Incidence of Heavy Metals in the Application of Fertilizers to Crops (Wheat and Rice), a Fish (Common carp) Pond and a Human Health Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Specification
2.2. Soil and Fish Sampling
2.3. Heavy Metal Analysis in Soil and Crops
2.4. Heavy Metal Analysis in Water and Fish Muscle
2.5. Bioaccumulation Factor
2.6. Estimated Daily Intake
2.7. Human Health Risk Assessment
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- In the future, further research should be conducted to ensure the suitability of edible crops and fish for human consumption.
- Fertilizer manufacturers should take appropriate measures to ensure their quality and prevent heavy metals pollution.
- Awareness and proper training should be given to farmers about using fertilizers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use Manag. 2020, 36, 2–18. [Google Scholar] [CrossRef]
- Sarkadi, L.S. Effects of Fertilizer on Food Supply. In Chemistry’s Role in Food Production and Sustainability: Past and Present; American Chemical Society: Washington, DC, USA, 2019; pp. 129–145. [Google Scholar]
- Savari, M.; Gharechaee, H. Application of the extended theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. J. Clean. Prod. 2020, 263, 121512. [Google Scholar] [CrossRef]
- Pailan, G.H.; Biswas, G. Advances in Nutrient Resource Management for Fisheries and Aquaculture. In Agriculture, Livestock Production and Aquaculture; Springer: Cham, Switzerland, 2022; pp. 291–311. [Google Scholar]
- Boyd, C.E. Aquaculture pond fertilization. CABI Rev. 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Hussain, N.; Abbasi, T.; Abbasi, S.A. Generation of highly potent organic fertilizer from pernicious aquatic weed Salvinia molesta. Environ. Sci. Pollut. Res. 2018, 25, 4989–5002. [Google Scholar] [CrossRef]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R.; Prakash, O. Chapter-5 the Impact of Chemical Fertilizers on Our Environment and Ecosystem. Chief Ed 2019, 35, 69. [Google Scholar]
- Nadarajan, S.; Sukumaran, S. Chemistry and toxicology behind chemical fertilizers. In Controlled Release Fertilizers for Sustainable Agricultur; Academic Press: London, UK, 2021; pp. 195–229. [Google Scholar]
- Alprol, A.E.; Heneash, A.M.; Soliman, A.M.; Ashour, M.; Alsanie, W.F.; Gaber, A.; Mansour, A.T. Assessment of water quality, eutrophication, and zooplankton community in Lake Burullus, Egypt. Diversity 2021, 13, 268. [Google Scholar] [CrossRef]
- Rashmi, I.; Roy, T.; Kartika, K.S.; Pal, R.; Coumar, V.; Kala, S.; Shinoji, K.C. Organic and inorganic fertilizer contaminants in agriculture: Impact on soil and water resources. In Contaminants in Agriculture; Springer: Cham, Switzerland, 2020; pp. 3–41. [Google Scholar]
- Wei, B.; Yu, J.; Cao, Z.; Meng, M.; Yang, L.; Chen, Q. The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application. Int. J. Environ. Res. Public Health 2020, 17, 5359. [Google Scholar] [CrossRef]
- Habib, S.S.; Batool, A.I.; Rehman, M.F.U.; Naz, S. Evaluation and Association of Heavy Metals in Commonly Used Fish Feed with Metals Concentration in Some Tissues of O. niloticus Cultured in Biofloc Technology and Earthen Pond System. Biol. Trace Elem. Res. 2022, 1–11. [Google Scholar] [CrossRef]
- Abdulla, S.M.; Jamil, D.M.; Aziz, K.H.H. Investigation in heavy metal contents of drinking water and fish from Darbandikhan and Dokan Lakes in Sulaimaniyah Province-Iraqi Kurdistan Region. IOP Conf. Ser. Earth Environ. Sci. 2020, 162, 012023. [Google Scholar] [CrossRef]
- Fazio, F.; Habib, S.S.; Naz, S.; Hashmi, M.A.H.; Saoca, C.; Ullah, M. 2022. Cadmium sub-lethal concentration effect on growth, haematological and biochemical parameters of Mystus seenghala (Sykes, 1839). Biol. Trace Elem. Res. 2022, 200, 2432–2438. [Google Scholar] [CrossRef] [PubMed]
- Edogbo, B.; Okolocha, E.; Maikai, B.; Aluwong, T.; Uchendu, C. Risk analysis of heavy metal contamination in soil, vegetables and fish around Challawa area in Kano State, Nigeria. Sci. Afr. 2020, 7, e00281. [Google Scholar] [CrossRef]
- Muneer, J.; AlObaid, A.; Ullah, R.; Rehman, K.U.; Erinle, K.O. Appraisal of toxic metals in water, bottom sediments and fish of fresh water lake. J. King Saud Univ. Sci. 2022, 34, 101685. [Google Scholar] [CrossRef]
- Ashour, M.; Abo-Taleb, H.; Abou-Mahmoud, M.; El-Feky, M.M.M. Effect of the integration between plankton natural productivity and environmental assessment of irrigation water, El-Mahmoudia Canal, on aquaculture potential of Oreochromis niloticus. Turkish J. Fish. Aquat. Sci. 2018, 18, 1163–1175. [Google Scholar]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Ashraf, M.; Akram, N.A.; Rizwan, Y.; Shaheen, M.; Arshad, F. Assessment of potential toxicological risk for public health of heavy metals in wheat crop irrigated with wastewater: A case study in Sargodha, Pakistan. Asian J. Chem. 2013, 1, 9704–9706. [Google Scholar] [CrossRef]
- Akhter, P.; Khan, Z.I.; Ahmad, K.; Nazar, S.; Munir, H.B.; Malik, I.S.; Nadeem, M.; Ashfaq, A.; Sohail, M.; Sultana, R.; et al. Bioaccumulation of heavy metals in tomatoes (Lycopersicum esculentum) grown in soil amended with different biofertilizers in Sargodha, Punjab Pakistan. Pure Appl. Biol. 2021, 10, 1240–1248. [Google Scholar]
- Sultan, Z.R.; Nasar, M.S.; Ahmed, M.; Saqib, M.; Ehsan, Y.; Tariq, M.H.; Mahmood, A. Heavy Metals Uptake Levels in Crop Fields of Two SAARC Countries and Their Health Risk Assessments—A Review. Pak. J. Chem. 2021, 11, 17–24. [Google Scholar] [CrossRef]
- Chen, F.; Ma, J.; Akhtar, S.; Khan, Z.I.; Ahmad, K.; Ashfaq, A.; Nawaz, H.; Nadeem, M. Assessment of chromium toxicity and potential health implications of agriculturally diversely irrigated food crops in the semi-arid regions of South Asia. Agric. Water Manag. 2022, 272, 107833. [Google Scholar] [CrossRef]
- Maqsood, A.; Khan, Z.I.; Ahmad, K.; Akhtar, S.; Ashfaq, A.; Malik, I.S.; Sultana, R.; Nadeem, M.; Alkahtani, J.; Dwiningsih, Y.; et al. Quantitative evaluation of zinc metal in meadows and ruminants for health assessment: Implications for humans. Environ. Sci. Pollut. Res. 2022, 29, 21634–21641. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, H.; Cao, C.; Zhao, Z.; Qiao, Y.; Du, S. Effects of Long-Term Fertilization on organic carbon and nitrogen dynamics in a Vertisol in eastern China. Open J. Soil Sci. 2018, 8, 99–117. [Google Scholar] [CrossRef] [Green Version]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Rice, E.W., Baird, R.B., Eaton, A.D., Eds.; American Public Health Association; American Water Works Association; Water Environment Federation: Falls Church, VA, USA, 2017; 1796p. [Google Scholar]
- Song, B.; Lei, M.; Chen, T.; Zheng, Y.; Xie, Y.; Li, X.; Gao, D. Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China. J. Environ. Sci. 2009, 21, 1702–1709. [Google Scholar] [CrossRef]
- Rahman, M.S.; Molla, A.H.; Saha, N.; Rahman, A. Study on heavy metal levels and its risk assessment in some edible fishes from Bangashi River, Dhaka, Bangladesh. Food Chem. 2012, 134, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Baset, A. Fish consumption study at a household level in Dir Lower, Khyber Pakhtunkhwa, Pakistan. RJFSN 2020, 5, 98–104. [Google Scholar] [CrossRef]
- Qasim, M.; Qasim, S.; Nazir, N. Factors affecting fish consumption of traditional subsistence Fishers in Khyber Pakhtunkhwa, Pakistan. Mar. Sci. Technol. Bull. 2020, 9, 178–187. [Google Scholar] [CrossRef]
- Haider, S.H.; Tariq, A.; Nazli, H. Supply and demand for cereals in Pakistan, 2010–2030. Gates Open Res. 2019, 3, 1392. [Google Scholar]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Faroon, O.; Ashizawa, A.; Wright, S.; Tucker, P.; Jenkins, K.; Ingerman, L.; Rudisill, C. Toxicological Profile for Cadmium; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2012. [Google Scholar]
- Chary, N.S.; Kamala, C.T.; Raj, D. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef]
- Hough, R.L.; Breward, N.; Young, S.D.; Crout, N.M.J.; Tye, A.M.; Moir, A.M.; Thornton, I. Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environ Health Perspect. 2004, 112, 215–221. [Google Scholar] [CrossRef] [Green Version]
- USEPA. USEPA Regional Screening Level (RSL) Summary Table: November 2011. 2011. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2015 (accessed on 29 September 2022).
- Zhang, X.; Fang, Q.; Zhang, T.; Ma, W.; Velthof, G.L.; Hou, Y.; Oenema, O.; Zhang, F. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Glob. Chang. Biol. 2020, 26, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Babaei, H.; Nazari-Sharabian, M.; Karakouzian, M.; Ahmad, S. Identification of critical source areas (CSAs) and evaluation of best management practices (BMPs) in controlling eutrophication in the Dez River Basin. Environments 2019, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Qaswar, M.; Yiren, L.; Jing, H.; Kaillou, L.; Mudasir, M.; Zhenzhen, L.; Hongqian, H.; Xianjin, L.; Jianhua, J.; Ahmed, W.; et al. Soil nutrients and heavy metal availability under long-term combined application of swine manure and synthetic fertilizers in acidic paddy soil. J. Soils Sediments 2020, 20, 2093–2106. [Google Scholar] [CrossRef]
- Han, R.; Zhou, B.; Huang, Y.; Lu, X.; Li, S.; Li, N. Bibliometric overview of research trends on heavy metal health risks and impacts in 1989–2018. J. Clean. Prod. 2020, 276, 123249. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dignam, T.; Kaufmann, R.B.; LeStourgeon, L.; Brown, M.J. Control of lead sources in the United States, 1970-2017: Public health progress and current challenges to eliminating lead exposure. J. Public Health Manag. Pract. 2019, 25 (Suppl. S1), S13. [Google Scholar] [CrossRef]
- Rodríguez, J.; Mandalunis, P.M. A review of metal exposure and its effects on bone health. J. Toxicol. 2018, 2018, 4854152. [Google Scholar] [CrossRef]
- Andjelkovic, M.; Buha Djordjevic, A.; Antonijevic, E.; Antonijevic, B.; Stanic, M.; Kotur-Stevuljevic, J.; Spasojevic-Kalimanovska, V.; Jovanovic, M.; Boricic, N.; Wallace, D.; et al. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int. J. Environ. Res. Public Health. 2019, 16, 274. [Google Scholar] [CrossRef] [Green Version]
- Dórea, J.G. Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. Environ. Res. 2019, 177, 108641. [Google Scholar] [CrossRef]
- Green, R.E.; Pain, D.J. Risks to human health from ammunition-derived lead in Europe. Ambio 2019, 48, 954–968. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, K.; Ashfaq, A.; Khan, Z.I.; Ashraf, M.; Akram, N.A.; Yasmin, S.; Batool, A.I.; Sher, M.; Shad, H.A.; Khan, A.; et al. Health risk assessment of heavy metals and metalloids via dietary intake of a potential vegetable (Coriandrum sativum L.) grown in contaminated water irrigated agricultural sites of Sargodha, Pakistan. Hum. Ecol. Risk Assess Int. J. 2016, 22, 597–610. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Rehman, S.; Siddique, S.; Bashir, H.; Zafar, A.; Sohail, M.; Ali, S.A.; Cazzato, E.; De Mastro, G. Health risk assessment of heavy metals in wheat using different water qualities: Implication for human health. Environ. Sci. Pollut. Res. 2017, 24, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.; Kokab, R.; Khan, Z.I.; Ashfaq, A.; Bashir, H.; Munir, M.; SHER, M.; WAJID, K.; Memona, H.; Sana, M.; et al. Assessment of heavy metals in wheat variety ‘‘Chagi-2’’under short-term wastewater irrigation. Biologia 2018, 64, 15–25. [Google Scholar]
- Yang, D.; Liu, J.; Wang, Q.; Hong, H.; Zhao, W.; Chen, S.; Yan, C.; Lu, H. Geochemical and probabilistic human health risk of chromium in mangrove sediments: A case study in Fujian, China. Chemosphere 2019, 233, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Maret, W. Chromium supplementation in human health, metabolic syndrome, and diabetes. Met. Ions Life Sci. 2019, 19, 231–251. [Google Scholar]
- Ugulu, I.; Ahmad, K.; Khan, Z.I.; Munir, M.; Wajid, K.; Bashir, H. Effects of organic and chemical fertilizers on the growth, heavy metal/metalloid accumulation, and human health risk of wheat (Triticum aestivum L.). Environ. Sci. Pollut. Res. 2021, 28, 12533–12545. [Google Scholar] [CrossRef]
- Tariq, F.; Wang, X.; Saleem, M.H.; Khan, Z.I.; Ahmad, K.; Saleem Malik, I.; Munir, M.; Mahpara, S.; Mehmood, N.; Ahmad, T.; et al. Risk assessment of heavy metals in basmati rice: Implications for public health. Sustainability 2021, 13, 8513. [Google Scholar] [CrossRef]
- FAO/WHO. Codex Alimentarius Commission, Food Additives and Contaminants; Joint FAO/WHO Food Standards Program, FAO/WHO: Geneva, Switzerland, 2001. [Google Scholar]
- WHO. Heavy Metals Environmental Aspects; Technical Report, Environmental Health Criteria No. 85; WHO: Geneva, Switzerland, 1995.
- Samuel, Y.G.; Ochube, E.O. Evaluation of the levels of selected heavy metals in leafy vegetables from irrigation farming sites in Jos, Plateau, Nigeria. J. Toxicol. Environ. Health Sci. 2021, 13, 28–36. [Google Scholar] [CrossRef]
Type of Fertilizer | Nitrogen (N) | Phosphorus (P) | Potassium (K) |
---|---|---|---|
Poultry wastes and cow dungs | 46 | 0 | 0 |
Nitrogen, Phosphorus, and Potassium fertilizer | 12 | 12 | 12 |
Poultry wastes | 40 | 1 | 1 |
Poultry wastes and wastewater from fishpond | 45 | 0 | 1 |
Inorganic | 25 | 5 | 14 |
Cow and poultry waste | 36 | 2 | 8 |
Cow dungs | 49 | 8 | 17 |
Sites | Crops | SOM (%) | pH (−log H+) | Clay (%) | EC (us/cm) | CEC (cmol/kg) | Soil Texture |
---|---|---|---|---|---|---|---|
Control site | Wheat | 3.68 | 6.35 | 22.75 | 1437.54 | 15.98 | Loam |
Rice | 3.34 | 6.21 | 17.84 | 1543.92 | 16.21 | Silty clay loam | |
Site 1 | Wheat | 4.12 | 6.43 | 29.42 | 1784.43 | 16.43 | Loam |
Rice | 4.03 | 6.73 | 20.34 | 1832.78 | 16.23 | clay | |
Site 2 | Wheat | 4.65 | 6.54 | 25.43 | 1843.19 | 18.34 | Loam |
Rice | 4.32 | 6.47 | 26.32 | 1821.34 | 19.68 | Silty clay loam | |
Site 3 | Wheat | 4.31 | 6.66 | 27.75 | 1923.32 | 19.46 | Loam |
Rice | 5.02 | 6.42 | 26.98 | 1845.85 | 20.43 | Silt clay | |
Site 4 | Wheat | 4.64 | 6.43 | 27.54 | 1954.23 | 18.43 | Loam |
Rice | 4.53 | 6.34 | 26.43 | 1943.95 | 19.43 | Silt clay |
Water Quality Parameters | Control Site | Site 1 | Site 2 | Site 3 |
---|---|---|---|---|
pH (−log H+) | 7.8 ± 0.13 | 7.3 ± 0.12 | 7.2 ± 0.13 | 7.1 ± 0.21 |
TDS (ppm) | 148.4 ± 9.64 | 163.4 ± 6.63 | 166.5 ± 14.23 | 164.1 ± 6.35 |
Temperature (°C) | 27.3 ± 0.21 | 28.0 ± 1.21 | 27.8 ± 0.21 | 27.8 ± 0.19 |
Ammonia (ppm) | 0.01 ± 0.006 | 0.03 ± 0.007 | 0.03 ± 0.002 | 0.02 ± 0.005 |
DO (mg/L) | 5.9 ± 0.32 | 5.7 ± 0.43 | 5.8 ± 0.42 | 5.8 ± 0.24 |
Nitrite (ppm) | 0.004 ± 0.003 | 0.02 ± 0.00 | 0.03 ± 0.005 | 0.03 ± 0.003 |
Nitrate (ppm) | 0.01 ± 0.009 | 0.03 ± 0.003 | 0.01 ± 0.003 | 0.02 ± 0.003 |
Alkalinity (mg/L) | 31.8 ± 0.84 | 32.9 ± 1.32 | 30.9 ± 1.62 | 33.9 ± 1.44 |
Sites | Type of Fertilizer | Soil Layers | Mn | p-Value | Cd | p-Value | Cr | p-Value | Pb | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Control site | No fertilizer | Layer 1 | 0.58 | 0.01 | 0.843 | p < 0.001 | 6.1 | p < 0.001 | 47.16 | 0.000 |
Layer 2 | 0.04 | 0.033 | 4.58 | 40.04 | ||||||
Layer 3 | 0.001 | 0.0045 | 2.12 | 18.81 | ||||||
Site 1 | Poultry wastes and cow dungs | Layer 1 | 2.29 | 0.000 | 3.43 | p < 0.001 | 60.37 | p < 0.001 | 255.51 | p < 0.001 |
Layer 2 | 1.99 | 2.98 | 52.02 | 150.66 | ||||||
Layer 3 | 1.33 | 1.34 | 28.67 | 139.65 | ||||||
Site 2 | Nitrogen, Phosphorus, and Potassium fertilizer | Layer 1 | 1.53 | 0.030 | 2.753 | p < 0.001 | 50.61 | p < 0.001 | 188.19 | p < 0.001 |
Layer 2 | 1.1 | 1.993 | 40.37 | 110.62 | ||||||
Layer 3 | 0.73 | 1.023 | 20.53 | 75.583 | ||||||
Site 3 | Inorganic fertilizers and poultry wastes | Layer 1 | 1.92 | p < 0.001 | 3.90 | p < 0.001 | 36.82 | p < 0.001 | 155.74 | p < 0.001 |
Layer 2 | 1.16 | 3.07 | 29.82 | 80.62 | ||||||
Layer 3 | 0.54 | 1.58 | 16.71 | 34.26 | ||||||
Site 4 | Poultry wastes and wastewater from fishpond | Layer 1 | 2.12 | p < 0.001 | 4.63 | p < 0.001 | 55.6 | p < 0.001 | 167.66 | p < 0.001 |
Layer 2 | 1.97 | 4.01 | 41.05 | 100.25 | ||||||
Layer 3 | 0.87 | 2.18 | 20.26 | 45.87 |
Sites | Type of Fertilizer | Crops | Mn (µg/L) | p-Value | Cd (µg/L) | p-Value | Cr (µg/L) | p-Value | Pb (µg/L) | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control site | No fertilizer | Wheat | 0.0012 | 0.17 | 0.040 | 0.0129 | 0.41 | 0.034 | 0.53 | 0.002 | ||||
Rice | 0.000167 | 0.001 | 0.028 | 11.88 | ||||||||||
Site 1 | Poultry wastes and cow dungs | Wheat | 0.24 | 0.000 | 0.81 | p < 0.001 | 1.923 | p < 0.001 | 5.293 | p < 0.001 | ||||
Rice | 0.08 | 0.42 | 2.643 | 5.66 | ||||||||||
Site 2 | Nitrogen, phosphorus, and potassium fertilizer | Wheat | 0.043 | 0.030 | 1.056 | p < 0.001 | 2.65 | p < 0.001 | 6.39 | p < 0.001 | ||||
Rice | 0.356 | 0.273 | 3.23 | 5.34 | ||||||||||
Site 3 | Inorganic fertilizers and poultry wastes | Wheat | 0.021 | p < 0.001 | 1.33 | p < 0.001 | 1.27 | p < 0.001 | 4.393 | p < 0.001 | ||||
Rice | 0.476 | 1.16 | 3.22 | 6.293 | ||||||||||
Site 4 | Poultry wastes and wastewater from fishpond | Wheat | 0.543 | p < 0.001 | 1.16 | p < 0.001 | 6.283 | p < 0.001 | 3.306 | p < 0.001 | ||||
Rice | 0.018 | 1.263 | 4.21 | 5.36 | ||||||||||
p-value on the basis of sites | Wheat | Rice | Wheat | Rice | Wheat | Rice | Wheat | Rice | ||||||
p < 0.001 | 0.001036 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | 0.000481 |
Pond Sites | Type of Fertilizer | Mn | Cd | Cr | Pb | ||||
---|---|---|---|---|---|---|---|---|---|
Pond Water | Fish Muscle | Pond Water | Fish Muscle | Pond Water | Fish Muscle | Pond Water | Fish Muscle | ||
Control | No fertilizer | 0.02 | 0 | 0.47 | 0.47 | 0.11 | 0.81 | 0.21 | 0.11 |
Site 1 | Inorganic | 2.13 | 1.23 | 1.92 | 2.46 | 4.9 | 3.80 | 4.81 | 3.88 |
Site 2 | Cow and poultry waste | 1.71 | 0.73 | 2.64 | 2.16 | 5.11 | 3.33 | 2.84 | 2.2 |
Site 3 | Cow dungs | 1.92 | 0.70 | 2.63 | 2.03 | 4.08 | 4.83 | 3.32 | 3.23 |
p value | p < 0.001 | 0.009 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | 0.0008 | p < 0.001 |
Groups | Wheat | Rice | ||||||
---|---|---|---|---|---|---|---|---|
AS | Cd | Ni | Pb | AS | Cd | Ni | Pb | |
Control group | 0.002069 | 0.047619 | 0.067213 | 0.011238 | 0.000288 | 0.00119 | 0.00459 | 0.251908 |
Site 1 | 0.104803 | 0.236152 | 0.031854 | 0.020715 | 0.034934 | 0.122449 | 0.04378 | 0.022152 |
Site 2 | 0.028105 | 0.384 | 0.052361 | 0.033955 | 0.23268 | 0.099273 | 0.063821 | 0.028376 |
Site 3 | 0.010938 | 0.341026 | 0.034492 | 0.028207 | 0.247917 | 0.297436 | 0.087452 | 0.040407 |
Site 4 | 0.256132 | 0.25054 | 0.113004 | 0.019718 | 0.008491 | 0.272786 | 0.075719 | 0.031969 |
Groups | AS | Cd | Ni | Pb |
---|---|---|---|---|
Control group | 0 | 1 | 7.36 | 0.52 |
Site 1 | 0.57 | 1.28 | 0.77 | 0.80 |
Site 2 | 0.42 | 0.81 | 0.65 | 0.77 |
Site 3 | 0.36 | 0.77 | 1.18 | 0.97 |
Crops | Sites | Type of Fertilizer | Metals | RfD mg kg−1 day−1 | EDI mg kg−1 day−1 | THQ | HI |
---|---|---|---|---|---|---|---|
Wheat | Control | No fertilizer | Mn | 0.140 | 0.000 | 0 | 0.62 |
Cd | 0.001 | 0.001 | 0.1 | ||||
Cr | 1.500 | 0.016 | 0.001 | ||||
Pb | 0.004 | 0.021 | 0.52 | ||||
Site 1 | Poultry wastes and cow dungs | Mn | 0.140 | 0.009 | 0.0064 | 0.84 | |
Cd | 0.001 | 0.031 | 0.31 | ||||
Cr | 1.500 | 0.079 | 0.005 | ||||
Pb | 0.004 | 0.209 | 0.52 | ||||
Site 2 | Nitrogen, phosphorus, and potassium fertilizer | Mn | 0.140 | 0.001 | 0.0007 | 1.04 | |
Cd | 0.001 | 0.041 | 0.41 | ||||
Cr | 1.500 | 0.104 | 0.0069 | ||||
Pb | 0.004 | 0.252 | 0.63 | ||||
Site 3 | Inorganic fertilizers and poultry wastes | Mn | 0.140 | 0.000 | 0 | 0.95 | |
Cd | 0.001 | 0.052 | 0.52 | ||||
Cr | 1.500 | 0.050 | 0.0033 | ||||
Pb | 0.004 | 0.173 | 0.43 | ||||
Site 4 | Poultry wastes and wastewater from fishpond | Mn | 0.140 | 0.021 | 0.015 | 0.80 | |
Cd | 0.001 | 0.045 | 0.45 | ||||
Cr | 1.500 | 0.248 | 0.016 | ||||
Pb | 0.004 | 0.130 | 0.32 | ||||
Rice | Control | No Manure | Mn | 0.140 | 0.000 | 0 | 0.11 |
Cd | 0.001 | 0.000 | 0 | ||||
Cr | 1.500 | 0.001 | 0.00006 | ||||
Pb | 0.004 | 0.469 | 0.117 | ||||
Site 1 | Poultry wastes and cow dungs | Mn | 0.140 | 0.003 | 0.002 | 0.71 | |
Cd | 0.001 | 0.016 | 0.16 | ||||
Cr | 1.500 | 0.104 | 0.006 | ||||
Pb | 0.004 | 0.223 | 0.55 | ||||
Site 2 | Nitrogen, phosphorus, and potassium fertilizer | Mn | 0.140 | 0.014 | 0.001 | 0.62 | |
Cd | 0.001 | 0.010 | 0.10 | ||||
Cr | 1.500 | 0.127 | 0.0084 | ||||
Pb | 0.004 | 0.210 | 0.52 | ||||
Site 3 | Inorganic fertilizers and poultry wastes | Mn | 0.140 | 0.018 | 0.012 | 1.10 | |
Cd | 0.001 | 0.046 | 0.46 | ||||
Cr | 1.500 | 0.127 | 0.0084 | ||||
Pb | 0.004 | 0.248 | 0.62 | ||||
Site 4 | Poultry wastes and wastewater from fishpond | Mn | 0.140 | 0.000 | 0 | 1.01 | |
Cd | 0.001 | 0.049 | 0.49 | ||||
Cr | 1.500 | 0.166 | 0.0011 | ||||
Pb | 0.004 | 0.211 | 0.52 | ||||
Fish | 1 | Inorganic | Mn | 0.140 | 0 | 0 | 0.78 |
Cd | 0.001 | 0.548 | 0.548 | ||||
Cr | 1.500 | 0.945 | 0.063 | ||||
Pb | 0.004 | 0.711 | 0.177 | ||||
2 | Cow and poultry wastes | Mn | 0.140 | 1.435 | 0.10 | 0.79 | |
Cd | 0.001 | 2.87 | 0.287 | ||||
Cr | 1.500 | 4.433 | 0.295 | ||||
Pb | 0.004 | 4.526 | 0.113 | ||||
3 | Cow dungs | Mn | 0.140 | 0.851 | 0.607 | 1.75 | |
Cd | 0.001 | 2.52 | 0.252 | ||||
Cr | 1.500 | 3.885 | 0.259 | ||||
Pb | 0.004 | 2.566 | 0.641 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naz, S.; Fazio, F.; Habib, S.S.; Nawaz, G.; Attaullah, S.; Ullah, M.; Hayat, A.; Ahmed, I. Incidence of Heavy Metals in the Application of Fertilizers to Crops (Wheat and Rice), a Fish (Common carp) Pond and a Human Health Risk Assessment. Sustainability 2022, 14, 13441. https://doi.org/10.3390/su142013441
Naz S, Fazio F, Habib SS, Nawaz G, Attaullah S, Ullah M, Hayat A, Ahmed I. Incidence of Heavy Metals in the Application of Fertilizers to Crops (Wheat and Rice), a Fish (Common carp) Pond and a Human Health Risk Assessment. Sustainability. 2022; 14(20):13441. https://doi.org/10.3390/su142013441
Chicago/Turabian StyleNaz, Saira, Francesco Fazio, Syed Sikandar Habib, Ghazala Nawaz, Sobia Attaullah, Mujeeb Ullah, Adil Hayat, and Imtiaz Ahmed. 2022. "Incidence of Heavy Metals in the Application of Fertilizers to Crops (Wheat and Rice), a Fish (Common carp) Pond and a Human Health Risk Assessment" Sustainability 14, no. 20: 13441. https://doi.org/10.3390/su142013441
APA StyleNaz, S., Fazio, F., Habib, S. S., Nawaz, G., Attaullah, S., Ullah, M., Hayat, A., & Ahmed, I. (2022). Incidence of Heavy Metals in the Application of Fertilizers to Crops (Wheat and Rice), a Fish (Common carp) Pond and a Human Health Risk Assessment. Sustainability, 14(20), 13441. https://doi.org/10.3390/su142013441