with NCA and fsQCA. J. Bus. Res. 2016, 69, 1516–1523. [Google Scholar]
- Schneider, C.Q.; Wagemann, C. Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Jerry, M.M.; Mohammad, M.K. Theoretical aspects of Fuzzy Set Qualitative Comparative Analysis (fsQCA). Inform. Sci. 2013, 237, 137–161. [Google Scholar]
- Shen, J.X.; Li, S.; Zhang, J.Y. Research on Influencing Factors of Big Data Industry Development Capability—Based on fsQCA Method. Sci. Tech. Manag. Res. 2019, 39, 140–147. [Google Scholar]
- Wang, B.; Han, S.; Ao, Y.; Liao, F. Evaluation and Factor Analysis for Urban Resilience: A Case Study of Chengdu–Chongqing Urban Agglomeration. Buildings 2022, 12, 962. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, W.; Cai, K.; Gao, X.; Zhang, X.; Liu, J.; Wang, Z.; Li, D. Analysis of the Spatial Distribution Characteristics of Urban Resilience and Its Influencing Factors: A Case Study of 56 Cities in China. Int. J. Environ. Res. Public Health 2019, 16, 4442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, Y.; Liu, Y.; Qing, F.; Zhou, Y.; Chen, Y.; Fang, D. Study on the Influencing factors of urban economic resilience in post epidemic Era—A case study of Kunming City. J. Urban Manag. 2021, 10, 255–264. [Google Scholar] [CrossRef]
- Ma, F.; Wang, Z.; Sun, Q.; Yuen, K.F.; Zhang, Y.; Xue, H.; Zhao, S. Spatial–Temporal Evolution of Urban Resilience and Its Influencing Factors: Evidence from the Guanzhong Plain Urban Agglomeration. Sustainability 2020, 12, 2593. [Google Scholar] [CrossRef] [Green Version]
Target | Dimensions | Indicators | Weights | Properties |
---|---|---|---|---|
Urban Resilience | Economic resilience 0.2088 | GDP per capita | 0.0156 | + |
Production of tertiary sector in GDP | 0.0143 | + | ||
Per capita disposable income of urban residents | 0.0058 | + | ||
Local public finance revenue | 0.0694 | + | ||
Actual amount of foreign capital used in the year | 0.0998 | + | ||
Growth of per capita investment in fixed assets | 0.0039 | + | ||
Social resilience 0.1624 | Population density | 0.0801 | + | |
Urban registered unemployment rate | 0.0031 | − | ||
Number of beds in health care institutions | 0.0425 | + | ||
Regional urbanization rate | 0.0201 | + | ||
Production of social security expenditure in fiscal expenditure | 0.0066 | + | ||
Pension insurance coverage rate | 0.0100 | + | ||
Ecological resilience 0.1223 | Greening coverage rate of built-up areas | 0.0052 | + | |
Forest cover rate | 0.0065 | + | ||
Industrial smoke (powder) dust emissions per unit of GDP | 0.0481 | − | ||
Industrial wastewater emissions per unit of GDP | 0.0579 | − | ||
Harmless treatment rate of domestic waste | 0.0013 | + | ||
Comprehensive utilization rate of industrial solid waste | 0.0033 | + | ||
Infrastructure resilience 0.2516 | Number of public buses per 10,000 people | 0.0680 | + | |
Number of Internet broadband access users | 0.0440 | + | ||
Electricity consumption per capita | 0.0141 | + | ||
Daily domestic water consumption per capita | 0.0068 | + | ||
Total city gas supply | 0.0545 | + | ||
Production of major crop products per capita | 0.0642 | + | ||
Cultural resilience 0.2647 | Proportion of public cultural expenditure to local budget expenditure | 0.0060 | + | |
Number of books in public libraries per 100 people | 0.0456 | + | ||
Household deposits | 0.0475 | + | ||
Regional cable radio and television subscribers | 0.0467 | + | ||
Number of college students in general higher education institutions | 0.0597 | + | ||
Number of intangible cultural heritage at or above the provincial level | 0.0492 | + |
Region | Closeness | Ranking | Region | Closeness | Ranking |
---|---|---|---|---|---|
Chengdu | 0.630136 | 1 | Ya’an | 0.268356 | 23 |
Yuzhong | 0.394664 | 2 | Banan | 0.2656 | 24 |
Jiangbei | 0.347887 | 3 | Beibei | 0.263372 | 25 |
Dadukou | 0.324199 | 4 | Dianjiang | 0.257568 | 26 |
Ziyang | 0.320246 | 5 | Wanzhou | 0.256935 | 27 |
Shapinba | 0.31922 | 6 | Rongchang | 0.256604 | 28 |
Luzhou | 0.316506 | 7 | Kaizhou | 0.254413 | 29 |
Deyang | 0.313546 | 8 | Qijiang | 0.250839 | 30 |
Mianyang | 0.312661 | 9 | Tongliang | 0.250482 | 31 |
Dazhou | 0.311098 | 10 | Dazu | 0.248446 | 32 |
Nanchong | 0.309694 | 11 | Yongchuan | 0.248053 | 33 |
Yibing | 0.308738 | 12 | Fengdu | 0.247812 | 34 |
Guangan | 0.306565 | 13 | Bishan | 0.24762 | 35 |
Zigong | 0.2995 | 14 | Tongnan | 0.245348 | 36 |
Suining | 0.296455 | 15 | Yunyang | 0.243156 | 37 |
Yubei | 0.294205 | 16 | Jiangjin | 0.241701 | 38 |
Neijiang | 0.293364 | 17 | Changshou | 0.239418 | 39 |
Meishan | 0.291245 | 18 | Fuling | 0.228617 | 40 |
Jiulongpo | 0.288118 | 19 | Zhongxian | 0.21203 | 41 |
Leshan | 0.278138 | 20 | Qianjiang | 0.208182 | 42 |
Nanan | 0.272665 | 21 | Nanchuan | 0.196074 | 43 |
Liangping | 0.269685 | 22 | Henchan | 0.164931 | 44 |
Conditions and Results | Calibration | |||
---|---|---|---|---|
Full Membership | Cross Over Point | Full Nonmembership | ||
Political Force | Local fiscal revenue/Local fiscal expenditure | 0.474 | 0.357 | 0.279 |
Market force | Per capita retail sales of consumer goods in municipal districts | 3.510 | 2.854 | 2.151 |
Financial force | Deposit and loan balance/GDP | 2.571 | 2.113 | 1.559 |
Innovation force | Foreign trade dependence | 1993.500 | 1240.000 | 579.000 |
Openness force | Number of patents granted at the end of the year | 0.079 | 0.028 | 0.014 |
Cultural force | proportion of the population with a college education or above | 0.165 | 0.096 | 0.069 |
Urban resilience | Closeness | 0.310 | 0.269 | 0.248 |
Conditional Variables | High Urban Resilience | Non-High Urban Resilience | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Finance-Driven | Innovation-Driven | Multiple-Driven | Innovation-Deficient | Finance-Deficient | Finance & Innovation-Deficient | ||||||
H1 | H2 | H3 | H4 | H5 | NH1 | NH2 | NH3 | NH4 | NH5 | NH6 | |
Political force | ⨂ | ⨂ | ● | ⨂ | ⨂ | ● | ● | ● | |||
Market force | ⨂ | ⨂ | ⨂ | ⨂ | ⦁ | ● | ● | ● | ● | ⨂ | ⨂ |
Financial force | ● | ● | ● | ⨂ | ⦁ | ⦁ | ⨂ | ⨂ | ⨂ | ||
Innovation force | ● | ● | ⦁ | ⨂ | ⨂ | ⨂ | ⦁ | ⨂ | ⨂ | ||
Openness force | ⨂ | ⨂ | ⦁ | ● | ● | ⨂ | ⦁ | ⨂ | ⦁ | ⦁ | ⨂ |
Cultural force | ⨂ | ⨂ | ⨂ | ● | ● | ⨂ | ⨂ | ⦁ | ⦁ | ⨂ | ⦁ |
Consistency | 0.8651 | 0.8736 | 0.9668 | 0.8143 | 0.8972 | 0.9315 | 0.9739 | 0.9771 | 0.9179 | 0.9858 | 0.9891 |
Raw Coverage | 0.3015 | 0.2199 | 0.1743 | 0.1678 | 0.3499 | 0.2927 | 0.0502 | 0.0574 | 0.1605 | 0.0937 | 0.1219 |
Unique Coverage | 0.0991 | 0.0258 | 0.0167 | 0.0710 | 0.2988 | 0.2116 | 0.0157 | 0.0193 | 0.1067 | 0.0126 | 0.0421 |
Solution Consistency | 0.8499 | 0.9368 | |||||||||
Solution Coverage | 0.7465 | 0.5119 |
Regional Division | Chongqing Area | Sichuan Area | |||||
---|---|---|---|---|---|---|---|
Conditional Variables | Administration & Finance-driven | Finance & Innovation-Driven | Multiple-Driven | Finance-Driven | Finance & Innovation-Driven | Multiple-Driven | |
H6 | H7 | H8 | H9 | H10 | H11 | H12 | |
Political force | ● | ⨂ | ● | ● | ⨂ | ⨂ | ⦁ |
Market force | ⨂ | ⨂ | ⨂ | ⨂ | ⦁ | ⦁ | |
Financial force | ● | ● | ● | ● | ● | ● | ● |
Innovation force | ● | ● | ● | ⨂ | ● | ● | |
Openness force | ⦁ | ⨂ | ⦁ | ⨂ | ⨂ | ● | |
Cultural force | ⦁ | ⨂ | ⦁ | ⦁ | ⨂ | ⨂ | |
Consistency | 0.8008 | 0.9125 | 0.8136 | 0.9447 | 0.8876 | 0.9417 | 0.8788 |
Raw Coverage | 0.1393 | 0.0993 | 0.1306 | 0.5112 | 0.3095 | 0.1528 | 0.3136 |
Unique Coverage | 0.0837 | 0.0449 | 0.0035 | 0.4106 | 0.1716 | 0.0096 | 0.2799 |
Solution Consistency | 0.9426 | 0.8887 | |||||
Solution Coverage | 0.6248 | 0.6043 |
Regional Division | Chongqing Area | Sichuan Area | |||||||
---|---|---|---|---|---|---|---|---|---|
Conditional Variables | Culture-Deficient | Finance-Deficient | Innovation & Culture-Deficient | Openness- Deficient | Administrative & Finance-Deficient | ||||
NH7 | NH8 | NH9 | NH10 | NH11 | NH12 | NH13 | NH14 | NH15 | |
Political force | ● | ● | ⨂ | ⨂ | ⦁ | ⨂ | ⦁ | ⨂ | ⨂ |
Market force | ⨂ | ⨂ | ⨂ | ⦁ | ⦁ | ⨂ | ⨂ | ⨂ | |
Financial force | ⨂ | ⨂ | ⨂ | ⨂ | ⨂ | ● | ● | ⨂ | ⨂ |
Innovation force | ⨂ | ⦁ | ⨂ | ⦁ | ⦁ | ⨂ | ⨂ | ⨂ | |
Openness force | ⨂ | ⦁ | ⨂ | ⨂ | ⦁ | ⨂ | ⨂ | ⨂ | |
Cultural force | ⨂ | ⨂ | ● | ● | ● | ⨂ | ● | ⨂ | ⨂ |
Consistency | 0.9904 | 1.0000 | 1.0000 | 0.9856 | 0.8915 | 0.9396 | 0.9691 | 0.9567 | 0.9663 |
Raw Coverage | 0.1449 | 0.1393 | 0.1176 | 0.0959 | 0.1323 | 0.2940 | 0.2066 | 0.3486 | 0.3776 |
Unique Coverage | 0.0280 | 0.0672 | 0.0071 | 0.0217 | 0.0504 | 0.2226 | 0.1645 | 0.0342 | 0.0633 |
Solution Consistency | 0.9385 | 0.9712 | |||||||
Solution Coverage | 0.5551 | 0.5763 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Jiao, M.; Zhang, J. Research on Urban Resilience and Influencing Factors of Chengdu-Chongqing Economic Circle. Sustainability 2022, 14, 10585. https://doi.org/10.3390/su141710585
Yang M, Jiao M, Zhang J. Research on Urban Resilience and Influencing Factors of Chengdu-Chongqing Economic Circle. Sustainability. 2022; 14(17):10585. https://doi.org/10.3390/su141710585
Chicago/Turabian StyleYang, Mei, Mengyun Jiao, and Jinyu Zhang. 2022. "Research on Urban Resilience and Influencing Factors of Chengdu-Chongqing Economic Circle" Sustainability 14, no. 17: 10585. https://doi.org/10.3390/su141710585
APA StyleYang, M., Jiao, M., & Zhang, J. (2022). Research on Urban Resilience and Influencing Factors of Chengdu-Chongqing Economic Circle. Sustainability, 14(17), 10585. https://doi.org/10.3390/su141710585